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Chapter 1

Problem specification

The user is expected to supply a problem specification file that contains the com-
plete description of the problem to be solved and the desired post-processing
actions. The file is expected to define the domain geometry, boundary condi-
tions, and functions that specify boundary values and the forcing terms, all in
standard C.

There is no restriction on the name of the file—it can have any name suitable
for a C program—but we prefer to name it with a leading underscore, such as
ell-shaped.c, to make it stand out among other files in a directory listing.

A problems specification file consists of four distinct section:

File headers These consist of obligatory headers that declare various data
structures which are needed to capture user input.

Functions This section includes the definitions of all function needed to specify
the problem such as boundary values and forcing terms.

Geometry and boundary value specifications The geometry of the domain
is specified here. The section also includes the types of boundary condition
and the function that generates the boundary data.

Trailing material The items specified above are invisible outside the scope of
the file. In this trailing section we set up a function that provides a means
of external access to the data in this file. The material in the trailing
section is fixed, that is, it is independent of the problem.

In the following sections we provide examples to illustrate the process.
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−∆u = f(x, y) in Ω,
∂u

∂ν
= 0 on edges 0 and 2,

u = g1(x, y) on edge 1,
u = g3(x, y) on edge 3,
u = 0 on edges 4, 5, 6, 7.

Figure 1.1: The domain Ω is the region between the two squares with vertices
at (±2,±2) and (±1,±1). The diagram on the left shows the domain and
the labeling of its vertices and edges. Arrows indicate the orientation of
the boundaries. The Poisson boundary value problem is specified on the
right. The notation ∂u/∂ν expresses the derivative of the solution u in the
direction of outward normal to the boundary.

1.1 Example: square hole.c

This section gives a complete problem specification file, square hole.c, for a
Poisson boundary value problem in a domain Ω consisting of the region between
two squares with vertices at (±2,±2), (±1,±1), as shown in Figure 1.1.

File contents:
〈 square hole.c 8a〉≡
〈headers for problem specification 8b〉
〈functions associated with square hole.c 9a〉
〈geometry and boundary conditions for square hole.c 9b〉
〈the trailing material for square hole.c 11b〉

1.1.1 The headers section

The chunk 〈headers for problem specification 8b〉 should include the following
minimal headers. This is the same for all problem specification files:

〈headers for problem specification 8b〉≡ (8a 12a)

#include "make_mesh.h"

The contents of these header files will be described later. The user may add any
other headers and preprocessor macros as needed.

1.1.2 The function specification section

The chunk 〈functions associated with square hole.c 9a〉 specifies zero or more
functions that describe the problem’s boundary values and the forcing terms.
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For instance the data functions for the Poisson problem stated above may be:

〈functions associated with square hole.c 9a〉≡ (8a)

static double f(double x, double y, void *params)

{

return x*y;

}

static double g1(double x, double y, void *params)

{

return 1 - y*y;

}

static double g3(double x, double y, void *params)

{

return 1 - y*y*y;

}

All functions in a problem specification file should conform to the prototype
declared in 〈generic function prototype (never defined)〉. The params argument
in each of these function allows the caller to pass arbitrary parameters to the
function, as needed.

1.1.3 The geometry and boundary condition specification
section

The geometry of domain is specified in terms nodes, edges and holes, the details
of which will be explained in the following paragraphs.

Specification of the nodes The user is responsible for numbering the do-
main’s vertices. Nodes may be numbered in any order in consecutive non-
negative integers beginning with zero. Each node is specified as a triplet n,
x, y of numbers where the integer n is the node number and x and y are its
Cartesian coordinates. The triplets are stored in an array of NodeData struc-
tures. The vertex data for the domain shown in Figure 1.1 is entered in the file
square hole.c as:

〈geometry and boundary conditions for square hole.c 9b〉≡ (8a) 10 .

static NodeData nodes[] = {

{ 0, -2.0, -2.0 },

{ 1, +2.0, -2.0 },

{ 2, +2.0, +2.0 },

{ 3, -2.0, +2.0 },

{ 4, -1.0, -1.0 },

{ 5, -1.0, +1.0 },

{ 6, +1.0, +1.0 },

{ 7, +1.0, -1.0 },
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};

NodeData, which is a typedef for struct NodeData, is declared in make mesh.h
which will be described later.
Remark. The array of node data can have any name; it need not be called nodes.
Similarly, the arrays of edge and hole data, edges and holes, described in the
following paragraphs, may be named as desired. In fact, a problem definition
file may have several definitions of the edges array, for example, under different
names, for specifying alternative boundary conditions.

Specification of the edges The user is responsible for numbering the edges
of the polygons that define the domain’s boundary. Edges may be numbered in
any order in consecutive non-negative integers beginning with zero, just as for
nodes.

The domain’s boundary (or boundaries, if there are holes) are viewed as oriented
curves. The positive direction along the outer boundary is counter-clockwise.
The positive direction along the boundaries of holes, if any, is clockwise. This
agrees with the orientation convention in Green’s theorem in calculus. Each
edge inherits an orientation from the boundary. Thus may speak of the edge’s
first vertex and second vertex in an unambiguous way.

An edge is specified in terms of five items, n, node1, node2, bc type, bc func,
which will now describe in detail.

The first items, n, is the edge number which is assigned by the user as described
above. The next two items, node1 and node2, are the node numbers of the
vertices that are connected by this edge. The ordering is significant here: node1]
is the edge’s first vertex and [[node2 is the edge’s second vertex.

The fourth item, bc type, is an integer that indicates the type of the boundary
condition applied to the edge. The list of supported boundary types is given in
〈boundary condition types (never defined)〉.
The fifth item, bc func, is a pointer to a function that supplies the boundary
values. The function should conform to the generic function prototype, Func,
declared in 〈generic function prototype (never defined)〉. To specify a zero bound-
ary value, bc func may be set to NULL.

The edge data for the domain shown in Figure 1.1 is entered in the file square hole.c as:
〈geometry and boundary conditions for square hole.c 9b〉+≡ (8a) / 9b 11a .

static EdgeData edges[] = {

{ 0, 0, 1, BC_NEUMANN, NULL },

{ 1, 1, 2, BC_DIRICHLET, g1 },

{ 2, 2, 3, BC_NEUMANN, NULL },

{ 3, 3, 0, BC_NEUMANN, g3 },

{ 4, 4, 5, BC_DIRICHLET, NULL },

{ 5, 5, 6, BC_DIRICHLET, NULL },

{ 6, 6, 7, BC_DIRICHLET, NULL },
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{ 7, 7, 4, BC_DIRICHLET, NULL },

};

Specification of the holes The locations of holes in the domain, if any, are
specified in the array holes of type HoleData. A hole is specified by giving
the Cartesian coordinates of an arbitrary point within the hole. The hole is
completely determined by that point and the edges that surround it.

The domain in Figure 1.1 has a single hole, therefore the array holes consists
of a single element:
〈geometry and boundary conditions for square hole.c 9b〉+≡ (8a) / 10

static HoleData holes[] = {

{ 0.0, 0.0 },

};

Remark. If the domain has no holes, replace the definition of holes with:

static HoleData *holes = NULL;

1.1.4 The trailing material

The only externally visible object in the problem specification file is the func-
tion get fem which meshes the domain according to the user specified data and
returns a fem structure to the called. The fem structure encapsulates the com-
plete definition of the boundary value problem, including the domain, mesh,
and supplied boundary and forcing functions. The function get fem takes a
single argument, which specifies an upper bound to the largest triangle in the
domain’s triangulation.
〈the trailing material for square hole.c 11b〉≡ (8a)

#define N(array) (sizeof(array) / sizeof((array)[0]))

Mesh *get_fem(double elem_max_area)

{

return make_mesh(nodes, N(nodes), edges, N(edges), holes, N(holes),

elem_max_area);

}

The preprocessor macro, N, is defined for convenience; it calculates the number
of elements of a C array.

1.2 Example: ell-shape.c

This section gives a complete problem specification file, ell-shape.c, for a Pois-
son boundary value problem in an L-shaped domain Ω shown in Figure 1.2. The
coordinates of all vertices are −1, 0 or +1.



12 CHAPTER 1. PROBLEM SPECIFICATION

0

1 2

34

5

0

1

2

3

4

5
Ω

−∆u = f(x, y) in Ω,
u = 0 on edges 0, 1, 5,
u = g2(x, y) on edge 2,
u = g4(x, y) on edge 4,

∂u

∂ν
= 0 on edge 3.

Figure 1.2: The domain Ω is the L-shaped domain shown on the left. The
vertex coordinates are −1, 0 or +1.. The arrow indicates the positive direc-
tion along the boundary. The Poisson boundary value problem is specified
on the right. The notation ∂u/∂ν expresses the derivative of the solution u
in the direction of outward normal to the boundary.

File contents:
〈 ell-shape.c 12a〉≡
〈headers for problem specification 8b〉
〈functions associated with ell-shape.c 12b〉
〈geometry and boundary conditions for ell-shape.c 13a〉
〈the trailing material for ell-shape.c 13d〉

1.2.1 The headers section

The contents of the headers section is the same as in the previous example
because the headers section is problem-independent.

1.2.2 The function specification section

Here we specify he functions f , g2 and g4 that enter in the description of the
boundary value problem shown in Figure 1.2.

〈functions associated with ell-shape.c 12b〉≡ (12a)

static double f(double x, double y, void *params)

{

return x*y;

}

static double g2(double x, double y, void *params)

{

return 1 - y*y;

}

static double g4(double x, double y, void *params)

{
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return y*(1-y);

}

1.2.3 The geometry and boundary condition specification
section

Nodes:
〈geometry and boundary conditions for ell-shape.c 13a〉≡ (12a) 13b .

static NodeData nodes[] = {

{ 0, 0.0, 0.0 },

{ 1, 0.0, -1.0 },

{ 2, +1.0, -1.0 },

{ 3, +1.0, +1.0 },

{ 4, -1.0, +1.0 },

{ 5, -1.0, 0.0 },

};

Edges:
〈geometry and boundary conditions for ell-shape.c 13a〉+≡ (12a) / 13a 13c .

static EdgeData edges[] = {

{ 0, 0, 1, BC_DIRICHLET, NULL },

{ 1, 1, 2, BC_DIRICHLET, NULL },

{ 2, 2, 3, BC_DIRICHLET, g2 },

{ 3, 3, 4, BC_NEUMANN, NULL },

{ 4, 4, 5, BC_DIRICHLET, g4 },

{ 5, 5, 0, BC_DIRICHLET, NULL },

};

Holes: Since Ω has no holes, we set holes to NULL:

〈geometry and boundary conditions for ell-shape.c 13a〉+≡ (12a) / 13b

static HoleData *holes = NULL;

1.2.4 The trailing material

The contents of the trailing material is similar to that in the previous example
except for that the macro N does not apply to holes since holes is not a C
array.

〈the trailing material for ell-shape.c 13d〉≡ (12a)

#define N(array) (sizeof(array) / sizeof((array)[0]))

Mesh *get_fem(double elem_max_area)

{
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return make_mesh(nodes, N(nodes), edges, N(edges), holes, 0,

elem_max_area);

}

1.3 Compiling into modules

The obvious way to use a problem specification file is to compile and link it with
the rest of the program files that constitute the FEM solver. There is something
inelegant about this, however. We shouldn’t have to recompile or relink the
program just to alternate between solving a problem A and a problem B. A
better way is to keep the solver and the problem specification separate. We
compile the solver once for all into a regular executable program. We compile
the program specification file into a dynamically loadable shared library object
which we call a module. The executable receives the name of the module as
a command line argument and calls the dynamic linking loader, dlopen(), to
load the module at run time. Any number of problems can be solved by the
same executable, just by giving it different command line arguments.

The dynamic linking loader dlopen() is not a part of the standard C therefore
our method is not portable across operating systems. It is defined, however,
under the POSIX standard, therefore systems compliant with POSIX should be
able to follow our approach. The alternative is to forgo dynamic loading and
just compile (and recompile) the program specification file along with the rest
of the program in the traditional way.

A further complication arises due the the variability among compilers of the
method of making a shared library. We use GNU gcc to compile our programs.
The command:

gcc -shared -fPIC -Wl,-soname,myprob.so -o myprob.so myprob.c

compiles the program specification file myprob.c and produces the module myprob.so.
If the name of the executable is fem, then to solve the problem described in
myprob.c we enter the command:

fem --module myprob.so --poisson-solve

See Chapter 8 for the description of all command line options.



Chapter 2

Meshing

The problem specification data which is supplied by the user in the file problem.c,
is passed to the function function make mesh() in the file make mesh.c which
analyzes and transforms the data quite extensively. The final outcome is the con-
struction of a Fem structure which contains the complete problem statement and
the corresponding meshed domain. This structure is returned to make mesh()’s
caller. A sample meshed domain is shown in Figure B.1.

2.1 Data structures for capturing user input

Before examining make mesh(), we describe the data structures that are used
to hold user-supplied geometry and related information. These are:

2.1.1 The NodeData and EdgeData structures

The NodeData and EdgeData structures hold information about a domain’s
nodes and edges (and boundary conditions). The examples in Chapter 1 show
how the user input is captured into these structures.

The NodeData and EdgeData structures cross-reference each other, therefore we
issue a preliminary incomplete declaration for both:

〈data structures for capturing user input 15a〉≡ (17c) 15b .

typedef struct NodeData NodeData;

typedef struct EdgeData EdgeData;

The complete NodeData structure is declared as:
〈data structures for capturing user input 15a〉+≡ (17c) / 15a 16a .

struct NodeData {

int nodeno;

15
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double x;

double y;

EdgeData *e1; /* preceding boundary edge */

EdgeData *e2; /* succeeding boundary edge */

int reentrant; /* 0,1,2,... for reentrant, -1 otherwise */

List *satellite_nodes; /* extra nodes around a reentrant vertex */

};

The first three members correspond to the triplet n, x, y noted in Section 1.1.3.
The remaining members are for the program’s internal use. The roles of those
entries will be described further down.

The complete EdgeData structure is declared as:

〈data structures for capturing user input 15a〉+≡ (17c) / 15b 16b .

struct EdgeData {

int edgeno;

int node1; /* number of first node */

int node2; /* number of second node */

enum bc_types bc_type; /* boundary condition type */

Func bc_func; /* boundary condition data */

NodeData *n1; /* pointer to first node */

NodeData *n2; /* pointer to second node */

int ancestry; /* ancestor (used for splitting edges) */

int patch; /* patch number of this edge */

};

The structure’s first five members correspond to the the values of n, node1,
node2, bc type, bc func described Section 1.1.3. The remaining members are
for the program’s internal use. The roles of those entries will be described
further down. The prototype Func for functions that supply the boundary
values is declared in 〈generic function prototype (never defined)〉.

2.1.2 The HoleData structure

The HoleData structure is declared as:
〈data structures for capturing user input 15a〉+≡ (17c) / 16a 17a .

typedef struct HoleData {

double x;

double y;

} HoleData;
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The x and y members hold the coordinates of a point in a hole in the domain.
See Section 1.1.3 for an example.

2.1.3 The RegionData structure

The domain over which we solve the PDE may be subdivided into subdomains
which are called regions in the Triangle library. The domain is triangulated
such that no triangle straddles a region boundary. We store region data in a
RegionData structure:

〈data structures for capturing user input 15a〉+≡ (17c) / 16b

typedef struct {

double x;

double y;

int marker;

} RegionData;

2.1.4 Prototype of make mesh()

As noted in the beginning of this chapter, make mesh() is the only function with
external linkage in make mesh.c. We declare its prototype in make mesh.h to
make it known to the external callers.

〈prototype make mesh 17b〉≡ (17c)

Mesh *make_mesh(

NodeData *nodes, int nnodes,

EdgeData *edges, int nedges,

HoleData *holes, int nholes,

double elem_max_area);

2.1.5 The file make mesh.h

The file make mesh.h contains the data structures described in the previous
sections.

〈make mesh.h 17c〉≡
#ifndef H_MAKE_MESH_H

#define H_MAKE_MESH_H

#include "fem.h"

#include "linked-list.h"

typedef struct triangulateio Triangle;

〈data structures for capturing user input 15a〉
〈prototype make mesh 17b〉
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#endif /* H_MAKE_MESH_H */

2.2 The function make mesh()

The file make mesh.c consists of a large number of function but only make mesh()
is visible to the outside. All others are declared static therefore have no ex-
ternal linkage. The outline of make mesh() is:
〈function make mesh 18〉≡ (36)

#ifdef DEBUG

static void dump_node_and_edge_lists(List *node_list, List *edge_list)

{

List *p;

for (p = node_list; p != NULL; p = p->rest) {

NodeData *node = p->first;

printf("node %d: (%g, %g)\n", node->nodeno, node->x, node->y);

}

for (p = edge_list; p != NULL; p = p->rest) {

EdgeData *edge = p->first;

printf("edge %d: (%d -> %d), ancestor=%d\n",

edge->edgeno, edge->n1->nodeno, edge->n2->nodeno, edge->ancestry);

}

}

#endif

Mesh *make_mesh(

NodeData *nodes, int nnodes,

EdgeData *edges, int nedges,

HoleData *holes, int nholes,

double elem_max_area)

{

Mesh *mesh;

Triangle *out;

List *node_list = NULL;

List *edge_list = NULL;

List *region_list = NULL;

int npatches;

int i;

〈sanity check 19a〉
〈complete node arrays 19b〉
〈complete edge arrays 21a〉
〈identify boundary patches 22a〉
〈convert node and edge arrays into linked lists 24b〉
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〈localize reentrant vertices 25a〉
〈insert satellite nodes 29〉
〈sort node and edge lists 32a〉
/* dump_node_and_edge_lists(node_list, edge_list); */

〈triangulate 32b〉
mesh = triangle_to_mesh(out, edges);

mesh->nbseries = npatches;

create_boundary_series(mesh);

for (i = 0; i < npatches; i++)

sort_bseries(mesh->bseries[i]);

/* TEMPORARY */

{

for (i = 0; i < npatches; i++) {

List *p;

printf("Sorted bseries\n");

for (p = mesh->bseries[i]; p != NULL; p = p->rest) {

Edge *edge = p->first;

printf("%d:(%d -> %d) ",

edge->edgeno,

edge->n1->nodeno,

edge->n2->nodeno);

}

putchar(’\n’);

}

}

return mesh;

}

We will describe the details of the various chunks that make up this function in
the following sections.

