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DIFFUSION IN A RANDOM MEDIUM\
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—dive (A(z,w)Vu(z,w)) = f(x) onD
u(z,w) =0 on 9D

Some considerations:
e Random PDE = difficult problem

e For fixed realization computation is a
formidable task

e Need to have a discretization of the do-
main fine enough to resolve the compli-
cated micro-structure

e The problem is either too computation-
ally expensive or impossible to solve nu-
merically
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Physical intuition: instead of working with a
medium with complicated structure work with
a homogeneous medium with the same effective
properties.

HOMOGENIZATION

Consider the problem:

—dive (A(z,w)Vu(z,w)) = f(x) onD
u(z,w) =0 on 0D
ey

Given appropriate conditions on A, there is a
homogenized problem [4, 2]:

{ —div(A°Vu®) = f onD

2
on OD @

w =0

such that for almost all w , the solution u° of (2)
is a close approximation of the solution u of the

Kproblem (D).

SYMMETRIES OF RANDOM MEDIA \

e Let (Q be a rotation matrix

e A random structure is invariant under ro-
tation by @ if rotation of a realization by
Q gives an equally likely realization

ISOTROPY (DIFFUSION)
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e A medium is isotropic if it behaves the
same regardless of its orientation

e Consider the homogenized problem

{ —div(A°Vu) = f

uw =0

on D

3
on 0D ©)

Isotropy < A°=al.

Question: Under what conditions the effective
bahavior of a composite medium is isotropic?
Answer in 2D:

e Ry matrix of rotation by angle 6

e If 6 # km, invariance under Ry =
isotropy
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NUMERICAL COMPUTATIONS

Consider a random checkerboard:

e Random checkerboard, fifty-fifty chance
of white or gray

e gray conductivity a; = 1
e white conductivity ax = 2
We expect [2],

AO = ,/ala,gl = \/51

PERIODIZATION
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e Fix a realization, select a square [0, p]?,
and extend it periodically to R?

e Solve the unit cell problem from periodic
homogenization

e Get the corresponding homogenized ma-
trix A”(w)

Then [1, 3],

K As p — 00, A? — AP for almost all w.

SAMPLE COMPUTATIONAL RESULTS

e — [ 12397 —0.0029
17| —0.0029  1.2580

e _ [ 13876 0.0013
27| 0.0013 1.4074

e _ [ 14099 0.0015
37| 0.0015 1.4101
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LINEAR ELASTICITY

e &: n-dimensional Euclidean space

e DCE&

{ —divC[Vu] = f, inD,

u=0 on 0D.

F € (L*(D))": body force

C: elasticity tensor

C: Sym(&E) — Sym(E)
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ISOTROPY (ELASTICTY)
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Definition: Symmetry group of an elasticity
tensor C is a group G. C Orth(E) such that

QCIEIQT = CIQEQT],VQ € G..

C is Isotropic if

QCIEIQT = CIQEQT],

“

vQ € Orth(€).
(%)

Question: Under what condition on G does (4)

= (5)?

Answer in 2D:

e &: the 2-dimensional Euclidean space
e Ry € Orth(&): rotation by angle 0

e If 6 # kZ, invariance under Ry =
isotropy
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