HOMOGENIZATION IN RANDOM MEDIA AND ISOTROPY CONSIDERATIONS

Alen Alexanderian, Muruhan Rathinam, and Rouben Rostamian University of Maryland, Baltimore County

DIFFUSION IN A RANDOM MEDIUM

$$\begin{cases} -\operatorname{div}_{\boldsymbol{x}} \left(A(\boldsymbol{x}, \omega) \nabla u(\boldsymbol{x}, \omega) \right) = f(\boldsymbol{x}) & \text{on } \mathcal{D} \\ u(\boldsymbol{x}, \omega) = 0 & \text{on } \partial \mathcal{D} \end{cases}$$

Some considerations:

- Random PDE ⇒ difficult problem
- For fixed realization computation is a formidable task
- Need to have a discretization of the domain fine enough to resolve the complicated micro-structure
- The problem is either too computationally expensive or impossible to solve numerically

HOMOGENIZATION

Physical intuition: instead of working with a medium with complicated structure work with a homogeneous medium with the same effective properties.

Consider the problem:

$$\begin{cases} -\operatorname{div}_{\boldsymbol{x}} \left(A(\boldsymbol{x}, \omega) \nabla u(\boldsymbol{x}, \omega) \right) = f(\boldsymbol{x}) & \text{on } \mathcal{D} \\ u(\boldsymbol{x}, \omega) = 0 & \text{on } \partial \mathcal{D} \end{cases}$$
(1)

Given appropriate conditions on A, there is a homogenized problem [4, 2]:

$$\begin{cases}
-\operatorname{div}(A^{0}\nabla u^{0}) = f & \text{on } \mathcal{D} \\
u^{0} = 0 & \text{on } \partial \mathcal{D}
\end{cases}$$
 (2)

such that for almost all ω , the solution u^0 of (2) is a close approximation of the solution u of the problem (1).

SYMMETRIES OF RANDOM MEDIA

- Let Q be a rotation matrix
- A random structure is invariant under rotation by Q if rotation of a realization by Q gives an equally likely realization

ISOTROPY (DIFFUSION)

- A medium is isotropic if it behaves the same regardless of its orientation
- Consider the homogenized problem

$$\begin{cases}
-\operatorname{div}(A^{0}\nabla u^{0}) = f & \text{on } \mathcal{D} \\
u^{0} = 0 & \text{on } \partial \mathcal{D}
\end{cases} (3)$$

Isotropy
$$\Leftrightarrow$$
 $A^0 = \alpha I$.

Question: Under what conditions the effective bahavior of a composite medium is isotropic? Answer in 2D:

- R_{θ} matrix of rotation by angle θ
- If $\theta \neq k\pi$, invariance under $R_{\theta} \Rightarrow$ isotropy

NUMERICAL COMPUTATIONS

Consider a random checkerboard:

- Random checkerboard, fifty-fifty chance of white or gray
- gray conductivity $a_1 = 1$
- white conductivity $a_2 = 2$

We expect [2],

$$A^0 = \sqrt{a_1 a_2} I = \sqrt{2} I$$

PERIODIZATION

- Fix a realization, select a square $[0, \rho]^2$, and extend it periodically to \mathbf{R}^2
- Solve the unit cell problem from periodic homogenization
- Get the corresponding homogenized matrix $A^{\rho}(\omega)$

Then [1, 3],

As $\rho \to \infty$, $A^{\rho} \to A^0$ for almost all ω .

SAMPLE COMPUTATIONAL RESULTS

$$\begin{split} A_1^\rho &= \left[\begin{array}{cc} 1.2397 & -0.0029 \\ -0.0029 & 1.2580 \end{array} \right] \\ A_2^\rho &= \left[\begin{array}{cc} 1.3876 & 0.0013 \\ 0.0013 & 1.4074 \end{array} \right] \\ A_3^\rho &= \left[\begin{array}{cc} 1.4099 & 0.0015 \\ 0.0015 & 1.4101 \end{array} \right] \end{split}$$

LINEAR ELASTICITY

- \mathcal{E} : n-dimensional Euclidean space
- \bullet $\mathcal{D} \subset \mathcal{E}$

$$\left\{ egin{aligned} -\operatorname{div}\mathsf{C}[
abla oldsymbol{u}] &= oldsymbol{f}, & ext{in } \mathcal{D}, \ oldsymbol{u} &= 0 & ext{on } \partial \mathcal{D}. \end{aligned}
ight.$$

- $\mathbf{f} \in (L^2(\mathcal{D}))^n$: body force
- · C: elasticity tensor

$$\mathsf{C}: Sym(\mathcal{E}) \to Sym(\mathcal{E})$$

ISOTROPY (ELASTICTY)

Definition: Symmetry group of an elasticity tensor C is a group $G_c \subseteq Orth(\mathcal{E})$ such that

$$QC[E]Q^T = C[QEQ^T], \forall Q \in G_c.$$
 (4)

C is Isotropic if

$$QC[E]Q^T = C[QEQ^T], \quad \forall Q \in Orth(\mathcal{E}).$$
(5)

Question: Under what condition on G_c does (4) \Rightarrow (5)?

Answer in 2D:

- \mathcal{E} : the 2-dimensional Euclidean space
- $R_{\theta} \in Orth(\mathcal{E})$: rotation by angle θ
- If $\theta \neq k\frac{\pi}{2}$, invariance under $R_{\theta} \Rightarrow$ isotropy

REFERENCES

- [1] A. Bourgeat and A. Piatnitski. Approximations of effective coefficients in stochastic homogenization. *Annales de l'Institut Henri Poincare (B) Probability and Statistics*, 40 (2), 2004.
- [2] V. V. Jikov, S. M. Kozlov, and O. A. Olenik. Homogenization of differential. operators and integral functionals. Springer, 1994.
- [3] H. Owhadi. Approximation of the effective conductivity of ergodic media by periodization. *Probab. Theory Related Fields*, 125(2), 2003.
- [4] G. C. Papanicolaou and S. R. S. Varadhan. Boundary value problems with rapidly oscillating random coefficients. Seria Colloquia Mathematica Societatis Janos Bolyai North-Holland, 27, 1981.