2.2.1 Sanity check

When the domain has no holes, the holes argument of make mesh() should
be NULL and the nholes argument should be zero. Here we check that this is
entered correctly:
〈sanity check 19a〉≡ (18)

if ((holes == NULL && nholes != 0) || (holes != NULL && nholes == 0))

ABORT("mesh_mesh() called with inconsistent ‘holes’ and ‘nholes’ arguments");

2.2.2 Completing the node arrays

The user’s data in file problem.c initializes each NodeData structure only par-
tially. The chunk 〈complete node arrays 19b〉 fills in the remaining members by
calling:
〈complete node arrays 19b〉≡ (18)
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complete_node_array(nodes, nnodes, edges, nedges);

where:

〈complete node array() 20a〉≡ (36) 20b .

static void complete_node_array(

NodeData *nodes, int nnodes,

EdgeData *edges, int nedges)

{

int i;

Filling the e1 and e2 members. The members e1 and e2 of a node are
pointers to the two boundary edges that straddle that node. The edge e1
precedes edge e2 as we move through the node along the boundary along its
positive orientation.

To assign values to the pointers e1 and e2, we walk through the edges array.
From the user’s supplied data, edge->node1 gives the node number of the edge’s
first node. Then node[edge->node1] gives that node’s NodeData structure.
Then node[edge->node1].e2 gives that node’s pointer to the node’s forward
edge, which we set it to point to edge.
〈complete node array() 20a〉+≡ (36) / 20a 20c .

for (i = 0; i < nedges; i++) {

EdgeData *edge = &edges[i];

nodes[edge->node1].e2 = edge;

nodes[edge->node2].e1 = edge;

}

Filling the reentrant member. The member reentrant of a NodeData
structure is a flag to signal a reentrant vertex. Reentrant vertices are enumerated
0, 1, 2, . . . and their reentrant members are set to these values. Non-reentrant
nodes receive the default value of −1.

Our algorithm will add “satellite nodes” around each reentrant vertex and cut-
off specially marked regions for special treatment. The member nodes[i].satellite nodes
of a NodeData structure is a head of a linked list of the node’s satellite nodes.
Here we initialize the reentrant and satellite nodes members to their de-
fault values:

〈complete node array() 20a〉+≡ (36) / 20b

for (i = 0; i < nnodes; i++) {

nodes[i].reentrant = -1;

nodes[i].satellite_nodes = NULL;

}

}
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2.2.3 Completing the edge arrays

The user’s data in file problem.c initializes each EdgeData structure only par-
tially. The chunk 〈complete edge arrays 21a〉 fills in the remaining members by
calling:

〈complete edge arrays 21a〉≡ (18)

complete_edge_array(nodes, nnodes, edges, nedges);

where:

〈complete edge array() 21b〉≡ (36) 21c .

static void complete_edge_array(

NodeData *nodes, int nnodes,

EdgeData *edges, int nedges)

{

int i;

The members n1 and n2 of an edge are pointers to the NodeData structures of
the edge’s vertices. The pointer n1 corresponds to the edge’s first node and the
pointer n2 corresponds to the edge’s second node.

Initial edges have their edge->ancestry members set to be their edge numbers.
Edges that are obtained by by spliting an edge in two (see Section 2.2.7) will
inherit their parent edge’s edge->ancestry value.

〈complete edge array() 21b〉+≡ (36) / 21b

for (i = 0; i < nedges; i++) {

EdgeData *edge = &edges[i];

edge->n1 = &nodes[edge->node1];

edge->n2 = &nodes[edge->node2];

edge->ancestry = edge->edgeno;

}

}

2.2.4 Grouping boundary patches

For the reasons that will become clear when we apply boundary data to our
boundary value problem, we need to identify distinct boundary patches for a
given problem. A boundary patch is a maximal connected subset of boundary
edges that have same type of boundary condition. Let us define a few terms to
clarify this definition.

• By ‘a connected subset of boundary edges’ we mean a subset of boundary
edges that forms a connected set in the plane, that is, the set cannot be
split into two subsets with a positive distance between them.

Examples: Two adjacent edges of a square form a connected set. The four
edges of a square form a connected set. Two opposite edges of a square
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do not form a connected set. The set of edges that form the inner and
outer boundaries of an annulus is not a connected set.

• Currently our solver handles boundary condition of types Dirichlet or Neu-
mann. Our solver distinguishes between a homogenous boundary condtion,
that is where the boundary data is zero, and nonhomogeneous boundary
conditions, that is where non-zero boudary data is specified. We say two
edges ‘have same type of boundary condition’ if all of the following condi-
tions hold:

1. The boundary condition types are either both Dirichle or both Neu-
mann.

2. Both boundary conditions are homogeneous or both boundary con-
ditions are nonhomogeneous.

In particular, if an edge with a homogeneous Dirichlet data is not of the
same type as an edge with a non-homogeneous Dirichlet data.

• We say ‘a connected subset of boundary edges that have same type of
boundary condition’ is ‘maximal’ if no greater subset of edges exists with
the same property.

Examples: If homogeneous Dirichlet data is prescribed on three edges of
a square and nonhomogeneous Dirichlet data is prescribed on the fourth
edge, then the fourth edge is a maximal set and so is the set of the first
three edges.

The task of identifying the boundary patches is performed by calling:
〈identify boundary patches 22a〉≡ (18)

npatches = identify_boundary_patches(edges, nedges);

which identifyes boundary patches and assignes a number to each, beginning
with zero. Then it stores the patch number of each edge in the patch member
of the edge’s EdgeData structure. It performs this task by making a linked list of
all boundary edges, then splitting it into several linked lists, one per boundary
patch.

〈function identify boundary patches() 22b〉≡ (36) 23a .

static int identify_boundary_patches(EdgeData *edges, int nedges)

{

List *list_in = NULL;

int npatches = 0;

int i;

/* make a linked list of all edges */

for (i = 0; i < nedges; i++)

list_in = List_push(list_in, &edges[i]);
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Now split the linked list of edges into two linked lists. The linked list list out
is a maximal connected subset of boundary edges that have same type of bound-
ary condition, therefore it forms a boundary patch. The linked list list rem
contains the remaining edges. Then we subject list rem to the same process
and repeat until list rem is empty.

〈function identify boundary patches() 22b〉+≡ (36) / 22b

do {

List *list_out = NULL;

List *list_rem = NULL;

split_edgelist(&list_in, &list_out, &list_rem);

while (list_out != NULL) {

EdgeData *edge;

list_out = List_pop(list_out, (void **)&edge);

edge->patch = npatches;

}

npatches++;

if (list_rem == NULL)

break;

list_in = list_rem;

} while (1);

return npatches;

}

The function split edgelist() handles the actual splitting of the linked list.
If list in is empty, then there is nothing to split, therefore it returns. Other-
wise it removes the first link from list in and calls itself recursively with the
remaining list. Once the resulting list out is determined, it calls the function
fits in() to check if the previously removed link is “of the same type” as those
in list out. If so, it pushes that link into list out otherwise it pushes that
link into list rem.

〈function split edgelist() 23b〉≡ (36)

static void split_edgelist(List **list_in, List **list_out, List **list_rem)

{

void *first;

if (*list_in == NULL)

return;

*list_in = List_pop(*list_in, &first);

split_edgelist(list_in, list_out, list_rem);

if (*list_out == NULL || fits_in(*list_out, first))

*list_out = List_push(*list_out, first);

else

*list_rem = List_push(*list_rem, first);

}
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Here is fits in(). It returns 1 (true) if edge is in the same boundary patch
as those in list out. Otherwise it returns zero (false). We introduce several
intermediate boolean variables in the computation to make the flow of logic
transparent. This is detrimental to the function’s efficiency because all inter-
mediate variables are evaluated even though the outcome of the funtion may
be predictable from the very first test. Nevertheless, we leave the intermediate
variables in because in our view the gain in clarity overrides the gain in efficiency
in this case.

〈function fits in() 24a〉≡ (36)

static int fits_in(List *list_out, EdgeData *edge)

{

List *p;

for (p = list_out; p != NULL; p = p->rest) {

EdgeData *ep = p->first;

int same_bc_type = edge->bc_type == ep->bc_type;

int both_hom = edge->bc_func == NULL && ep->bc_func == NULL;

int both_non_hom = edge->bc_func != NULL && ep->bc_func != NULL;

int same_type = same_bc_type && (both_hom || both_non_hom);

int n1_fits = edge->n1 == ep->n1 || edge->n1 == ep->n2;

int n2_fits = edge->n2 == ep->n1 || edge->n2 == ep->n2;

if (same_type && (n1_fits || n2_fits))

return 1;

}

return 0;

}

2.2.5 Converting node and edge arrays into linked lists

We are going to extend the user-supplied nodes and edges by adding additional
nodes and edges near reentrant vertices. To facilitate the expansion, we embed
the nodes and edges arrays into linked lists. The original arrays will not be
used after this point.

〈convert node and edge arrays into linked lists 24b〉≡ (18)

for (i = 0; i < nnodes; i++)

node_list = List_push(node_list, &nodes[i]);

for (i = 0; i < nedges; i++)

edge_list = List_push(edge_list, &edges[i]);

2.2.6 Localizing reentrant vertices

Around every reentrant vertex we create a local neighborhood as follows. We
divide the interior angle α > π of a reentrant corner by π/3 then round up the
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Figure 2.1: A reentrant angle of 224 degrees has been subdivided into four 56
degree angles by inserting five satellite nodes. This produces a local region
near the reentrant corner which will be triangulated along with the rest of
the domain.

result to an integer, let us say n. Then we divide α into n equal angles of size
α/n each by inserting n+1 “satellite” nodes. This is best explained by referring
to the diagram in Figure 2.1 where α = 224 degrees, therefore n = 4. The line
segments that connect the nodes delimit a region of the overall domain Ω.

Each region may be assigned a number (of type double) called the region’s
attribute. After triangulation, each triangle inherits its region’s attribute. This
makes it possible to tell to which region a triangle belongs. In our program, we
enumerate the regions with integers 0, 1, 2, . . . , and pass the number (cast to
double) to Triangle as the region’s attribute value.

The creation of satellite nodes and labeling of the local regions is done by calling:

〈localize reentrant vertices 25a〉≡ (18)

localize_reentrant_vertices(&node_list, &nnodes,

/* &edge_list, &nedges, */ &region_list, elem_max_area);

where:
〈localize reentrant vertices 25b〉≡ (36) 26a .

static void localize_reentrant_vertices(

List **p_node_list, int *nnodes,

/* List **p_edge_list, int *nedges, */

List **region_list, double elem_max_area)

{

List *node_list = *p_node_list;

List *p;

int reentrant_node_count = 0;

Identifying reentrant vertices. We walk over the list of nodes. For each
node we identify its preceding and succeeding nodes. Then we form the vectors
〈x1, y1〉 and 〈x2, y2〉 which point from that node to its neighbors. It can be
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shown that if x2y1 − y2x1 < 0, then the vertex is reentrant.

〈localize reentrant vertices 25b〉+≡ (36) / 25b

for (p = node_list; p != NULL; p = p->rest) {

NodeData *this_node = (NodeData *)p->first;

EdgeData *prev_edge = this_node->e1;

EdgeData *next_edge = this_node->e2;

NodeData *prev_node = prev_edge->n1;

NodeData *next_node = next_edge->n2;

double x1 = prev_node->x - this_node->x;

double y1 = prev_node->y - this_node->y;

double x2 = next_node->x - this_node->x;

double y2 = next_node->y - this_node->y;

if (x2*y1-y2*x1 < 0) /* reentrant corner */

make_satellite_nodes(this_node, x1, y1, x2, y2, nnodes,

region_list, &reentrant_node_count, elem_max_area);

}

}

The function make satellite nodes. The function make satellite nodes,
called above, allocates and fills a NodeData structure for each of the satellite
nodes of a given node. The structures are attached as a linked list to the node
structure’s node->satellite nodes member. Here are the details:

〈make satellite nodes 26b〉≡ (36) 26c .

static void make_satellite_nodes(NodeData *node, double x1, double y1,

double x2, double y2, int *nnodes, List **region_list,

int *reentrant_node_count, double elem_max_area)

{

First, we calculate the interior angle α of the reentrant corner, divide into π/3
radians (60 degrees), and round up the result to an integer n. Then divide the
angle into n angle of size t = α/n.

〈make satellite nodes 26b〉+≡ (36) / 26b 26d .

double alpha = 2.0*Pi + atan2(x2*y1-y2*x1, y2*y1+x1*x2);

int n = ceil(alpha/(Pi/3.0));

double t = alpha/n;

Next, find the length of the shorter of the two edges that emanate from the
given node. Then compute r which will be the distance of the satellite nodes
from the central node.

〈make satellite nodes 26b〉+≡ (36) / 26c 27a .

double len1 = sqrt(x1*x1 + y1*y1);

double len2 = sqrt(x2*x2 + y2*y2);

double min_len = MIN(len1, len2);

double r = MIN(0.25*min_len, sqrt(2*2*elem_max_area/sin(t)));



2.2. THE FUNCTION MAKE MESH() 27

Then we find the unit vector pointing from the central node along the second
edge and scale it by a factor of r to obtain a vector 〈a, b〉:
〈make satellite nodes 26b〉+≡ (36) / 26d 27b .

double a = x2 / len2 * r;

double b = y2 / len2 * r;

int j;

The satellite nodes will be placed at:

xj = x̂+ a cos jt− b sin jt, yj = ŷ + a sin jt+ b cos jt, j = 0, 1, . . . , n.

where 〈x̂, ŷ〉 is the central node. This will define the central node’s local neigh-
borhood, as shown in Figure 2.1(b). The Triangle library needs to receive the
coordinates of a point inside each local neighborhood. Additionally, it needs
to receive the coordinates of a point outside of all local neighborhoods. If
*region list is NULL, we are dealing with the first reentrant node, therefore
we take the opportunity to define the “outside point” at this time. Considering
the sequence 〈xj , yj〉 defined above, the point with coordinates:

x = x̂+ 1.01(a cos t− b sin t), y = ŷ + 1.01(a sin t+ b cos t)

is a good candidate for the outside point.

〈make satellite nodes 26b〉+≡ (36) / 27a 27c .

RegionData *regiondata;

if (*region_list == NULL) {

regiondata = xmalloc(sizeof *regiondata);

regiondata->x = node->x + 1.01*(a*cos(t) - b*sin(t));

regiondata->y = node->y + 1.01*(a*sin(t) + b*cos(t));

regiondata->marker = -1;

*region_list = List_push(*region_list, regiondata);

}

Similarly, the point with coordinates:

x = x̂+ 0.3(a cos t− b sin t), y = ŷ + 0.3(a sin t+ b cos t)

is a good candidate for the inside point.

〈make satellite nodes 26b〉+≡ (36) / 27b 28a .

node->reentrant = (*reentrant_node_count)++;

regiondata = xmalloc(sizeof *regiondata);

regiondata->x = node->x + 0.3*(a*cos(t) - b*sin(t));

regiondata->y = node->y + 0.3*(a*sin(t) + b*cos(t));

regiondata->marker = node->reentrant;

*region_list = List_push(*region_list, regiondata);
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Finally, we create a NodeData for each satellite node and insert it in a linked
list attached to node->satellite nodes:
〈make satellite nodes 26b〉+≡ (36) / 27c

for (j = 0; j <= n; j++) {

double x = node->x + a*cos(j*t) - b*sin(j*t);

double y = node->y + a*sin(j*t) + b*cos(j*t);

NodeData *new = xmalloc(sizeof *new);

new->nodeno = (*nnodes)++;

new->x = x;

new->y = y;

new->e1 = NULL;

new->e2 = NULL;

new->reentrant = -1;

node->satellite_nodes = List_push(node->satellite_nodes, new);

}

}

2.2.7 Merging satellite nodes with the original nodes

At this point, satellite nodes created in 〈make satellite nodes 26b〉 are being
held in linked lists attached to the satellite nodes member of the NodeData
structure for each reentrant vertex. One of the goals in this section is to retrieve
these nodes and merge them with the original set of nodes supplied by the user.
Another goal is to identify and create new edges that connect the new nodes
and merge them with the original set of edges supplied by the user.

Referring to Figure 2.1(b), we see that the introduction of five satellite nodes
gives rise to four new edges that connect them. Additionally, the two satellite
nodes that fall on the domain’s boundary, split each of the two boundary edge
into two. Therefore those two user-supplied edges need to be removed and
replaced by four newly created edges.

The function split edge()

To implement the latter observation, we introduce an auxiliary function, split edge(),
that takes an edge, say AB, and a node, say C, and replaces the edge AB by
two edges AC and CB. In our application, the node C always will lie on the line
segment AB, however the function split edge() is more general and will work
equally well when C is positioned arbitrarily relative to AB. See Figure 2.2.
Since split edge() changes the number of edges of the domain, it receives a
pointer to the variable that holds the number of edges and updates it as needed.

〈split edge 28b〉≡ (36)

static List *split_edge(List *edge_list, int *nedges,

EdgeData *AB, NodeData *C)

{

EdgeData *AC = xmalloc(sizeof *AC);
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Figure 2.2: The function split edge() takes an edge like AB and a node,
like C, shown on the left, and replaces the edge AB with the edges AC and
CB, shown on the right. The edge AC receives the same edge number as
that of the removed edge AB. The edge CB receives a new edge number.

EdgeData *CB = xmalloc(sizeof *CB);

AC->edgeno = AB->edgeno;

AC->n1 = AB->n1;

AC->node1 = AC->n1->nodeno;

AC->n2 = C;

AC->node2 = AC->n2->nodeno;

AC->bc_type = AB->bc_type;

AC->bc_func = AB->bc_func;

AC->ancestry = AB->ancestry;

CB->edgeno = (*nedges)++; /* new edge number */

CB->n1 = C;

CB->node1 = CB->n1->nodeno;

CB->n2 = AB->n2;

CB->node2 = CB->n2->nodeno;

CB->bc_type = AB->bc_type;

CB->bc_func = AB->bc_func;

CB->ancestry = AB->ancestry;

C->e1 = AC;

C->e2 = CB;

AC->n1->e2 = AC;

CB->n2->e1 = CB;

edge_list = List_remove(edge_list, AB, NULL); /* CHECK FOR MEMORY LEAK */

edge_list = List_push(edge_list, AC);

edge_list = List_push(edge_list, CB);

return edge_list;

}

The function insert satellite nodes and edges()

Now that we are done with split edge(), we are ready to describe the chunk
〈insert satellite nodes 29〉. It is just one one function call:

〈insert satellite nodes 29〉≡ (18)

insert_satellite_nodes_and_edges(&node_list,
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&nnodes, &edge_list, &nedges);

where:
〈insert satellite nodes and edges 30a〉≡ (36) 30b .

static void insert_satellite_nodes_and_edges(

List **p_node_list, int *nnodes,

List **p_edge_list, int *nedges)

{

List *node_list = *p_node_list;

List *edge_list = *p_edge_list;

List *p;

We walk over the list of nodes. If the satellite nodes of a node structure is
other than NULL, it has a linked list of satellite nodes hanging from it.

〈insert satellite nodes and edges 30a〉+≡ (36) / 30a 30c .

for (p = node_list; p != NULL; p = p->rest) {

NodeData *node = p->first;

NodeData *saved = NULL;

List *q = node->satellite_nodes;

NodeData *sat_node;

if (q == NULL)

continue;

The first and last satellite nodes are special because they fall on the domain’s
boundary while the rest are internal to the domain. The boundary edges that
receive stallelite nodes are split in two.

Satellite nodes are assembled in the linked list in the reverse order of their
creation. Therefore the satellite node q->first splits the edge node->e1:

〈insert satellite nodes and edges 30a〉+≡ (36) / 30b 30d .

sat_node = q->first;

edge_list = split_edge(edge_list, nedges, node->e1, sat_node);

and the last satellite node splits the edge node->e2:

〈insert satellite nodes and edges 30a〉+≡ (36) / 30c 30e .

q = List_reverse(q);

sat_node = q->first;

edge_list = split_edge(edge_list, nedges, node->e2, sat_node);

We go over the satellite nodes and merge them with the master list of nodes.
〈insert satellite nodes and edges 30a〉+≡ (36) / 30d 31a .

while (q != NULL) {

sat_node = q->first;

node_list = List_push(node_list, sat_node);
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At the same time, we handle the interior edges that connect the satellite nodes.
If there are n satellite nodes, there are n− 1 such edges. As we go through the
linked list of satellite nodes, we save a pointer to the previously visited satellite
node (except for the first node) and define an edge that connects the current
node to the previously saved node.
〈insert satellite nodes and edges 30a〉+≡ (36) / 30e

if (saved != NULL) {

EdgeData *edge = xmalloc(sizeof *edge);

edge->edgeno = (*nedges)++;

edge->n1 = saved;

edge->node1 = edge->n1->nodeno;

edge->n2 = sat_node;

edge->node2 = edge->n2->nodeno;

edge->bc_type = 0; /* EXPLAIN */

edge->bc_func = NULL;

edge->ancestry = -10; /* EXPLAIN */

edge_list = List_push(edge_list, edge);

}

saved = sat_node;

q = q->rest;

}

List_free(&(node->satellite_nodes));

}

*p_node_list = node_list;

*p_edge_list = edge_list;

}

2.2.8 Sorting node and edge lists

Nodes in the expanded lists produced in 〈insert satellite nodes 29〉 are not in
any particular order. The Triangle library expects to receive a list of nodes
ordered by their node numbers, beginning with zero. Similarly with the list of
edges. Therefore we apply the List sort() function to put the lists of edges
and nodes in order. A call to List sort() needs to be supplied by a function
that receives pointers to two nodes (or edges) and returns −1, 0, or +1 if the
node (or edge) number of the first argument is lower, equal, or higher than that
of the second.

For this purpose we introduce the functions:

〈functions for sorting node and edge lists 31b〉≡ (36)

static int cmp_nodes(const void *a, const void *b)

{

NodeData *n1 = (NodeData *)a;

NodeData *n2 = (NodeData *)b;

if (n1->nodeno < n2->nodeno)

return -1;
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else if (n1->nodeno == n2->nodeno)

return 0;

else

return +1;

}

static int cmp_edges(const void *a, const void *b)

{

EdgeData *e1 = (EdgeData *)a;

EdgeData *e2 = (EdgeData *)b;

if (e1->edgeno < e2->edgeno)

return -1;

else if (e1->edgeno == e2->edgeno)

return 0;

else

return +1;

}

static void sort_node_and_edge_lists(

List **node_list, List **edge_list)

{

*node_list = List_sort(*node_list, cmp_nodes);

*edge_list = List_sort(*edge_list, cmp_edges);

}

and then we call:

〈sort node and edge lists 32a〉≡ (18)

sort_node_and_edge_lists(&node_list, &edge_list);

2.2.9 Calling Triangle to perform triangulation

The chunk 〈triangulate 32b〉 passes the prepared lists of nodes and edges to the
function run triangle() which is a front end to the Triangle library which
meshes the domain and returns its result in the variable out which is a pointer
to a struct triangulateio structure which is declared in Triangle’s header
file triangle.h and has been typedef’ed to Triangle in file make mesh.h.

〈triangulate 32b〉≡ (18)

out = run_triangle(node_list, nnodes, edge_list, nedges,

holes, nholes, region_list, elem_max_area);

where:

〈run triangle 32c〉≡ (36) 33a .

static Triangle *run_triangle(

List *node_list, int nnodes,

List *edge_list, int nedges,

HoleData *holes, int nholes,

List *region_list,
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double elem_max_area)

{

The structures pointed to by in and out will pass data to, and received data
from, the Triangle library. The string opts will hold a string of options that
control the details of the operation of Triangle.

〈run triangle 32c〉+≡ (36) / 32c 33b .

Triangle *in = xmalloc(sizeof *in);

Triangle *out = xmalloc(sizeof *out);

char opts[32];

List *p;

int i;

The input array ‘double *in->pointlist’ holds the coordinates of the do-
main’s vertices. The coordinates (xi, yi) of node number i are stored in the
array’s 2i and 2i+ 1 elements:

〈run triangle 32c〉+≡ (36) / 33a 34a .

in->numberofpoints = nnodes;

MAKE_VECTOR(in->pointlist, in->numberofpoints * 2);

for (p = node_list; p != NULL; p = p->rest) {

NodeData *np = p->first;

int i = np->nodeno;

in->pointlist[2*i] = np->x;

in->pointlist[2*i+1] = np->y;

}

/* Point markers (needed?) */

MAKE_VECTOR(in->pointmarkerlist, in->numberofpoints);

for (i = 0; i < in->numberofpoints; i++)

in->pointmarkerlist[i] = 555; /* TEMPORARY */

/* Point attributes (probably we won’t have a use for this) */

in->numberofpointattributes = 0; /* TEMPORARY */

In Triangle’s jargon, segments are the input line segments that specify a do-
main’s boundaries and regions. Edges are the output line segments that con-
nects nodes.

The input array ‘int *in->segmentlist’ holds the node numbers of a seg-
ment’s first and second nodes. For edge number i, these are stored in in the
array’s 2i and 2i+ 1 elements.

Triangle associates with each segment a number called the segment marker
whose values are stored in the array ‘int *in->segmentmarkerlist’. We store
the ith edge’s ancestry value plus 2 in in->segmentmarkerlist[i. The marker
values will be inherited by the edge’s sub-edges upon triangulation therefore we
will know each sub-edge’s ancessory by its marker value.
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Remark. Triangle uses marker numbers 1 and 0 to indicate if an edge is or is
not on the boundary. For instance, all internal edges have their markers set
to 0. By adding 2 we are distinguishing our markers from defaults produced by
Triangle.

〈run triangle 32c〉+≡ (36) / 33b 34b .

in->numberofsegments = nedges;

MAKE_VECTOR(in->segmentlist, in->numberofsegments * 2);

MAKE_VECTOR(in->segmentmarkerlist, in->numberofsegments);

for (p = edge_list; p != NULL; p = p->rest) {

EdgeData *ep = p->first;

int i = ep->edgeno;

in->segmentlist[2*i] = ep->node1;

in->segmentlist[2*i+1] = ep->node2;

in->segmentmarkerlist[i] = ep->ancestry + 2;

}

The input array ‘double *in->regionlist’ holds information about the do-
main’s regions. For region i, four data values are stored in the elements 4i,
4i+1, 4i+2 and 4i+3. The first two data values are the x and y coordinates of
an of an arbitrary point within the region. The third data value is the region’s
attribute which will be inherited by all the triangles within that region. In this
slot we store the RegionData’s regiondata->marker which has been assigned a
number in 〈make satellite nodes (never defined)〉. Note that the The fourth data
point is not used by FEM therefore we leave it unspecified.

〈run triangle 32c〉+≡ (36) / 34a 34c .

in->numberofregions = List_length(region_list);

MAKE_VECTOR(in->regionlist, in->numberofregions * 4);

for (p = region_list, i = 0; p != NULL; p = p->rest, i++) {

RegionData *regiondata = p->first;

in->regionlist[4*i+0] = regiondata->x;

in->regionlist[4*i+1] = regiondata->y;

in->regionlist[4*i+2] = (double)regiondata->marker;

/* in->regionlist[4*i+3] = unspecified; not used) */

}

The input array double *in->holelist holds the (x, y) coordinates of an ar-
bitrary point inside each of the domain’s holes.
〈run triangle 32c〉+≡ (36) / 34b 35a .

in->numberofholes = nholes;

if (nholes != 0) {

MAKE_VECTOR(in->holelist, in->numberofholes * 2);

for (i = 0; i < nholes; i++) {

in->holelist[2*i+0] = holes[i].x;

in->holelist[2*i+1] = holes[i].y;

}

}
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The setup of the input structure is complete. Now we set up the output struc-
ture. Memory for arrays associated with the output will be allocated by Triangle
provided that they are initialized to zero:

〈run triangle 32c〉+≡ (36) / 34c 35b .

out->pointlist = NULL;

out->pointmarkerlist = NULL;

out->edgelist = NULL;

out->edgemarkerlist = NULL;

out->trianglelist = NULL;

out->triangleattributelist = NULL;

out->segmentlist = NULL;

out->segmentmarkerlist = NULL;

The actions of Triangle library’s triangulate() function are controlled by a
string argument which encodes the desired actions. Our encoded string contains:

Q Quiet operation; don’t print out statistics.

z Node numbering begins with zero.

p The input data specifies a segment list.

A The input data specifies regional attributes.

j Discard duplicate vertices, if any.

e Produce edge list data.

q30 Accept no triangles with an angle less than 30 degrees.

ax Accept no triangles with an area greater than x.

〈run triangle 32c〉+≡ (36) / 35a

snprintf(opts, sizeof opts, "QzpAjeq30a%f", elem_max_area);

triangulate(opts, in, out, NULL);

free(in->pointlist);

free(in->pointmarkerlist);

free(in->segmentlist);

free(in->segmentmarkerlist);

free(in);

return out;

}

Remark. A pointer to in->regionlist is copied from Triangle’s input to its
output. We will be referring to the regionlist later on, that’s why there is no
free(in->regionlist) in the code fragment above.
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2.3 Function summary

We have completed the description of all functions that are involved in inter-
preting the user supplied data and passing them to Triangle to triangulate the
domain. We group these function and the related preprocessor macros under a
single chunk for later referencing:

〈functions defined in Chapter 2 36〉≡
#define MIN(x,y) ((x) < (y) ? (x) : (y))

#define Pi 3.14159265358979323846

〈function fits in() 24a〉
〈function split edgelist() 23b〉
〈function identify boundary patches() 22b〉
〈run triangle 32c〉
〈functions for sorting node and edge lists 31b〉
〈split edge 28b〉
〈insert satellite nodes and edges 30a〉
〈make satellite nodes 26b〉
〈localize reentrant vertices 25b〉
〈complete node array() 20a〉
〈complete edge array() 21b〉
〈function make mesh 18〉

In the next chapter we will analyze Triangle’s output and cast its data into
structures suitable for the rest of our work. That further processing of the
triangulation data will introduce additional functions which we will group with
the present function and write to file named make mesh.c.



Chapter 3

Processing Triangle’s
output

The purpose of the data structures NodeData, EdgeData and (others in the file
make mesh.h) is for preliminary processing of the user-supplied data up to the
point where the data is passed to Triangle. Once the domain is meshed, those
preliminary data structures are of no further use and are abandoned. In this
chapter we will introduce a new set of data structures for holding mesh data
then will transfer Triangle’s output to our data structures.

3.1 New data structures for mesh

The Node data structure. Nodes will be stored in Node data structures:

〈mesh data structures 37a〉≡ (45b) 38b .

typedef struct {

int nodeno;

double x;

double y;

} Node;

Here nodeno is the node’s number, enumerated beginning with zero, and x and
y are the node’s Cartesian coordinates.

The Edge data structure. A boundary edge’s boundary condition is specified
by the boundary condition type and a a pointer to a function that generates
the boundary values. The possible boundary condition types are:

〈boundary condition types 37b〉≡ (45b)

enum bc_types {

37
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BC_DIRICHLET,

BC_NEUMANN

};

which correspond tho the traditional Dirichlet and Neumann types. The func-
tion that generates the boundary values should have a signature conforming the
prototype:

〈generic function prototype 38a〉≡ (45b)

typedef double (*Func)(double x, double y, void *params);

The params argument in each of these function allows the caller to pass arbitrary
parameters to the function, as needed.

Remark. The same function signature is used for specifying a PDE’s forcing
function.

We introduce a structure to hold boundary condition data:

〈mesh data structures 37a〉+≡ (45b) / 37a 38c .

typedef struct {

int patch;

enum bc_types bc_type;

Func bc_func;

} BC;

And edge is strored in an Edge structure:

〈mesh data structures 37a〉+≡ (45b) / 38b 38d .

typedef struct {

int edgeno;

Node *n1;

Node *n2;

BC *bc;

} Edge;

Here edgeno is the edge’s number, enumerated beginning with zero, n1 and n2
are pointers to Node structures of the edge’s first and second nodes, respectively
and bc is a pointer to a BC structure for boundary edges and NULL otherwise.

The Elem data structure. Triangles constructed by Triangle, which we call
elements, will be stored in Elem data structures:

〈mesh data structures 37a〉+≡ (45b) / 38c 39a .

typedef struct {

int elemno;

Node *n[3];

Edge *e[3];

int marker;

double **Q;

double ***DQ;
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double ***D2Q;

} Elem;

Here elemno is the element’s number, enumerated beginning with zero, n is
an array of three pointers to the nodes at the element’s vertices, e is an array
of three pointers to the element’s edges, and marker is the the region number
that this element belongs to. If the element is in the local neighborhood of the
reentrant vertex number i, then marker equals i, where i = 0, 1, 3, . . ., otherwise
marker equals −1. The Q, DQ and D2Q members point to arrays that hold data on
the element’s basis functions. These will be described in Section sec:computing-
basis-functions.

The Mesh data structure. Upon return from Triangle, we know the number
of nodes, edges and elements of the mesh. Therefore it is most efficient to
store the data in arrays of fixed length rather than linked lists. The arrays are
encapsulated in a Mesh structure:
〈mesh data structures 37a〉+≡ (45b) / 38d 44b .

typedef struct {

int nnodes;

int nedges;

int nelems;

int nbseries;

Node *nodes;

Edge *edges;

Elem *elems;

List **bseries;

} Mesh;

where the meanings of the members should be self-evident.

3.2 Reading Triangle’s output into the new data
structures

The function triangle to mesh() receives a pointer to the Triangle’s output
and extracts the information there into a Mesh data structures. It allocated the
needed memory and returns a pointer to the Mesh structure.
〈function triangle to mesh 39b〉≡ (45c)

static Mesh *triangle_to_mesh(struct triangulateio *triangle_out, EdgeData *edges)

{

Mesh *mesh;

int i;

mesh = xmalloc(sizeof *mesh);

mesh->nnodes = triangle_out->numberofpoints;

mesh->nedges = triangle_out->numberofedges;
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mesh->nelems = triangle_out->numberoftriangles;

mesh->nodes = make_nodelist(mesh->nnodes);

mesh->edges = make_edgelist(mesh->nedges);

mesh->elems = make_elemlist(mesh->nelems);

〈fill the array of nodes 40a〉
〈fill the array of edges 40b〉
〈fill the array of elems 40c〉

〈free triangle out 42a〉

return mesh;

}

The make nodelist(), make edgelist() and make elemlist() functions called
above are simple memory allocation functions for the arrays of nodes, edges and
elems. They will be described in Section 3.3. Once memories for these arrays
are acquired, we may proceed to copy data from triangle out into them.

〈fill the array of nodes 40a〉≡ (39b)

for (i = 0; i < mesh->nnodes; i++) {

mesh->nodes[i].nodeno = i;

mesh->nodes[i].x = triangle_out->pointlist[2*i];

mesh->nodes[i].y = triangle_out->pointlist[2*i+1];

}

〈fill the array of edges 40b〉≡ (39b)

for (i = 0; i < mesh->nedges; i++) {

mesh->edges[i].edgeno = i;

mesh->edges[i].n1 = &mesh->nodes[triangle_out->edgelist[2*i]];

mesh->edges[i].n2 = &mesh->nodes[triangle_out->edgelist[2*i+1]];

if (triangle_out->edgemarkerlist[i] > 1) {

int ancestor = triangle_out->edgemarkerlist[i] - 2;

BC *bc = xmalloc(sizeof *bc);

bc->bc_type = edges[ancestor].bc_type;

bc->bc_func = edges[ancestor].bc_func;

bc->patch = edges[ancestor].patch;

mesh->edges[i].bc = bc;

} else

mesh->edges[i].bc = NULL;

}

〈fill the array of elems 40c〉≡ (39b)

for (i = 0; i < mesh->nelems; i++) {

mesh->elems[i].elemno = i;

mesh->elems[i].n[0] = &mesh->nodes[triangle_out->trianglelist[3*i]];

mesh->elems[i].n[1] = &mesh->nodes[triangle_out->trianglelist[3*i+1]];

mesh->elems[i].n[2] = &mesh->nodes[triangle_out->trianglelist[3*i+2]];
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Figure 3.1: An element’s edges are numbered according to their opposite
vertices.

mesh->elems[i].marker = (int)triangle_out->triangleattributelist[i];

assign_elem_edges(mesh, &mesh->elems[i]);

}

The function assign elem edges() called in the chunk above fills the element’s
edge pointers, that is, its Elem structure’s e[0], e[1], e[2] members. We
enumerate an element’s edges according to the vertex they face, that is, edge 0
is opposite vertex 0, edge 1 is opposite vertex 1, and edge 2 is opposite vertex 2.
See Figure 3.1.

For function assign elem edges() receives a pointer to an element. For each
of the element’s three vertices it finds the node numbers node1 and node2 of the
edge opposite the vertex. Then it scans the array of edges and finds the edge
that connects those nodes. The element’s Elem structure’s edge pointer is set
accordingly. Admittedly, this is not an efficient approach because it scans the
array of edges 3n times where n is the number of triangles. It may be possible
to replace this with a more clever approach if it turn out that efficiency is an
issue.

〈function assign elem edges 41〉≡ (45c)

static void assign_elem_edges(Mesh *mesh, Elem *elem)

{

int i, r;

for (i = 0; i < 3; i++) {

int j = (i+1)%3;

int k = (i+2)%3;

int node1 = elem->n[j]->nodeno;

int node2 = elem->n[k]->nodeno;

for (r = 0; r < mesh->nedges; r++) {

Edge *edge = &mesh->edges[r];

int m1 = edge->n1->nodeno;

int m2 = edge->n2->nodeno;

if ((m1 == node1 && m2 == node2)
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|| (m1 == node2 && m2 == node1)) {

elem->e[i] = edge;

break;

}

}

}

}

Once data from Triangle’s output has been copied into a Mesh structure, Tri-
angle’s data is no more needed, there we free the corresponding memory:
〈free triangle out 42a〉≡ (39b)

free(triangle_out->pointlist);

free(triangle_out->pointmarkerlist);

free(triangle_out->edgelist);

free(triangle_out->edgemarkerlist);

free(triangle_out->segmentlist);

free(triangle_out->segmentmarkerlist);

free(triangle_out->trianglelist);

free(triangle_out->triangleattributelist);

free(triangle_out->regionlist);

free(triangle_out->holelist);

free(triangle_out);

3.3 Mesh constructor/destructor functions

Although allocating memory for the node, edge and elem arrays could have
be done within the body of the function 〈function triangle to mesh 39b〉, we
chose to separate them into auxiliary functions for greater flexibility. In fact,
we define a function, make nodelist() to make the array of nodes and an-
other, free nodelist() to deallocate the memory. Thus, if effect, we have a
‘constructor’ and a ‘destructor’ for the array of nodes:
〈mesh constructor/destructor functions 42b〉≡ (45c) 43a .

static Node *make_nodelist(int nnodes)

{

Node *nodelist;

MAKE_VECTOR(nodelist, nnodes);

/* later

int i;

for (i = 0; i < nnodes; i++)

nodelist[i].ddpm = NULL;

*/

return nodelist;

}
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static void free_nodelist(Node *nodelist, int nnodes)

{

if (nodelist == NULL)

return;

/* later

int i;

for (i = 0; i < nnodes; i++)

FREE_MATRIX(nodelist[i].ddpm);

*/

FREE_VECTOR(nodelist);

}

Similarly we define a constructor and destructor pair for the edge array:
〈mesh constructor/destructor functions 42b〉+≡ (45c) / 42b 43b .

static Edge *make_edgelist(int nedges)

{

Edge *edgelist;

MAKE_VECTOR(edgelist, nedges);

return edgelist;

}

static void free_edgelist(Edge *edgelist, int nedges)

{

FREE_VECTOR(edgelist);

}

And a constructor and destructor pair for the elem array:

〈mesh constructor/destructor functions 42b〉+≡ (45c) / 43a

static Elem *make_elemlist(int nelems)

{

Elem *elemlist;

MAKE_VECTOR(elemlist, nelems);

/* later

for (i=0; i<nelems; i++) {

elemlist[i].phi = NULL;

elemlist[i].dphi = NULL;

elemlist[i].d2phi = NULL;

elemlist[i].k = NULL;

}

*/

return elemlist;



44 CHAPTER 3. PROCESSING TRIANGLE’S OUTPUT

}

static void free_elemlist(Elem *elemlist, int nelems)

{

if (elemlist == NULL)

return;

/* later

for (i=0; i<nelems; i++) {

FREE_VECTOR(elemlist[i].phi);

FREE_VECTOR(elemlist[i].dphi);

FREE_VECTOR(elemlist[i].d2phi);

FREE_MATRIX(elemlist[i].k);

}

*/

FREE_VECTOR(elemlist);

}

Finally, we introduce a function to take care of freeing memory for a Mesh
structure and all its members:

〈function free mesh 44a〉≡ (45c)

void free_mesh(Mesh *mesh)

{

if (mesh == NULL)

return;

free_nodelist(mesh->nodes, mesh->nnodes);

free_edgelist(mesh->edges, mesh->nedges);

free_elemlist(mesh->elems, mesh->nelems);

free(mesh);

}

3.4 The file fem.h

Mesh data structures declared in this chapter are the central focus of most of
FEM’s functions. We encapsulate those declarations in a file fem.h for future
reference. For future use, we add declarations for structures intended to repre-
sent points and vectors in two and three dimensions:

〈mesh data structures 37a〉+≡ (45b) / 39a

typedef struct {

double x;

double y;

} Point2d, Vec2d;

typedef struct {
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double x;

double y;

double z;

} Point3d, Vec3d;

Furthermore, we add a prototype for the function get fem() for external linking:

〈prototype get fem 45a〉≡ (45b)

Mesh *get_fem(double elem_max_area);

〈fem.h 45b〉≡
#ifndef H_FEM_H

#define H_FEM_H

#include <stdlib.h>

#include "linked-list.h"

〈generic function prototype 38a〉
〈boundary condition types 37b〉
〈mesh data structures 37a〉
〈prototype get fem 45a〉

#endif /* H_FEM_H */

3.5 The file make mesh.c

The function defined in the current and the previous chapters interpret the user-
supplied information, triangulate the domain, and produce a mesh structure.
We lump the functions defined in these two chapter in a single file make mesh.c.

〈make mesh.c 45c〉≡
#include <stdio.h>

#include <math.h>

#include <triangle.h>

#include "xmalloc.h"

#include "make_mesh.h"

#include "linked-list.h"

#include "fem.h"

#include "array.h"

#include "abort.h"

#include "boundary.h"

〈mesh constructor/destructor functions 42b〉
〈function free mesh 44a〉
〈function assign elem edges 41〉
〈function triangle to mesh 39b〉
〈functions defined in Chapter 2 (never defined)〉
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Chapter 4

The Argyris element

4.1 Calculus on a triangle

Consider a general triangle with vertices at v1 = 〈v11, v12〉, v2 = 〈v21, v22〉,
v3 = 〈v31, v32〉 ordered in the counter-clockwise direction. The triangle’s edge
vectors e1, e2, e3 are defined by:

e1 = v3 − v2, e2 = v1 − v3, e3 = v2 − v1. (4.1)

This is illustrated in Figure 4.1. Note that e1 + e2 + e3 = 0 always holds. Any
two edge vectors determine the triangle’s area, A, which is given by:1

A =
1
2

(e11e22 − e21e12) =
1
2

(e21e32 − e31e22) =
1
2

(e31e12 − e11e32), (4.2)

where e11, e12, etc., are the components of the edge vectors.

We will assume throughout, without further elaboration, that all triangles con-
sidered here are non-degenerate, that is, they have positive area.

A generic point x = 〈x1, x2〉 within the triangle is a unique convex combination
of the vertices:

x = λ1v1 + λ2v2 + λ3v3 (4.3)

where 0 6 λi 6 1 for i = 1, 2, 3, and λ1 + λ2 + λ3 = 1. The numbers λ1, λ2, λ3

are called the barycentric coordinates of the point x. We write λ = (λ1, λ2, λ3)
for short.

The transformation between x and λ may be viewed as a one-to-one mapping
of the triangle T2 with vertices at v1, v2, v3 in the plane and the triangle T3

1The classical intrinsic (coordinate-free) formula for a triangle’s area is Heron’s formula:

A =
p
p(p− a)(p− b)(p− c) where a = ‖e1‖, b = ‖e2‖, c = ‖e3‖, and p = (a+ b+ c)/2. An

alternative intrinsic formula for the area is: A2 = 1
4

(a2b2 + b2c2 + c2a2)− 1
16

(a2 + b2 + c2)2.
In our work we use the coordinate-based forms in (4.2) because they are easier to compute.

47



48 CHAPTER 4. THE ARGYRIS ELEMENT

v2
v3

v1

e1

e2e3

Figure 4.1: The vectors e1, e2, e3 shown are not faithful representations of
their definitions given in (4.1). The vector e1, for instance, should extend
from the vertex v2 to the vertex v3. The caricature rendition here is intended
as a convenient mnemonic.

with vertices at (1, 0, 0), (0, 1, 0), (0, 0, 1) in the (λ1, λ2, λ3) coordinate system
in R3. See Figure 4.2. To emphasize the dependence of x on λ or vice versa,
we write x(λ) and λ(x) when necessary.

The one-to-one nature of the mapping between triangles T2 and T3 may be made
explicit by writing (4.3) in components in matrix form:x1

x2

1

 =

v11 v21 v31
v12 v22 v32
1 1 1

λ1

λ2

λ3

 ,

where the last row enforces the condition λ1 + λ2 + λ3 = 1. It may be verified
that the inverse of the mapping is:λ1

λ2

λ3

 =
1
J

−e12 e11 v21v32 − v31v22
−e22 e21 v31v12 − v11v32
−e32 e31 v11v22 − v21v12

x1

x2

1

 ,

where J = 2A. Referring to (4.2) we have:

J = e11e22 − e21e12 = e21e32 − e31e22 = e31e12 − e11e32. (4.4)

x1

x2

v2 v3

v1

T2

λ1

λ2

λ3 λ1 + λ2 + λ3 = 1

T3
(x1, x2)→ (λ1, λ2, λ3)

Figure 4.2: The triangle T2 in the (x1, x2) plane is mapped to the triangle
T3 in the (λ1, λ2, λ3) space.
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A slightly rearranged version of this equation is sometimes more useful:λ1

λ2

λ3

 =
1
J

−e12 e11
−e22 e21
−e32 e31

(x1

x2

)
+

1
J

v21v32 − v31v22v31v12 − v11v32
v11v22 − v21v12

 . (4.5)

For future reference we let:

A =

v11 v21 v31
v12 v22 v32
1 1 1

 , B =
1
J

−e12 e11
−e22 e21
−e32 e31

 , (4.6)

and

B = A−1 =
1
J

−e12 e11 v21v32 − v31v22
−e22 e21 v31v12 − v11v32
−e32 e31 v11v22 − v21v12

 . (4.7)

Equation (4.5) may be written in the compact form:

λ(x) = Bx + b (4.8)

from which it is evident that the 3× 2 matrix B represents the derivative of the
linear mapping x→ λ(x). The matrix B will play a significant role in the rest
of this chapter. It may be verified by direct calculation that:

B e1 =

 0
−1

1

 , B e2 =

 1
0
−1

 , B e3 =

−1
1
0

 . (4.9)

4.2 Differentiation formulas

4.3 Notation for derivatives

Let X and Y be a vector spaces and let f : X → Y . The function f is said to be
differentiable at a point x ∈ X if there exists a linear operator Df(x) : X → Y
such that:

f(x + a) = f(x) +Df(x)[a ] + o(a) for all a ∈ X,

where Df(x)[a] indicates the application of the operator Df(x) to the vector a,
and where o(a) is the usual “little o” notation which refers to a generic function
such that lima→0 o(a)/‖a‖ = 0. The operator Df(x) is called the derivative of
f at x.

Similarly f is said to be twice differentiable at x if there exists a linear operator
D2f(x) : X ×X → Y such that

Df(x + a) = Df(x) +D2f
(
x
)
[a] + o(a), for all a ∈ X.
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Consequently, if f is twice differentiable, then:

Df(x + a)[b] = Df(x)[b] +
(
D2f(x)[a]

)
[b] + o(a), for all a,b ∈ X.

A basic theorem in calculus states that if f is twice differentiable at x, then(
D2f(x)[a]

)
[b] =

(
D2f(x)[b]

)
[a] for all a,b ∈ X. On account of this symmetry,

we write D2f(x)[a, a ] for the common value. The operator D2f(x) is called the
second derivative of f at x.

4.4 Derivative formulas

A function p̂ defined on the triangle T2 induces a function p on the triangle T3
through p̂(x) = p

(
λ(x)

)
. When p̂ is differentiable, the application of the chain

rule of differentiation in conjunction with (4.8) gives:

Dp̂(x) = Dp
(
λ(x)

)
B, and D2p̂(x) = BTD2p

(
λ(x)

)
B, (4.10)

where B is defined in (4.6) and BT is its transpose. By combining the relation-
ships in (4.9) and (4.10) we obtain:

Lemma 1. Let p̂ be a differentiable function defined on the triangle T2 and let
p
(
λ(x)

)
= p̂(x). Then we have the following formulas for derivatives of p̂ along

the edge vectors:

Dp̂(x)[e1 ] =
∂p

∂λ3
− ∂p

∂λ2
, (4.11a)

Dp̂(x)[e2 ] =
∂p

∂λ1
− ∂p

∂λ3
, (4.11b)

Dp̂(x)[e3 ] =
∂p

∂λ2
− ∂p

∂λ1
, (4.11c)

D2p̂(x)[e1, e1 ] =
∂2p

∂λ2
2

− 2
∂2p

∂λ2∂λ3
+
∂2p

∂λ2
3

, (4.11d)

D2p̂(x)[e2, e2 ] =
∂2p

∂λ2
3

− 2
∂2p

∂λ3∂λ1
+
∂2p

∂λ2
1

, (4.11e)

D2p̂(x)[e3, e3 ] =
∂2p

∂λ2
1

− 2
∂2p

∂λ1∂λ2
+
∂2p

∂λ2
2

, (4.11f)

D2p̂(x)[e1, e1 ] = − ∂2p

∂λ1∂λ2
+

∂2p

∂λ2∂λ3
+

∂2p

∂λ3∂λ1
− ∂2p

∂λ2
3

, (4.11g)

D2p̂(x)[e2, e2 ] = − ∂2p

∂λ2∂λ3
+

∂2p

∂λ3∂λ1
+

∂2p

∂λ1∂λ2
− ∂2p

∂λ2
1

, (4.11h)

D2p̂(x)[e3, e3 ] = − ∂2p

∂λ3∂λ1
+

∂2p

∂λ1∂λ2
+

∂2p

∂λ2∂λ3
− ∂2p

∂λ2
2

, (4.11i)

where the expressions on the right had sides are evaluated at λ(x).
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v2
v3

v1

e1

e2e3 h1

v̂1

Figure 4.3: The altitude vector h1 equals e3 + re1 for some r.

Proof. From (4.9) and (4.10) we have:

Dp̂(x)[e1 ] =
(
Dp
(
λ(x)

)
B
)

[e1] = (Dp
(
λ(x)

)
[Be1]

= Dp
(
λ(x)

) 0
−1

1

 =
∂p

∂λ3
− ∂p

∂λ1
,

which verifies (4.11a). The others are derived in the same way.

4.5 Derivative normal to the boundary

In a triangle with vertices v1, v2, v3, let v̂1, v̂2, v̂3 be the feet of altitudes
dropped from the vertices v1, v2, v3. We define altitude vectors of the triangle
by:

h1 = v̂1 − v1, h2 = v̂2 − v2, h3 = v̂3 − v3.

The altitude vector h1 is shown in figure 4.3. The next lemma shows how to
express altitude vectors as linear combination of edge vectors.

Lemma 2. Altitude vectors can be expressed as linear combination of edge
vectors as:

h1 =
1
‖e1‖2

(
(e3 · e1)e2 − (e1 · e2)e3

)
, (4.12a)

h2 =
1
‖e2‖2

(
(e1 · e2)e3 − (e2 · e3)e1

)
, (4.12b)

h3 =
1
‖e3‖2

(
(e2 · e3)e1 − (e3 · e1)e2

)
. (4.12c)

Proof. In Figure 4.3 we see that h1 = e3 + re1 for some r. The orthogonality of
h1 and e1 requires that h1 ·e1 = (e3 +re1) ·e1 = 0 whence r = −(e3 ·e1)/‖e1‖2.
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We note that

1− r = 1 +
e3 · e1

‖e1‖2
=

1
‖e1‖2

(e1 · e1 + e3 · e1) =
1
‖e1‖2

e1 · (e1 + e3) = −e1 · e2

‖e1‖2

because e1 + e2 + e3 = 0. Therefore:

h1 = e3 + re1 = e3 − r(e2 + e3) = −re2 + (1− r)e3 =
e3 · e1

‖e1‖2
e2 −

e1 · e2

‖e1‖2
e3,

which proves (4.12a). The others are obtained by cyclic rotation of symbols.

Remark. The length of the altitude vector h1 may be obtained by computing
the dot product h1 · h1 of the expression for h1 in (4.12a). However we obtain
a more compact result by recalling that h1 = e3 + re1, therefore:

‖h1‖2 = ‖e3‖2 + r2‖e1‖2 + 2re3 · e1,

then substituting r = −(e3 ·e1)/‖e1‖2, which leads to the simplified expression:

‖h1‖2 =
1
‖e1‖2

(
‖e3‖2‖e1‖2 − (e3 · e1)2

)
. (4.13)

With hindsight, this could have been obtained by a direct application of the
Pythagorean theorem to the triagnle with vertices v1, v̂1, v3. Formulas for
‖h2‖ and ‖h2‖ are obtained by cyclic rotation of the indices in (4.13).

Lemma 3. Let p̂ be as in Lemma 1. Then we have the following formula for
the derivative of p̂ along the altitude vector h1:

‖e1‖2Dp̂(x)[h1 ] = −e1 ·
( ∂p
∂λ1

e1 +
∂p

∂λ2
e2 +

∂p

∂λ3
e3

)
. (4.14)

Formulas for derivatives along the altitude vectors h2 and h3 are obtained by
making the obvious changes.

Proof. By combining (4.9) and (4.12) we obtain:

‖e1‖2B h1 = (e3 · e1)

 1
0
−1

 − (e1 · e2)

−1
1
0


=

(e3 + e2) · e1

−e1 · e2

−e3 · e1

 =

−e1 · e1

−e1 · e2

−e1 · e3

 .

Then from (4.10):

‖e1‖2Dp̂(x)[h1 ] = ‖e1‖2Dp
(
λ(x)

)
B h1 = Dp

(
λ(x)

)−e1 · e1

−e1 · e2

−e1 · e3


= (−e1 · e1)

∂p

∂λ1
+ (−e1 · e2)

∂p

∂λ2
+ (−e1 · e3)

∂p

∂λ3
,

which is equivalent to (4.14).
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4.6 The Laplacian

Lemma 4. Let p̂ be as in Lemma 1. Then we have the following formula for
the Laplacian of p̂:

∆p(x) =
1
J 2

(
‖e1‖2

∂2p

∂λ2
1

+ ‖e2‖2
∂2p

∂λ2
2

+ ‖e3‖2
∂2p

∂λ2
3

+ 2e1 · e2
∂2p

∂λ1∂λ2
+ 2e2 · e3

∂2p

∂λ2∂λ3
+ 2e3 · e1

∂2p

∂λ3∂λ1

)
, (4.15)

where J is defined in (4.4).

Proof. The differentiation formula in (4.10) gives the second derivative of p̂ in
terms of the second derivatives of p. The Laplacian of p̂, ∆p̂, is the trace of
D2p̂, therefore:

∆p(x) = trD2p̂(x) = tr
(
BTD2p

(
λ(x)

)
B
)
.

To simplify the result, let us note that tr
(
UTV

)
= tr

(
V UT

)
for arbitrary (not

necessarily square) m × n matrices U and V . Therefore for any m × n matrix
B and n× n (square) matrix P we have:

trBTPB = trBT (PB) = tr(PB)BT = trP (BBT ) = trPF,

where we have let F = BBT . Corresponding to the matrix B in (4.6) we have:

F =
1
J 2

−e12 e11
−e22 e21
−e32 e31

(−e12 −e22 −e32
e11 e21 e31

)
=

1
J 2

‖e1‖2 e1 · e2 e3 · e1

e1 · e2 ‖e2‖2 e2 · e3

e3 · e1 e2 · e3 ‖e3‖2

 .

Therefore the equation for the Laplacian takes the form:

∆p̂(x) = trD2p̂(x) = tr
(
D2p

(
λ(x)

)
F
)
,

which expands to to the expressions given in (4.15).

4.7 Integration over a triangle

Consider the triangle T2 in Figure 4.1. An arbitrary point x in T2 may be
arrived at by moving from the vertex v1 in the direction of the edge vector e3

by a fraction, say t1, of that edge length, then change course and move parallel
to the edge vector e1 by a fraction, say t2, of that edge length. Any point in the
triangle may be reached this way with some 0 6 t1 6 1 and 0 6 t2 6 t1. This
observation gives a two-parameter representation of the triangle in parameters
t1 and t2:

x = v1 + t1e3 + t2e1, 0 6 t2 6 t1 6 1.
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At the same time, we know that x may be expressed in barycentric coordinates
as in (4.3). Matching the two expressions for x we obtain a mapping from the
(t1, t2) to (λ1, λ2, λ3) coordinates:

λ1 = 1− t1, λ2 = t1 − t2, λ1 = t2. (4.16)

Consider the problem of integration of a function p̂ defined on the triangle T2.
As before, define the function p on T3 through p

(
λ(x)

)
= p̂(x). Then we have

the change of variables formula:∫
T2
p̂(x) dx = J

∫ 1

0

∫ t1

0

p(1− t1, t1 − t2, t2) dt2 dt1, (4.17)

where the multiplier J is the Jacobian of the mapping from the (t1, t2) domain
to the (x1, x2) domain. Since the mapping is linear, the Jacobian is constant
therefore it has been taken out of the integration. The double integral on the
right hand is on a triangle of area 1/2, therefore J = 2A where A is the area
of the triangle T2. Thus the factor J here coincides with that defined in (4.4).

4.8 The Argyris shape functions

Argyris elements are quintic polynomials defined on triangles designed to fit
together as C1 functions on a triangulated domain. In a sense, Argyris ele-
ments generalize to two dimensions what cubic splines do on interpolating over
intervals in one dimension.

A quintic polynomial p̂(x, y) in two variables has 21 degrees of freedom thus a
unique such polynomial is obtained by specifying 21 constraints. In an Argyris
element the 21 constraints are:

• values of p̂ at the triangle’s vertices (3 constraints)

• the values of ∂p̂/∂x and ∂p̂/∂y at the vertices (6 constraints)

• the values of ∂2p̂/∂x2, ∂2p̂/∂x∂y and ∂2p̂/∂y2 at the vertices (9 con-
straints)

• the values of derivatives ∂p̂/∂ν in the direction of unit outward normal
vector ν, at midpoints of the triangle’s edges (3 constraints).

We refer to the 21 data items that specify the constraints as the Argyris data.

There is some flexibility in specifying the first and second derivatives at the
vertices. Instead of specifying ∂p̂/∂x and ∂p̂/∂y at a vertex, we may specify
directional derivatives in the direction of the two edges that meet at the vertex.
These are equivalent, because we can convert from one set to the other through
a change of basis in R2. Similarly, instead of specifying ∂2p̂/∂x2, ∂2p̂/∂x∂y
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Figure 4.4: The Argyris triangular element is specified by the values of a
function and its first and second derivatives at vertices and the values of
derivatives normal to the edges at their midpoints—a total of 21 conditions.
In this schematic drawing, single and double arrows indicate first and second
derivatives.

and ∂2p̂/∂y2, we may specify second derivatives in the directions parallel to the
triangle’s three edges. Because of this equivalence, we refer to the 21 data items
as the Argyris data in either case. Figure 4.4 shows a schematic representation
of the 21 constraints.

Expressing partial derivatives in the x and y directions has the practical ad-
vantage that ultimately in our finite element formulation, it is those derivatives
that constitute the problem’s main unknowns. The disadvantage is that the
conditions are not intrinsic to the triangle; they depend on how the triangle is
situated relative to the coordinate axes. Consequently, the expressions obtained
for the polynomial basis tend to be quite messy and inelegant.

Expressing partial derivatives as derivatives along the triangle’s edges has the
advantage that it gives an intrinsic description of the element and the expressions
obtained for the polynomial basis are much simpler. The disadvantage is that
elements expressed this way need to go through a interpretation stage to connect
to x and y derivatives that are ultimately needed.

In our solver we use the intrinsic description of the Argyris element. The in-
terpretation stage noted above results in some complexity in the code but it
appears that because of the simpler expressions for the basis functions, the code
is more efficient overall.

Thus let us assume that we are given the following Argyris data:

• Values of p̂ at the vertices:

p̂(v1), p̂(v2), p̂(v3). (4.18a)

• Values of first derivatives at each vertex applied to the edge vectors of the
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edges that meet at that vertex:

Dp̂(v1)[e2 ], Dp̂(v1)[e3 ], (4.18b)
Dp̂(v2)[e3 ], Dp̂(v2)[e1 ], (4.18c)
Dp̂(v3)[e1 ], Dp̂(v3)[e2 ]. (4.18d)

• Values of second derivatives at each vertex applied to edge vectors of the
three edges:

D2p̂(v1)[e1, e1 ], D2p̂(v1)[e2, e2 ], D2p̂(v1)[e3, e3 ], (4.18e)

D2p̂(v2)[e1, e1 ], D2p̂(v2)[e2, e2 ], D2p̂(v2)[e3, e3 ], (4.18f)

D2p̂(v3)[e1, e1 ], D2p̂(v3)[e2, e2 ], D2p̂(v3)[e3, e3 ]. (4.18g)

• Values of derivatives at midpoints of the each edge, applied to the altitude
vector incident on that edge:

Dp̂(m1)[h1 ], Dp̂(m2)[h2 ], Dp̂(m3)[h3 ]. (4.18h)

The 21 conditions in equations (4.18) determine a unique fifth degree polynomial
in two variables on the triangle. For the purpose of finite element computations,
however, it is more convenient to express the polynomial in barycentric coor-
dinates. We apply the transformation rules in lemmas 1 and 3 to convert the
data in the equation set (4.18) from Cartesian to barycentric coordinates.

To manage the complexity, instead of constructing a single fifth degree polyno-
mial that satisfies the 21 conditions in (4.18), we construct a basis consisting 21
fifth degree polynomials, Pi, i = 1, 2, . . . , 21, called the Argyris shape functions,
and represent p̂ as a linear combination of the Pi function with factors given in
the Argyris data in equations (4.18). The ith polynomial, Pi, will produce 0 for
all conditions in (4.18) except for the ith conditions, for which it will produce 1.

The construction of the 21 basis elements is quite tedious. We call on Maple—a
software for symbolic computation—to help with the calculations. See Ap-
pendix A for the details of the the construction procedure.

4.9 The Argyris basis functions

The Argyris shape functions P1 through P21 form a basis for the space of fifth
degree polynomials on the triangle T2. Any fifth degree polynomial p̂ may be
expressed as a linear combination of them where the coefficients are the Argyris
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data:

p̂(x) =
3∑

i=1

p̂(vi) P6(i−1)+1

(
λ(x)

)
+Dp̂(vi)[ek ] P6(i−1)+2

(
λ(x)

)
−Dp̂(vi)[ej ] P6(i−1)+3

(
λ(x)

)
+D2p̂(vi)[ek, ek ] P6(i−1)+4

(
λ(x)

)
+D2p̂(vi)[ej , ej ] P6(i−1)+5

(
λ(x)

)
+D2p̂(vi)[ei, ei ] P6(i−1)+6

(
λ(x)

)
+

3∑
i=1

Dp̂(mi)[hi ] P18+i

(
λ(x)

)
, (4.19)

where j = (i mod 3) + 1 and k = (i+ 1 mod 3) + 1.

Remark. The awkward appearance of the indices is due to the 1-based indexing
which is the common practice in mathematics. If we change to 0-based indexing,
so that vertices, edges, altitudes and midpoints are vi, ei, hi and mi, i = 0, 1, 2,
and the shape functions are Pi, i = 0, 1, . . . , 20, then the expression for p̂(x)
takes on a somewhat more transparent form:

p̂(x) =
2∑

i=0

p̂(vi) P6i

(
λ(x)

)
+Dp̂(vi)[ek ] P6i+1

(
λ(x)

)
−Dp̂(vi)[ej ] P6i+2

(
λ(x)

)
+D2p̂(vi)[ek, ek ] P6i+3

(
λ(x)

)
+D2p̂(vi)[ej , ej ] P6i+4

(
λ(x)

)
+D2p̂(vi)[ei, ei ] P6i+5

(
λ(x)

)
+

2∑
i=0

Dp̂(mi)[hi ] P18+i

(
λ(x)

)
,

where j = i+ 1 mod 3 and k = i+ 2 mod 3. In our computer program we use
0-based indexing (which is the natural scheme in C) but in the documentation
we will continue using the 1-based scheme to avoid unconventional mathematical
notation for vertices as in v0 = 〈v00, v01〉.

Going back to (4.19), we expand the differentiation operators into their com-
ponets in the Cartesian coordinates. For example:

Dp̂(vi)[ek ] =
(
ek1

∂p̂

∂x1
+ ek2

∂p̂

∂x2

)∣∣∣∣
vi

,

D2p̂(vi)[ek, ek ] =
(
e2k1

∂2p̂

∂x2
1

+ 2ek1ek2
∂2p̂

∂x1∂x2
+ e2k2

∂2p̂

∂x2
2

)∣∣∣∣
vi

.
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We view the partial derivatives, such as ∂p̂/∂xi and ∂2p̂/∂xi∂xj , that appear in
these expansions, as global attributes of the nodes of the mesh rather than local
properties of the particular element. If several elements have a common vertex
at a certain node, the elements share the values for the partial derivatives at
that node.

Such “globalization” of partial derivatives to the mesh’s nodes is straightfor-
ward because there is an unambiguous meaning to the x1 and and x2 directions
at each node. The situation for the mid-edge derivatives, Dp̂(mi)[hi ], is more
complicated. An element’s outward normal at an edge’s midpoint does not
generalize to a well-defined direction for that edge from the mesh’s global per-
spective because two elements that share an edge have outward normals pointing
in opposite directions. In the left diagram in Figure 4.5 we see a two adjacent
elements sharing an edge AB. On the right we see an exploed view of the two
elements and the individual outward normals. We resolve the conflict between
the opposing outward normals by resorting to the global node numbering of the
mesh. Our construction of the mesh (see Chapter 2) assigns a “first node” and
a ”second node” to each edge of the mesh. This gives an unambiguous direc-
tion to an edge, independent of the surrounding elements. We rotate the edge
counterclockwise by 90 degrees thus obtaining a well-defined normal direction.
We define the mid-edge unit normal to point in that direction.

The right digagram in Figure 4.5 depicts a vector
→
AB presumably pointing

from the “first node” to the ”second node”, and the resulting mid-edge unit
normal, ν. Thus if the altitude hi dropped from the vertex vi points in the
direction of ν, then Dp̂(mi)[hi ] equals ‖hi‖∂p̂/∂ν. If the altitude hi dropped
from the vertex vi points in the opposite direction of ν, then Dp̂(mi)[hi ] equals
−‖hi‖∂p̂/∂ν. In summary:

Dp̂(mi)[hi ] = sign(hi · ν) ‖hi‖
∂p̂

∂ν
. (4.20)

The length of the altitude vector is given in (4.13).

We replace the differentiation operators by partial derivatives in (4.19) and
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A
B

C

D

A
B

C

A
B

D

A
B

ν

Figure 4.5: The diagram on the left shows two adjacent elements, ABC
and ADB. The outward normal vectors on the common edge AB point in
opposite directions. On the right we see an exploded view of he elements.
The edge AB is viewed as a vector pointing from its “first node” to its
“second node”, these being attributes that are defined at the creation of the

mesh. The edge unit normal, ν, is obtained by rotating the vector
→
AB by

90 counterclockwise degrees then normalizing to unit length.
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regroup:

p̂(x) =
3∑

i=1

P6(i−1)+1

(
λ(x)

)
p̂(vi)

+
(
ek1P6(i−1)+2

(
λ(x)

)
− ej1P6(i−1)+3

(
λ(x)

))( ∂p̂
∂x1

)∣∣∣∣
vi

+
(
ek2P6(i−1)+2

(
λ(x)

)
− ej2P6(i−1)+3

(
λ(x)

))( ∂p̂
∂x2

)∣∣∣∣
vi

+
(
e2k1P6(i−1)+4

(
λ(x)

)
+ e2i1P6(i−1)+5

(
λ(x)

)
+ e2j1P6(i−1)+6

(
λ(x)

))(∂2p̂

∂x2
1

)∣∣∣∣
vi

+
(
e2k2P6(i−1)+4

(
λ(x)

)
+ e2i2P6(i−1)+5

(
λ(x)

)
+ e2j2P6(i−1)+6

(
λ(x)

))(∂2p̂

∂x2
2

)∣∣∣∣
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, (4.21)

where j = (i mod 3) + 1 and k = (i + 1 mod 3) + 1, as before, and νi is the
unit normal to the edge, as described earlier.

Equation (4.21) embodies the essence of finite element computations with the
Argyris element—it expresses a function p̂(x) in terms of Argyris shape functions
P1 through P21 and coefficients that are the Argyris data.

It should be noted that in (4.21) p̂ is not a straight sum of the shape functions
Pi but of a certain linear combinations of them. This leads us to introduce the
21 basis functions:

Q6(i−1)+1(λ) = P6(i−1)+1(λ),
Q6(i−1)+2(λ) = ek1P6(i−1)+2(λ)− ej1P6(i−1)+3(λ),
Q6(i−1)+3(λ) = ek2P6(i−1)+2(λ)− ej2P6(i−1)+3(λ),

Q6(i−1)+4(λ) = e2k1P6(i−1)+4(λ) + e2i1P6(i−1)+5(λ) + e2j1P6(i−1)+6(λ),

Q6(i−1)+5(λ) = e2k2P6(i−1)+4(λ) + e2i2P6(i−1)+5(λ) + e2j2P6(i−1)+6(λ),

Q6(i−1)+6(λ) = 2
(
ek1ek2P6(i−1)+4(λ) + ei1ei2P6(i−1)+5(λ)

+ ej1ej2P6(i−1)+6(λ)
)
,

Q18+i(λ) = sign(hi · νi)‖hi‖P19+i(λ), (4.22)

where i = 1, 2, 3 and j = (i mod 3) + 1 and k = (i+ 1 mod 3) + 1, as before.
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Combining the representation in (4.21) with the definitions in (4.22), we express
p̂ as a linear combination of the basis functions:

p̂(x) =
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i=1

Q6(i−1)+1

(
λ(x)

)
p̂(vi)

+Q6(i−1)+2

(
λ(x)

) ( ∂p̂
∂x1

)∣∣∣∣
vi

+Q6(i−1)+3

(
λ(x)

) ( ∂p̂
∂x2

)∣∣∣∣
vi

+Q6(i−1)+4

(
λ(x)

) (∂2p̂

∂x2
1

)∣∣∣∣
vi

+Q6(i−1)+5

(
λ(x)

) (∂2p̂

∂x2
2

)∣∣∣∣
vi

+Q6(i−1)+6

(
λ(x)

) ( ∂2p̂

∂x1∂x2

)∣∣∣∣
vi

+
3∑

i=1

Q18+i

(
λ(x)

)( ∂p̂
∂νi

)∣∣∣∣
mi

. (4.23)

In our computations, we will need expressions for the first and second deriva-
tives of p̂. These are obtained by applying the general differentiation formulas
in (4.10) and definition of B in (4.6) to each of the 21 terms in (4.23).

4.10 Computing the basis functions

The details of the construction of the Argyris shape functions Pi, i = 1, . . . , 21,
are given in Appendix A. The user interface to the shape functions is provided
through the function get shape data() whose prototype is given in 〈prototype
of get shape data (never defined)〉. It receives a pointer to an element, a pointer
to a an array of barycentric coordinates, and a pointer to a pre-allocated array,
Pvals, in which it calculates and stores the values of Pi and its derivatives at
the specified points.

As we saw in Section 4.9, shape functions enter the calculations in the form of a
certain combinations which we calledQi. We introduce a function, get basis data(),
which computes the values of the functions Qi and their first and second deriva-
tives (with respect to Cartesian coordinates!) for a given element. It receives
an array Point3d *points of barycentric coordinates of prescribed points and
a three-indexed array double ***Q in which the computed values are stored.
The value of the dth derivative of Qi at point m is stored in Q[m][i][d]. The
d in ‘dth derivative is one of the six mnemonic values:

〈x derivative codes 61〉≡ (65c)

enum x_derivs { d00, d10, d01, d20, d11, d02 };
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where dij indicates the ∂i+j/∂xi
1∂x

j
2 derivative of a function in the Cartesian

(x1, x2) coordinates.

Here is the outline of get basis data():

〈function get basis data() 62a〉≡ (65b)

void get_basis_data(Elem *elem, Point3d *points, int npoints, double ***Q)

{

〈declarations for function get basis data() 62b〉
〈allocate memory for the Pvals and Qvals arrays 63a〉
〈calculate edge vectors 63b〉
〈compute matrix B 63c〉
〈call get shape data() to fill the Pvals array 63d〉
〈for each point. . . 64a〉

〈evaluate the 21 basis functions 64b〉
〈evaluate the x, y, xx, xy, yyy derivatives of the basis functions 64c〉

〈free memory for the Pvals and Qvals arrays 65a〉
}

This is quite a large function. Although it is possible to break it into smaller
functions, the large amount of shared data among its components would make
the splitting somewhat unnatural. We describe the various parts of this function
in the following subsections.

4.10.1 The declarations section

The function begins with:
〈declarations for function get basis data() 62b〉≡ (62a)

double ***Pvals;

double **Qvals;

enum which_deriv idx[3] = { D100, D010, D001 };

enum which_deriv idx2[3][3] = {

{ D200, D110, D101 },

{ D110, D020, D011 },

{ D101, D011, D002 },

};

double B[3][2];

Vec2d edge[3];

double J;

int i, m;

The derivative codes Dxxx defined in 〈derivative codes (never defined)〉 are used
as mnemonic devices to access any of the 10 derivatives of up to order two of
a function expressed in barycentric coordinates. The idx[] and idx2[] arrays
defined above establish a a mapping between raw indices and their mnemonic
counterparts. For instance idx2[2][3] evaluates to D011 indicating that the
mnemonic for the derivative ∂/∂λ2∂λ3 is D011.
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4.10.2 Setting up the working arrays

We allocate memory for the array Pvals to store the values of the 21 shape
functions Pi and their derivatives in it. The value of the derivative of index j of
Pi at point m will be stored in Pvals[m][i][j]. The index j of the derivatives
goes from 0 to 9, corresponding to one zeroth derivative, three first derivatives
and six second derivatives.

〈allocate memory for the Pvals and Qvals arrays 63a〉≡ (62a)

MAKE_3ARRAY(Pvals, npoints, 21, 10);

MAKE_2ARRAY(Qvals, 21, 10);

4.10.3 The main computational loop

Then we compute the components of the edge vectors for each edge:
〈calculate edge vectors 63b〉≡ (62a)

for (i = 0; i < 3; i++) {

int j = (i + 1) % 3;

int k = (i + 2) % 3;

edge[i].x = elem->n[k]->x - elem->n[j]->x;

edge[i].y = elem->n[k]->y - elem->n[j]->y;

}

and the 3× 2 matrix B, defined in (4.6):
〈compute matrix B 63c〉≡ (62a)

J = edge[0].x * edge[1].y - edge[1].x * edge[0].y;

B[0][0] = - edge[0].y / J;

B[1][0] = - edge[1].y / J;

B[2][0] = - edge[2].y / J;

B[0][1] = edge[0].x / J;

B[1][1] = edge[1].x / J;

B[2][1] = edge[2].x / J;

We complete our preparations by calling get shape data]() which returns the
values of the 21 shape functions and their first and second derivatives in the
Pvals array:
〈call get shape data() to fill the Pvals array 63d〉≡ (62a)

get_shape_data(elem, points, npoints, Pvals);

4.10.4 Computing the basis functions Qi

At each of the npoints prescribed points we compute the basis functions Qi

according to (4.22):
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〈for each point. . . 64a〉≡ (62a)

for (m = 0; m < npoints; m++) {

int n, d;

〈evaluate the 21 basis functions 64b〉≡ (62a)

for (d = 0; d < 10; d++) {

for (i = 0; i < 3; i++) {

int j = (i + 1) % 3;

int k = (i + 2) % 3;

Qvals[6*i][d]

= Pvals[m][6*i][d];

Qvals[6*i+1][d]

= edge[k].x * Pvals[m][6*i+1][d]

- edge[j].x * Pvals[m][6*i+2][d];

Qvals[6*i+2][d]

= edge[k].y * Pvals[m][6*i+1][d]

- edge[j].y * Pvals[m][6*i+2][d];

Qvals[6*i+3][d]

= edge[k].x * edge[k].x * Pvals[m][6*i+3][d]

+ edge[i].x * edge[i].x * Pvals[m][6*i+4][d]

+ edge[j].x * edge[j].x * Pvals[m][6*i+5][d];

Qvals[6*i+4][d]

= edge[k].y * edge[k].y * Pvals[m][6*i+3][d]

+ edge[i].y * edge[i].y * Pvals[m][6*i+4][d]

+ edge[j].y * edge[j].y * Pvals[m][6*i+5][d];

Qvals[6*i+5][d] = 2.0 * (

edge[k].x * edge[k].y * Pvals[m][6*i+3][d]

+ edge[i].x * edge[i].y * Pvals[m][6*i+4][d]

+ edge[j].x * edge[j].y * Pvals[m][6*i+5][d]);

}

for (i = 0; i < 3; i++) {

int j = (i+1)%3;

double ei2 = edge[i].x * edge[i].x + edge[i].y * edge[i].y;

double ej2 = edge[j].x * edge[j].x + edge[j].y * edge[j].y;

double eij = edge[i].x * edge[j].x + edge[i].y * edge[j].y;

double h = sqrt((ei2*ej2 - eij*eij)/ei2);

int sgn = (elem->e[i]->n1 == elem->n[j]) ? +1 : -1;

Qvals[18+i][d] = Pvals[m][18+i][d] * h * sgn;

}

}

〈evaluate the x, y, xx, xy, yyy derivatives of the basis functions 64c〉≡ (62a)

for (n = 0; n < 21; n++) {

double T[2][2];

double S[2];

int i, j; /* these shadow the outer i and j */

int r, s;
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Q[m][n][d00] = Qvals[n][D000];

for (j = 0; j < 2; j++) {

S[j] = 0.0;

for (r = 0; r < 3; r++)

S[j] += Qvals[n][idx[r]] * B[r][j];

}

Q[m][n][d10] = S[0];

Q[m][n][d01] = S[1];

for (i = 0; i < 2; i++)

for (j = i; j < 2; j++) { /* T[i][j]’s upper triangle */

T[i][j] = 0.0;

for (r = 0; r < 3; r++)

for (s = 0; s < 3; s++)

T[i][j] += Qvals[n][idx2[r][s]] * B[r][i] * B[s][j];

}

Q[m][n][d20] = T[0][0];

Q[m][n][d11] = T[0][1];

Q[m][n][d02] = T[1][1];

}

And finally free memory allocated to the Pvals and Qvals arrays:
〈free memory for the Pvals and Qvals arrays 65a〉≡ (62a)

}

FREE_3ARRAY(Pvals);

FREE_2ARRAY(Qvals);

4.11 A unit test

We write the function get basis data() described in the previous sections into
a file basis functions.c.

〈basis functions.c 65b〉≡
#include <math.h>

#include "array.h"

#include "shape_functions.h"

#include "basis_functions.h"

〈function get basis data() 62a〉
〈unit test for basis functions.c 66〉

〈basis functions.h 65c〉≡
#ifndef H_BASIS_FUNCTIONS_H

#define H_BASIS_FUNCTIONS_H

#include "fem.h"
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〈x derivative codes 61〉

void get_basis_data(Elem *elem, Point3d *points, int npoints, double ***Q);

#endif /* H_BASIS_FUNCTIONS_H */

The computation performed in this get basis data() is in the core of our FEM
calculations. To ensure its correctness and integrity, we have implemented a
Maple script to evaluate the basis functions and their derivatives at a prescribed
point a single element. We have included a unit test in the file basis functions.c
to evaluate the basis functions at the same point on that same element. The
outputs of the Maple and C programs should be identical.

If using the gcc compiler, compile the unit test with:

gcc -Wall -std=c99 -pedantic basis functions.c \
shape functions.o xmalloc.o -lm -DTEST

〈unit test for basis functions.c 66〉≡ (65b)

#ifdef TEST

#include <stdio.h>

int main(void)

{

double ***Q;

int i;

Node nodes[3] = {

{ 0, 0.0, 0.0 },

{ 1, 4.0, -1.2 },

{ 2, 1.1, 3.7 },

};

/* NOTE: Initialization with non-constant members requires a C99 compiler */

Edge edges[3] = {

{ 0, &nodes[1], &nodes[2] },

{ 1, &nodes[2], &nodes[0] },

{ 2, &nodes[0], &nodes[1] },

};

Elem elems[1] = {

{ 0,

{ &nodes[0], &nodes[1], &nodes[2] },

{ &edges[0], &edges[1], &edges[2] },

},

};

Point3d points[] = {
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{ 0.32, 0.37, 1.0-0.32-0.37 },

};

MAKE_3ARRAY(Q, 1, 21, 6);

get_basis_data(&elems[0], points, 1, Q);

printf("lambda1 = %17.15g lambda2 = %17.15g lambda3 = %17.15g\n",

points[0].x, points[0].y, points[0].z);

printf("%2s %15s %15s %15s %15s %15s %15s\n",

"i", "Q[i]", "Qx[i]", "Qy[i]", "Q_xx[i]", "Q_xy[i]", "Q_yy[i]");

for (i = 0; i < 21; i++)

printf("%2d %15.10f %15.10f %15.10f %15.10f %15.10f %15.10f\n",

i,

Q[0][i][d00],

Q[0][i][d10],

Q[0][i][d01],

Q[0][i][d20],

Q[0][i][d11],

Q[0][i][d02]);

return 0;

}

#endif /* TEST */

4.11.1 The Maple script

〈check-basis-funcs.maple 67〉≡
# vi: ts=4 sw=4

#

# In this maple script we define a single element by prescribing

# its three vertices. We prescribe an arbitrary point by its

# barycentric coordinates (lambda1, lambda2, lambda3), then

# evaluate the basis functions Q_i (not the shape functions P_i)

# and their x, y, xx, xy, yy derivatives at that point and print

# the results.

#

# To run, in Maple do:

# restart; read "check-basis-funcs.maple";

#

# 2007-07-04

kernelopts(printbytes=false):

with(LinearAlgebra):

Digits := 15;



68 CHAPTER 4. THE ARGYRIS ELEMENT

# read the catalog of Argyris shapes:

read "catalog-all.maple":

# define the element’s nodes:

nodes := [ <0.,0.>, <4.,-1.2>, <1.1,3.7> ]:

V[1] := nodes[1]:

V[2] := nodes[2]:

V[3] := nodes[3]:

E[1] := V[3] - V[2]:

E[2] := V[1] - V[3]:

E[3] := V[2] - V[1]:

A := < <V[1]|V[2]|V[3]>,<1|1|1> >:

B := A^(-1):

for i from 1 to 3 do

j := i+1:

k := i+2:

if j > 3 then j := j - 3 end if:

if k > 3 then k := k - 3 end if:

Q[(6*(i-1)+1)] := P||(6*(i-1)+1);

Q[(6*(i-1)+2)] :=

E[k][1] * P||(6*(i-1)+2)

- E[j][1] * P||(6*(i-1)+3);

Q[(6*(i-1)+3)] :=

E[k][2] * P||(6*(i-1)+2)

- E[j][2] * P||(6*(i-1)+3);

Q[(6*(i-1)+4)] :=

E[k][1]^2 * P||(6*(i-1)+4)

+ E[i][1]^2 * P||(6*(i-1)+5)

+ E[j][1]^2 * P||(6*(i-1)+6);

Q[(6*(i-1)+5)] :=

E[k][2]^2 * P||(6*(i-1)+4)

+ E[i][2]^2 * P||(6*(i-1)+5)

+ E[j][2]^2 * P||(6*(i-1)+6);

Q[(6*(i-1)+6)] := 2 * (

E[k][1] * E[k][2] * P||(6*(i-1)+4)

+ E[i][1] * E[i][2] * P||(6*(i-1)+5)

+ E[j][1] * E[j][2] * P||(6*(i-1)+6) );

end do:
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for i from 1 to 3 do

j := i+1:

if j > 3 then j := j - 3 end if:

ei2 := E[i]^%T . E[i];

ej2 := E[j]^%T . E[j];

eij := E[i]^%T . E[j];

h := sqrt((ei2*ej2 - eij^2)/ei2);

Q[18+i] := h * P||(18+i);

end do:

# convert to (x,y) coords

z := B . <x, y, 1>:

for i from 1 to 21 do

q[i] := unapply(Q[i](z[1],z[2],z[3], E[1], E[2], E[3]), [x,y]);

end do:

# Given point:

lambda1 := 0.32:

lambda2 := 0.37:

lambda3 := 1 - lambda1 - lambda2:

# find (x,y)

zz := A . < lambda1, lambda2, lambda3 >:

X := zz[1]:

Y := zz[2]:

printf("lambda1 = %17.15g lambda2 = %17.15g lambda3 = %17.15g\n",

lambda1, lambda2, lambda3);

printf("%2s %15s %15s %15s %15s %15s %15s\n",

"i", "Q[i]", "D[1](q[i])", "D[2](q[i])",

"D[1,1](q[i])",

"D[1,2](q[i])",

"D[2,2](q[i])");

for i from 1 to 21 do

printf("%2d %15.10f %15.10f %15.10f %15.10f %15.10f %15.10f\n",

i-1, # subtract 1 so that it matches the C output

q[i](X, Y),

D[1](q[i])(X, Y),

D[2](q[i])(X, Y),

D[1,1](q[i])(X, Y),

D[1,2](q[i])(X, Y),

D[2,2](q[i])(X, Y));

end do;
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Chapter 5

Constructing functions
from the Argyris data

In the previous chapeters we have seen how to define an mesh a domain,
and how to build the Argyris basis functions on the elements. In this inter-
lude/intermezzo chapter we assume that we are given an meshed domain and
Argyris data on each element. We show how to construct the unique C1 function
on the domain corresponding to this data.

To be specific, let us look at an example. We define a domain, let’s say Ω in R2

bounded by quadrilateral where the nodes are given in:

〈define a simple domain 71a〉≡ 71b .

Node nodes[] = {

{ 0, 0.0, 0.0 },

{ 1, 1.0, 0.0 },

{ 2, 1.0, 1.0 },

{ 3, 0.0, 1.0 },

};

The mesh consists of two triangles produced by dividing the quadrilateral through
one of its diagonals:

〈define a simple domain 71a〉+≡ / 71a 72a .

Edge edges[] = {

{ 0, &nodes[0], &nodes[1] },

{ 1, &nodes[1], &nodes[2] },

{ 2, &nodes[2], &nodes[3] },

{ 3, &nodes[3], &nodes[0] },

{ 4, &nodes[0], &nodes[2] },

};

71
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The two elements are defined accordingly:
〈define a simple domain 71a〉+≡ / 71b 72b .

Elem elems[] = {

{ 0, { &nodes[0], &nodes[1], &nodes[2] },

{ &edges[1], &edges[4], &edges[0] } },

{ 1, { &nodes[0], &nodes[2], &nodes[3] },

{ &edges[2], &edges[3], &edges[4] } },

};

And finally define the mesh structure that encapsulates all of the above:
〈define a simple domain 71a〉+≡ / 72a

Mesh mesh = {

sizeof nodes / sizeof *nodes, /* number of nodes */

sizeof edges / sizeof *edges, /* number of edges */

sizeof elems / sizeof *elems, /* number of elementss */

nodes,

edges,

elems

};

Now let us prescribe arbitrarily the following Argyris data on the mesh. Six
values are specified at each node, which correspond to the value of the function
and its x and y, xx, xy, yy derivatives, respectively. One value is specified at
the midpoint of each edge, which corresponds to the value of the derivative in
the direction perpendicular to the edge. Althogether in a mesh with nnodes
nodes and nedges edges we will have 6nnodes+ nedges values.
〈sample argyris data 72c〉≡

double argyris_data[] = {

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, /* Node 0 */

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, /* Node 1 */

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, /* Node 2 */

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, /* Node 3 */

0.0, /* Edge 0 midpoint */

0.0, /* Edge 1 midpoint */

0.0, /* Edge 2 midpoint */

0.0, /* Edge 3 midpoint */

1.0, /* Edge 4 midpoint */

};

The function plot in geomview() which we will describe later in this chap-
ter, receives a pointer to the mesh structure and writes a file which may be
read into Geomview to produce a plot of the function. The prototype of
plot in geomview() is:

〈prototype plot in geomview 72d〉≡
void plot_in_geomview(Mesh *mesh, double *data, int n, enum x_derivs d);

where the last argument, which is one of the mnemonic codes defined in 〈x
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Figure 5.1: From left to right, the graphs of f , ∂f/∂x and ∂2f/∂x2, the
latter showing clearly that the second derivative is discontinuous.

derivative codes (never defined)〉, request drawing the graph of the specified deriva-
tive.

The plotting algorithm approximates the graph’s smooth surface by a large
number of flat triangles. The argment n shown in the prototype above controls
the number of triangles within each element. To be precise, the graph over each
element is approximated by n2 triagles.

The graphs in Figure 5.1 were produced by:

plot in geomview(&mesh, argyris data, 16, d00);
plot in geomview(&mesh, argyris data, 16, d10);
plot in geomview(&mesh, argyris data, 16, d20);

〈To be doucmented 73〉≡
#include <stdio.h>

#include <float.h>

#include "fem.h"

#include "array.h"

#include "abort.h"

#include "basis_functions.h"

#include "dump_mesh.h"

#define N(i,j) (offset + (i)*((i)+1)/2 + (j)) /* offset + i*(i+1)/2 + j */

typedef struct {

double *node_data[3];

double *edge_data[3];

} ArgyrisData;

#define REDHUE(s) (huefunc((s)-23.0/64))

#define GREENHUE(s) (huefunc((s) -7.0/64))

#define BLUEHUE(s) (huefunc((s) +9.0/64))

/* This defines a continuous, piecewise-linear function defined on

the entire real line. Its graph is trapezoid-shaped and connects
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the points (0,0) (16/64,1), (33/64,1), (49/64,0). The function

is zero outside the support of the trapezoid.

In combination with REDUE, GREENHUE, BLUEHUE macros defined above,

produces an RGB scale used for our ZHUE rendering which coincides

with Matlab’s JET colormap.

*/

static float huefunc(float s)

{

if (s < 0)

return 0.0;

else if (s < 16.0/64)

return 4.0*s;

else if (s < 33.0/64)

return 1.0;

else if (s < 49.0/64)

return 1.0 - 4.0*(s-33.0/64);

else

return 0.0;

}

static void plot_elem_in_geomview(Elem *elem, ArgyrisData *data, int n,

FILE *fp_nodes, FILE *fp_elems,

Point3d *points, double ***Q, double *zmin, double *zmax, enum x_derivs d)

{

Vec2d edge[3];

int i, j, k;

int offset = (n+1)*(n+2)/2 * elem->elemno;

for (i = 0; i < 3; i++) {

int j = (i + 1) % 3;

int k = (i + 2) % 3;

edge[i].x = elem->n[k]->x - elem->n[j]->x;

edge[i].y = elem->n[k]->y - elem->n[j]->y;

}

/*

We parametrize the triangle by paramters t and s, each going from

0 to 1. A generic point is given by x = u + t*c + s*a.

The barycentric coordinates of the x are (1-t, t-s, s). I found

this in Maple:

u := <u1,u2>; v := <v1, v2>; w := <w1,w2>;

A := < <u|v|w>, <1|1|1> >;

a := w-v; b := u-w; c := v-u;

x := u + t*c + s*a;

zz := A . <lambda1, lambda2, lambda3>;

solve({ zz[1] = x[1], zz[2] = x[2], zz[3] = 1}, { lambda1, lambda2, lambda3 });

For a partition of order n, we will have (n+1)*(n+2)/2 nodes and n^2 elems.

*/
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printf("n = %d\n", n);

k = 0;

for (i = 0; i <= n; i++)

for (j = 0; j <= i; j++) {

double t = (double)i / n;

double s = (double)j / n;

points[k].x = 1.0 - t; /* lambda1 */

points[k].y = t - s; /* lambda2 */

points[k].z = s; /* lambda3 */

k++;

}

printf("k = %d\n", k);

get_basis_data(elem, points, k, Q);

/* now evaluate function */

k = 0;

for (i = 0; i <= n; i++)

for (j = 0; j <= i; j++) {

double t = (double)i / n;

double s = (double)j / n;

double lambda[] = { 1.0 - t, t - s, s };

double x = 0.0, y = 0.0, z = 0.0;

int r, p;

for (r = 0; r < 3; r++) {

x += lambda[r] * elem->n[r]->x;

y += lambda[r] * elem->n[r]->y;

}

for (r = 0; r < 3; r++) {

for (p = 0; p < 6; p++)

z += data->node_data[r][p] * Q[k][6*r+p][d];

z += *(data->edge_data[r]) * Q[k][18+r][d];

}

if (z > *zmax)

*zmax = z;

else if (z < *zmin)

*zmin = z;

fprintf(fp_nodes, "%g %g %g\n", x, y, z);

k++;

}

for (i = 0; i < n; i++)
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for (j = 0; j <= i; j++) {

fprintf(fp_elems, "%d %d %d\n", N(i,j), N(i+1,j), N(i+1,j+1));

if (j + 1 <= i)

fprintf(fp_elems, "%d %d %d\n", N(i,j), N(i+1,j+1), N(i,j+1));

}

}

void plot_in_geomview(Mesh *mesh, double *data, int n, enum x_derivs d)

{

FILE *fp_nodes;

FILE *fp_elems;

FILE *fp_out;

double zmax, zmin;

Point3d *points;

double ***Q;

int i;

ArgyrisData argyris_data;

double x, y, z;

int n1, n2, n3;

if ((fp_nodes = tmpfile()) == NULL)

ABORT("unable to open temporary file\n");

if ((fp_elems = tmpfile()) == NULL)

ABORT("unable to open temporary file\n");

if ((fp_out = fopen("zz.off", "w") )== NULL)

ABORT("unable to open file zz.off for writing\n");

/* working arrays */

printf("length of vector ‘points’ = %d\n", (n+1)*(n+2)/2);

MAKE_VECTOR(points, (n+1)*(n+2)/2);

MAKE_3ARRAY(Q, (n+1)*(n+2)/2, 21, 6);

zmin = DBL_MAX;

zmax = -DBL_MAX;

for (i = 0; i < mesh->nelems; i++) {

Elem *elem = &mesh->elems[i];

argyris_data.node_data[0] = &data[6*elem->n[0]->nodeno];

argyris_data.node_data[1] = &data[6*elem->n[1]->nodeno];

argyris_data.node_data[2] = &data[6*elem->n[2]->nodeno];

argyris_data.edge_data[0] = &data[6*mesh->nnodes + elem->e[0]->edgeno];

argyris_data.edge_data[1] = &data[6*mesh->nnodes + elem->e[1]->edgeno];

argyris_data.edge_data[2] = &data[6*mesh->nnodes + elem->e[2]->edgeno];

plot_elem_in_geomview(elem, &argyris_data, n, fp_nodes, fp_elems, points,

Q, &zmin, &zmax, d);

}

printf("zmin = %g, zmax = %g\n", zmin, zmax);
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/* preamble */

fputs("{appearance {shading csmooth +edge}\n", fp_out);

fputs("COFF\n", fp_out); /* We have a [C]olor OFF file */

fprintf(fp_out, "%d %d %d\n",

(n+1)*(n+2)/2 * mesh->nelems, /* number of nodes */

n * n * mesh->nelems, /* number of triangles */

-1); /* number of edges (not used) */

/* The scaling here is temporary. Here I am scaling z so that the height of

* the object changes to 1. I need to compute the x and y ranges as well in order

* to do a more meaningful scaling.

*/

rewind(fp_nodes);

while (fscanf(fp_nodes, "%lf %lf %lf", &x, &y, &z) == 3) {

double s = (z - zmin)/(zmax - zmin); /* color scale */

double zc = 0.5*(zmax + zmin);

double zh = zmax - zmin;

double zscaled = zc + (z-zc)/zh;

fprintf(fp_out, "%g %g %g %g, %g, %g, %g\n",

x, y, zscaled,

REDHUE(s), GREENHUE(s), BLUEHUE(s), 1.0);

}

rewind(fp_elems);

while (fscanf(fp_elems, "%d %d %d", &n1, &n2, &n3) == 3)

fprintf(fp_out, "3 %d %d %d\n", n1, n2, n3);

/* closing */

fputs("}\n", fp_out);

/* done */

fclose(fp_nodes);

fclose(fp_elems);

fclose(fp_out);

FREE_VECTOR(points);

FREE_3ARRAY(Q);

}

int main(void)

{

〈sample argyrys data (never defined)〉
plot_in_geomview(&mesh, argyris_data, 16, d00);

}
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Chapter 6

The mass, stiffness and
bending matrices

With each element E we associate three 21× 21 symmetric matrices called the
mass, stiffness and bending matrices, and refer to them through the symbols
M , K, L, respectily. Their entries are defined through:

mij =
∫

E

Qi

(
λ(x)

)
Qj

(
λ(x)

)
dx, (6.1)

kij =
∫

E

∇xQi

(
λ(x)

)
· ∇xQj

(
λ(x)

)
dx, (6.2)

lij =
∫

E

∆xQi

(
λ(x)

)
∆xQj

(
λ(x)

)
dx, (6.3)

where the basis functions Qi are defined in (4.22) and where ∇x and ∆x are
the gradient and Laplacian operators which differentiate their arguments with
respect to the x variable.

Equation (4.22) gives the basis functions Qi in terms of the shape functions Pi.
We have explicit formulas (fifth degree polymials) for the shape functions, there-
fore we should be able to compute each of 3× 21× 22/2 = 693 double integrals
that define the entries in M , K, L. We have used Maple to evaluate the inte-
grals and written the results as C statements into the files pxp.incl, dpxdp.incl,
d2pxd2p.incl that correspond to the matrices M , K, and L, respectively.

In this chapter we will describe how to use these collections of statements to
compute the three matrices.

79
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6.1 The file pxp.incl

The shape function Pi are intrinsic to an element (triangle), that is, they are in-
dependent of the position of the triangle relative to the coordinate axes. There-
fore for each i and j, the integral:

Pij ≡
∫

E

Pi

(
λ(x)

)
Pj

(
λ(x)

)
dx, (6.4)

is determined solely by the element’s edge vectors a, b, c. Thus Pij is a geo-
metric property of the element.

We have cataloged formulas for all 21 × 22/2 = 231 instances of Pij in the file
pxp.incl expressed as C statements. Shown below is an extract consisting of
several lines from the beginning and the end of the file.1 The value of Pij is
encoded as PxP[i][j]:
〈the file pxp.incl 80〉≡

double x1 = ab/aa;

double x2 = bc/aa;

double x3 = ca/aa;

double x4 = ab/bb;

double x5 = bc/bb;

double x6 = ca/bb;

double x7 = ab/cc;

double x8 = bc/cc;

double x9 = ca/cc;

double PxP[21*22/2];

PxP[0][0] = x4 * x4 / 0.462e3 + x4 * x9 / 0.308e3

+ x9 * x9 / 0.462e3 - 0.41e2 / 0.2772e4 * x4

- 0.41e2 / 0.2772e4 * x9 + 0.41e2 / 0.462e3;

PxP[1][0] = -x4 * x8 / 0.2640e4 - x8 * x9 / 0.1980e4

- x4 / 0.840e3 + 0.41e2 / 0.23760e5 * x8

- 0.3e1 / 0.1540e4 * x9 + 0.2021e4 / 0.166320e6;

PxP[1][1] = 0.7e1 / 0.59400e5 * x8 * x8 + x8 / 0.1100e4

+ 0.577e3 / 0.207900e6;

PxP[2][0] = -x4 * x5 / 0.1980e4 - x5 * x9 / 0.2640e4

- 0.3e1 / 0.1540e4 * x4 + 0.41e2 / 0.23760e5 * x5

- x9 / 0.840e3 + 0.2021e4 / 0.166320e6;

... 223 line deleted ...

PxP[20][17] = -x4 / 0.69300e5 - 0.1e1 / 0.20790e5;

PxP[20][18] = -x1 / 0.69300e5 - 0.1e1 / 0.20790e5;

PxP[20][19] = -0.1e1 / 0.69300e5;

PxP[20][20] = 0.32e2 / 0.51975e5;

The numerical coefficients entering these expressions are not truncated floating
point approximations, despite what they may appear; they are exact fractions

1The file pxp.incl is not a self-contained C translation unit thus it cannot to be compiled
on its own; it is inended to be ‘#include’ed in a regular C file. That is why its name does not
have a normal .c extension.
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which have been written in the C syntax. For instance, the last entry, 0.2021e4
/ 0.166320e6, stands for the mathematically exact fraction 2021/166320. There
are no approximate or truncated numbers in the file PxP.incl.2

The notation aa, ab defined in the beginning of the file correspond to the fol-
lowing geometric quantities:

aa ≡ a.a, bb ≡ b.b, cc ≡ c.c,

ab ≡ a.b, bc ≡ b.c, ca ≡ c.a.
(6.5)

6.2 Computing the mass, stiffness and bending
matrices

The basis function, Qi, defined in (4.22) depend on the relative position of
the triangle with respect to the coordinate axes, therefore unlike the shape
functions, Pi, they are not instrinsic propertypes of the element. Consequently,
the functions Qi, and the integrals in (6.1), (6.2), (6.3), cannot be computed and
catalogued once for all; they need to be computed as needed for each element.

We see in (4.22) that each Qi is a linear combination of as many as three shape
functions Pi. We write this in symbolic form as:

Qi = ci1Pi1 + ci2Pi2 + ci3Pi3 (6.6)

where one or more coefficients may be zero. Then the integrand QiQj in (6.1)
may be expressed as a sum of up to nine terms Pip

Pjq
whose integrals may

be looked up in the catalog in the file pxp.incl. Computing the mass matrix
reduces to looking up values in the catalog and combining them with the proper
coefficients.

In our program, the mass, stiffness and bending matrices are computed by
calling the same function, get matrix(). It receives a pointer to an element
structure and a pointer to a preallocated memory for a 21×21 symmetric matrix,
and one of the three flags:

〈flags for get matrix() 81a〉≡ (87b)

enum which_matrix { MassMatrix, StiffnessMatrix, BendingMatrix };

and computes the requested matrix.

The function begins with calulating the triangle’s edge vectors and the geometric
quantities listed in (6.5):

〈function get matrix() 81b〉≡ (87a) 82a .

void get_matrix(Elem *elem, double **matrix, enum which_matrix which_matrix)

{

double u1 = elem->n[0]->x;

2Of course the C compiler will convert these into its internal approximate floating point
representation, as it does with any fraction.
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double u2 = elem->n[0]->y;

double v1 = elem->n[1]->x;

double v2 = elem->n[1]->y;

double w1 = elem->n[2]->x;

double w2 = elem->n[2]->y;

double a1 = w1-v1;

double a2 = w2-v2;

double b1 = u1-w1;

double b2 = u2-w2;

double c1 = v1-u1;

double c2 = v2-u2;

double aa = a1*a1+a2*a2;

double bb = b1*b1+b2*b2;

double cc = c1*c1+c2*c2;

double ab = a1*b1+a2*b2;

double bc = b1*c1+b2*c2;

double ca = c1*a1+c2*a2;

double J = a1*b2-b1*a2; /* twice the area of the triangle */

The notation a, b and c for the edge vectors follows our previous usage. However
for the purpose of the current computation, it is more convenient to have an
index notation for edge vectors. So we let introduce the array edge[] of length 3,
the elements of which are the edge vectors:

〈function get matrix() 81b〉+≡ (87a) / 81b 82b .

Vec2d edge[] = {

{ a1, a2 },

{ b1, b2 },

{ c1, c2 },

};

To organize the calculations of the Qi versus Pi, we introduce an array of struc-
tures that will hold the indices ip and coefficients cip

(see (6.6)) of each Qi:
〈function get matrix() 81b〉+≡ (87a) / 82a 83a .

struct {

int nterms;

int idx[3];

double coeff[3];

} Q[21];

int i, j;

We store the values of the integrals (??) in a lower triangular array, PxP, that
we create by calling our MAKE LMATRIX macro. Referring to the documentation
of MAKE LMATRIX, we see that the values of the matrix are stored in the row
order, from top to bottom, in a contiguous array pointer to by PxP[0]. We give



6.2. COMPUTING THE MASS, STIFFNESS AND BENDING MATRICES83

a name to that array for ease of refefence:

〈function get matrix() 81b〉+≡ (87a) / 82b 83b .

double **PxP;

double *pxp;

MAKE_LMATRIX(PxP, 21);

pxp = PxP[0];

The files pxp.incl, dpxdp.incl, d2pxd2p.incl, contain the values of the integrals
all assigned as pxp[...] = ....

〈function get matrix() 81b〉+≡ (87a) / 83a 83c .

switch (which_matrix) {

case MassMatrix:

#include "pxp.incl"

break;

case StiffnessMatrix:

#include "dpxdp.incl"

break;

case BendingMatrix:

#include "d2pxd2p.incl"

break;

}

Remark. The switch statement above is not what it may seem in a superfi-
cial inspection. The three #include preprocessor directives are encountered
at the preprocessing phase of the compilation therefore all three files, pxp.incl,
dpxdp.incl, d2pxd2p.incl, are included in the translation unit, regardless of the
surrounding switch statement. Each of the files defines the components of index
0 through 230 of an array named pxp. During the execution phase, one of the
three sets of definitions is selected depending on the setting of the which matrix
flag.

We prepare for the computation of the integrals by populating the array of
structures Q[21] defined above. Q’s first 6 entries correspond to the basis func-
tions which have non-zero values at vertex 0. The next 6 entries correspond
to the basis functions which have non-zero values at vertex 1 and the next 6
entries correspond to the basis functions which have non-zero values at vertex 2.
Note that this analysis phase is independent of which of the mass, stiffness or
bending matrices are to be computed.

〈function get matrix() 81b〉+≡ (87a) / 83b 84 .

for (i = 0; i < 3; i++) {

int j = (i + 1) % 3;

int k = (i + 2) % 3;

Q[6*i].nterms = 1;

Q[6*i].idx[0] = 6*i;

Q[6*i].coeff[0] = 1.0;
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Q[6*i+1].nterms = 2;

Q[6*i+1].idx[0] = 6*i+1;

Q[6*i+1].idx[1] = 6*i+2;

Q[6*i+1].coeff[0] = edge[k].x;

Q[6*i+1].coeff[1] = -edge[j].x;

Q[6*i+2].nterms = 2;

Q[6*i+2].idx[0] = 6*i+1;

Q[6*i+2].idx[1] = 6*i+2;

Q[6*i+2].coeff[0] = edge[k].y;

Q[6*i+2].coeff[1] = -edge[j].y;

Q[6*i+3].nterms = 3;

Q[6*i+3].idx[0] = 6*i+3;

Q[6*i+3].idx[1] = 6*i+4;

Q[6*i+3].idx[2] = 6*i+5;

Q[6*i+3].coeff[0] = edge[k].x * edge[k].x;

Q[6*i+3].coeff[1] = edge[i].x * edge[i].x;

Q[6*i+3].coeff[2] = edge[j].x * edge[j].x;

Q[6*i+4].nterms = 3;

Q[6*i+4].idx[0] = 6*i+3;

Q[6*i+4].idx[1] = 6*i+4;

Q[6*i+4].idx[2] = 6*i+5;

Q[6*i+4].coeff[0] = edge[k].y * edge[k].y;

Q[6*i+4].coeff[1] = edge[i].y * edge[i].y;

Q[6*i+4].coeff[2] = edge[j].y * edge[j].y;

Q[6*i+5].nterms = 3;

Q[6*i+5].idx[0] = 6*i+3;

Q[6*i+5].idx[1] = 6*i+4;

Q[6*i+5].idx[2] = 6*i+5;

Q[6*i+5].coeff[0] = 2.0 * edge[k].x * edge[k].y;

Q[6*i+5].coeff[1] = 2.0 * edge[i].x * edge[i].y;

Q[6*i+5].coeff[2] = 2.0 * edge[j].x * edge[j].y;

}

The remaining 3 entries correspond to those basis functions that have non-zero
normal derivatives at edge midpoints.

〈function get matrix() 81b〉+≡ (87a) / 83c 85a .

for (i = 0; i < 3; i++) {

int j = (i+1)%3;

double ei2 = edge[i].x * edge[i].x + edge[i].y * edge[i].y;

double ej2 = edge[j].x * edge[j].x + edge[j].y * edge[j].y;

double eij = edge[i].x * edge[j].x + edge[i].y * edge[j].y;

double h = sqrt((ei2*ej2 - eij*eij)/ei2);

int sgn = (elem->e[i]->n1 == elem->n[j]) ? +1 : -1;

Q[18+i].nterms = 1;

Q[18+i].idx[0] = 18+i;
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Q[18+i].coeff[0] = sgn * h;

}

Having computed the coefficients in (6.6), now we form the product QiQj

through a doubly-nested for-loop then and substitite for the integrals of the
shape functions from the catalog. Note that after computing the indices ip and
jq, we read the value of the integral from Pipjq

or Pjqip
, whichever corresponds

to the entry in the lower triangle part of the matrix Pij .

〈function get matrix() 81b〉+≡ (87a) / 84 85b .

for (i = 0; i < 21; i++)

for (j = 0; j <= i; j++) {

double sum = 0.0;

int p, q;

for (p = 0; p < Q[i].nterms; p++) {

int ip = Q[i].idx[p];

for (q = 0; q < Q[j].nterms; q++) {

int jq = Q[j].idx[q];

double myPP = (jq > ip) ? PxP[jq][ip] : PxP[ip][jq];

sum += Q[i].coeff[p] * Q[j].coeff[q] * myPP;

}

}

switch (which_matrix) {

case MassMatrix:

sum *= J;

break;

case StiffnessMatrix:

sum /= J;

break;

case BendingMatrix:

sum /= (J*J*J);

break;

}

matrix[i][j] = sum;

}

Storage for the array PxP is no more needed so we free it:

〈function get matrix() 81b〉+≡ (87a) / 85a

FREE_LMATRIX(PxP);

}

6.3 A unit test for get matrix()

We create an element and pass it to get matrix() to compute its mass mass,
stiffness and bending matrices. Compile with:

gcc -Wall -std=c99 -pedantic mass-stiffness-bending.c xmalloc.o
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-lm -DTEST -DM=xxx
where xxx is one of MassMatrix, StiffnessMatrix or BendingMatrix.

〈unit test for get matrix() 86〉≡ (87a)

#ifdef TEST

#include <stdio.h>

#include "array.h"

int main(void)

{

Node nodes[3] = {

{ 0, 0.0, 0.0 },

{ 1, 4.0, -1.2 },

{ 2, 1.1, 3.7 },

};

Edge edges[3] = {

{ 0, &nodes[1], &nodes[2] },

{ 1, &nodes[2], &nodes[0] },

{ 2, &nodes[0], &nodes[1] },

};

Elem elem = {

0,

{ &nodes[0], &nodes[1], &nodes[2] },

{ &edges[0], &edges[1], &edges[2] },

};

double **matrix;

int i, j;

MAKE_LMATRIX(matrix, 21);

get_matrix(&elem, matrix, M);

for (i = 0; i < 21; i++) {

printf("%2d ", i);

for (j = 0; j <= i; j++)

printf("%8.4f ", matrix[i][j]);

putchar(’\n’);

}

FREE_LMATRIX(matrix);

return EXIT_SUCCESS;

}

#endif /* TEST */
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〈mass-stiffness-bending.c 87a〉≡
#include <stdlib.h>

#include <math.h>

#include "array.h"

#include "mass-stiffness-bending.h"

〈function get matrix() 81b〉
〈unit test for get matrix() 86〉

〈mass-stiffness-bending.h 87b〉≡
#ifndef H_MASS_STIFFNESS_BENDING_H

#define H_MASS_STIFFNESS_BENDING_H

#include "fem.h"

〈flags for get matrix() 81a〉

void get_matrix(Elem *elem, double **matrix, enum which_matrix which_matrix);

#endif /* H_MASS_STIFFNESS_BENDING_H */

6.4 Symbolic computation of the mass matrix

In this section we document the Maple script which was used to produce the
symbolic expressions for the mass matrix which are encoded as a sequence of 231
C statements in the file pxp.incl. The reader who is not interested the method of
derivation of these expressions may skip this section without loss of generality.

We will use the change of variables formula (4.17) in Section ?? to convert
integration over an arbitrary triangle to integration over the triangle 0 6 t2 6
t1 6 1

We begin with reading into Maple the symbolic expressions for the shape func-
tions Pi:

〈mass-matrix.maple 87c〉≡ 88a .

read "catalog-all.maple";

We define the three edge vectors. The Maple command Vector(2, symbol=’a’
defines a vector of length two whose components have they symbolic names a1

and a2. It would be convenient to refer to this vector with the symbol a in our
calculation. However letting ‘a := [Vector(2,
symbol=’a’’ is not allowed because then the symbol a will have confllicting
meanings as the name of a vector and the name of its comonents. The trick to
make this work is to declare the symbol a on the right hand side as something
distinct from the symbol a on the left hand side. The command ‘convert(’a’,
‘local‘)’ creates a new symbol, named a, which is represented by the letter
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‘a’ by internally is distinct from the anadonrned symbol a. Thus we let:

〈mass-matrix.maple 87c〉+≡ / 87c 88b .

a := Vector(2, symbol=convert(’a’, ‘local‘));

b := Vector(2, symbol=convert(’b’, ‘local‘));

c := Vector(2, symbol=convert(’c’, ‘local‘));

Remark. The Jacobian of the mapping, J , in the formula (4.17) equals twice
the area of the triangle. With the edge vectors defined above, we have J =
c1a2−c2a1. However in the following computation, and in the resulting catalog of
mass matrix entries, we omit the factor J . The user of the catalog is responsible
for multiplying the entries by J .

We introduce the notation described in (6.5) to simplify the mass matrix entries:

〈mass-matrix.maple 87c〉+≡ / 88a 88c .

myrels1 := [

a^%T . a = aa,

b^%T . b = bb,

c^%T . c = cc,

a^%T . b = ab,

b^%T . c = bc,

c^%T . a = ca ];

Additional simplication is achieved through letting:
〈mass-matrix.maple 87c〉+≡ / 88b 88d .

myrels2 := [

ab/aa=x1, bc/aa=x2, ca/aa=x3,

ab/bb=x4, bc/bb=x5, ca/bb=x6,

ab/cc=x7, bc/cc=x8, ca/cc=x9 ];

We designate a file in which to write the output and initialize it with some
preamble material. Note that Maple’s I/O functions are very similar to those
of C’s.

〈mass-matrix.maple 87c〉+≡ / 88c 89a .

outfile := "/tmp/pxp.incl":

fp := fopen(outfile, WRITE):

fprintf(fp, "/* Do not edit!\n"):

fprintf(fp, " *\n"):

fprintf(fp, " * This C file was machine-generated by running\n"):

fprintf(fp, " * the script %s through Maple.\n", "mass-matrix.maple"):

fprintf(fp, " * Creation date: %s\n", StringTools[FormatTime]()):

fprintf(fp, " * Maple version: %s\n", kernelopts(version)):

fprintf(fp, "*/\n"):

fprintf(fp, "{ /* encloses everything in a block */\n"):

for tt in myrels2 do

fprintf(fp, "double %a = %a;\n", rhs(tt), lhs(tt))

end do:

fclose(fp);
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Figure 6.1: Caption here.

The for-loop over myrels2 declares and defines 9 variables “double x1 = ab/aa’,
“double x2 = bc/aa’, etc. These declarations, along with everything else in
this Maple-generated file, are made into a C block by enclosing then with a pair
of braces. This makes the code conformannt to the C89 standard which, unlike
C99, does not allow mixing declarations with code.

The Maple program computes the lower triangle of the mass matrix and stores
the entries, scanned in row order, from top to bottom, in an array PP, consistent
with the storage scheme of used by the MAKE LMATRIX macro. For the integration
we use the change of variables formula (4.17), note however, that we do not
include the J factor:

〈mass-matrix.maple 87c〉+≡ / 88d 89b .

vars := [seq(x||k, k=1..9)]:

PP := Vector(21*22/2):

k := 1:

for i from 1 to 21 do

for j from 1 to i do

int(int( P||i(1-t,t-s,s,a,b,c) * P||j(1-t,t-s,s,a,b,c),

s=0..t), t=0..1);

for tt in myrels1 do

algsubs(tt, %);

end do;

for tt in myrels2 do

algsubs(tt, expand(%));

end do;

PP[k] := sort(%, vars, descending);

k := k + 1;

end do;

end do;

Now we call Maple’s CodeGeneration:-C routine which converts the 231 entries
of the array PP into C statements and appends the result to to file outfile:

〈mass-matrix.maple 87c〉+≡ / 89a 90a .

CodeGeneration:-C(convert(PP,list), resultname=pxp, output=outfile);
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Finally we append a closing brace to the output file to match the opening brace
and make the entire contents of the file into a single C block.

〈mass-matrix.maple 87c〉+≡ / 89b

fp := fopen(outfile, APPEND):

fprintf(fp, "} /* encloses everything in a block */\n"):

fclose(fp):

6.4.1 Sample mass matrix generated in Maple

The file mass-matrix-check.maple is a Maple script that computes and prints the
mass matrix for an element specified by the coordinates of its vertices. We use
this script to verify that its output is identical to that of the unit test described
in Section 6.3. This serves as a good verification device because the results are
arrived at via different algorithmic paths.

We begin by reading the catalog of the shape functions:

〈mass-matrix-check.maple 90b〉≡ 90c .

read "catalog-all.maple";

We define a triangle by the coordinates of its vertices, then compute the edge
vectors and the Jacobian J :

〈mass-matrix-check.maple 90b〉+≡ / 90b 90d .

nodes := [ <0.,0.>, <4.,-1.2>, <1.1,3.7> ]:

V[1] := nodes[1]:

V[2] := nodes[2]:

V[3] := nodes[3]:

E[1] := V[3] - V[2]:

E[2] := V[1] - V[3]:

E[3] := V[2] - V[1]:

J := E[1][1]*E[2][2] - E[1][2]*E[2][1]:

We compute the 21 basis functions Qi defined in (4.22):

〈mass-matrix-check.maple 90b〉+≡ / 90c 91 .

for i from 1 to 3 do

j := i+1:

k := i+2:

if j > 3 then j := j - 3 end if:

if k > 3 then k := k - 3 end if:

Q[6*(i-1)+1] := P||(6*(i-1)+1);

Q[6*(i-1)+2] :=

E[k][1] * P||(6*(i-1)+2)
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- E[j][1] * P||(6*(i-1)+3);

Q[6*(i-1)+3] :=

E[k][2] * P||(6*(i-1)+2)

- E[j][2] * P||(6*(i-1)+3);

Q[6*(i-1)+4] :=

E[k][1]^2 * P||(6*(i-1)+4)

+ E[i][1]^2 * P||(6*(i-1)+5)

+ E[j][1]^2 * P||(6*(i-1)+6);

Q[6*(i-1)+5] :=

E[k][2]^2 * P||(6*(i-1)+4)

+ E[i][2]^2 * P||(6*(i-1)+5)

+ E[j][2]^2 * P||(6*(i-1)+6);

Q[6*(i-1)+6] := 2 * (

E[k][1] * E[k][2] * P||(6*(i-1)+4)

+ E[i][1] * E[i][2] * P||(6*(i-1)+5)

+ E[j][1] * E[j][2] * P||(6*(i-1)+6) );

end do:

for i from 1 to 3 do

j := i+1:

if j > 3 then j := j - 3 end if:

ei2 := E[i]^%T . E[i];

ej2 := E[j]^%T . E[j];

eij := E[i]^%T . E[j];

h := sqrt((ei2*ej2 - eij^2)/ei2);

Q[18+i] := h * P||(18+i);

end do:

Then we apply the defintion (6.1) of mass matrix and the integration for-
mula (4.17) to cacluate and print the lower triangle of the 21× 21 mass matrix:

〈mass-matrix-check.maple 90b〉+≡ / 90d

for i from 1 to 21 do

printf("%2d ", i-1);

for j from 1 to i do

Qi := Q[i](1-t,t-s,s,E[1], E[2], E[3]);

Qj := Q[j](1-t,t-s,s,E[1], E[2], E[3]);

M[i,j] := J * int(int( Qi * Qj, s=0..t), t=0..1):

printf("%8.4f ", M[i,j]);

end do;

printf("\n");

end do:
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The easiest way to run this script is through the command line:

maple mass-matrix-check.maple > /tmp/z.M

This runs the script through Maple and writes the result to file /tmp/z.M.

Alternatively, it is possible to run the script from within Maple. By default, the
output is printed to the terminal. To redirect the output to the file /tmp/z.M,
execute the following Maple commands:

restart;
writeto("/tmp/mass matrix");
read mass-matrix-check.maple;
writeto(terminal);

6.5 Symbolic computation of the stiffness ma-
trix

The Maple script for the symbolic computation of the stiffness matrix is mostly
similar to the script for computing the mass matrix which we described in
Section 6.4. The main novelty is the application of the chain rule for computing
the gradient ∇xPi. Therefore we present the script with little commentary
except for the places where we need to highlight the differences.

The preamble of the script is identical to that of the previous one, the only
difference being the name of the output file which now is called dpxdp.incl :

〈stiffness-matrix.maple 92〉≡ 93a .

read "catalog-all.maple";

a := Vector(2, symbol=convert(’a’, ‘local‘));

b := Vector(2, symbol=convert(’b’, ‘local‘));

c := Vector(2, symbol=convert(’c’, ‘local‘));

myrels1 := [

a^%T . a = aa,

b^%T . b = bb,

c^%T . c = cc,

a^%T . b = ab,

b^%T . c = bc,

c^%T . a = ca ];

myrels2 := [

ab/aa=x1, bc/aa=x2, ca/aa=x3,

ab/bb=x4, bc/bb=x5, ca/bb=x6,

ab/cc=x7, bc/cc=x8, ca/cc=x9 ];

outfile := "/tmp/dpxdp.incl":

fp := fopen(outfile, WRITE):

fprintf(fp, "/* Do not edit!\n"):

fprintf(fp, " *\n"):
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fprintf(fp, " * This C file was machine-generated by running\n"):

fprintf(fp, " * the script %s through Maple.\n", "stiffness-matrix.maple"):

fprintf(fp, " * Creation date: %s\n", StringTools[FormatTime]()):

fprintf(fp, " * Maple version: %s\n", kernelopts(version)):

fprintf(fp, "*/\n"):

fprintf(fp, "{ /* encloses everything in a block */\n"):

for tt in myrels2 do

fprintf(fp, "double %a = %a;\n", rhs(tt), lhs(tt))

end do:

fclose(fp);

To apply the chain rule of differentiation, we define the matrix A and its inverse,
matrix B, accroding to (??) and (??).
〈stiffness-matrix.maple 92〉+≡ / 92 93b .

A := < < u[1] | v[1] | w[1] >,

< u[2] | v[2] | w[2] >,

< 1 | 1 | 1 > >;

B := < < -a[2] | a[1] | v[1]*w[2]-w[1]*v[2]>,

< -b[2] | b[1] | w[1]*u[2]-u[1]*w[2]>,

< -c[2] | c[1] | u[1]*v[2]-v[1]*u[2]> > / (a[1]*b[2]-b[1]*a[2]);

The 1× 2 vector ∇xPi which is the gradient of the composite function P
(
λ(x)

)
with respect to x, equals the product of the 1 × 3 vector DPi, which is the
gradient of Pi with respect to the barycentric coordinates, times the first two
columns of the matrix B.

In the symbolic representation of the matrix B, the Jacobian J appears as the
denominator. To simplify the computed expressions, we introduce a matrix BJ
which is the matrix B without its denominator:
〈stiffness-matrix.maple 92〉+≡ / 93a 93c .

BJ := simplify(B * denom(B[1,1]));

We use the matrix BJ instead of the matrix B in the application of the chain
rule. This introduces an extra factor of J2 in the resulting expressions. The
user should is responsible for dividing the results by J2.
〈stiffness-matrix.maple 92〉+≡ / 93b 94a .

vars := [seq(x||k, k=1..9)]:

k := 1:

for i from 1 to 21 do

# compute grad P_i and simplify:

Pix := P || i || x (1-t, t-s, s, a, b, c);

Piy := P || i || y (1-t, t-s, s, a, b, c);

Piz := P || i || z (1-t, t-s, s, a, b, c);

< Pix | Piy | Piz >;

for tt in myrels1 do

algsubs(tt, %);
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end do;

gradP[i] := % . LinearAlgebra[SubMatrix](BJ,1..3,1..2);

end do;

Remark. Recall that the x, y, z suffixes in the file catalog-all.maple are short-
hhand notation for the barycentric coordinates λ1, λ2, λ3 and should not be
confused with Cartesian coordinates.

〈stiffness-matrix.maple 92〉+≡ / 93c 94b .

for i from 1 to 21 do

for j from 1 to i do

int(int(gradP[i] . gradP[j]^%T , s=0..t), t=0..1);

for tt in myrels1 do

algsubs(tt, expand(%));

end do;

for tt in myrels2 do

algsubs(tt, expand(%));

end do;

collect(expand(%), vars, distributed);

DPDP[k] := sort(%, vars, descending);

k := k + 1;

end do;

end do;

Finally, we convert the result to C and write the result to the output file:

〈stiffness-matrix.maple 92〉+≡ / 94a

CodeGeneration:-C(convert(DPDP,list), resultname=pxp, output=outfile);

fp := fopen(outfile, APPEND):

fprintf(fp, "} /* encloses everything in a block */\n"):

fclose(fp):

6.5.1 Sample stiffness matrix generated in Maple

The file stiffness-matrix-check.maple is a Maple script that computes and prints
the mass matrix for an element specified by the coordinates of its vertices. We
use this script to verify that its output is identical to that of the unit test
described in Section 6.3. This serves as a good verification device because the
results are arrived at via different algorithmic paths.

The script begins exactly like the one in Section 6.4.1.

〈stiffness-matrix-check.maple 94c〉≡ 95a .

read "catalog-all.maple":

nodes := [ <0.,0.>, <4.,-1.2>, <1.1,3.7> ]:

V[1] := nodes[1]:

V[2] := nodes[2]:



6.5. SYMBOLIC COMPUTATION OF THE STIFFNESS MATRIX 95

V[3] := nodes[3]:

E[1] := V[3] - V[2]:

E[2] := V[1] - V[3]:

E[3] := V[2] - V[1]:

J := E[1][1]*E[2][2] - E[1][2]*E[2][1]:

We define the A and B matrices which which are needed for computing the
derivatives the by the chain rule:

〈stiffness-matrix-check.maple 94c〉+≡ / 94c 95b .

A := < <V[1]|V[2]|V[3]>,<1|1|1> >:

B := A^(-1):

The matrices A and B are mappings between the barycentric coordinates to
Cartesian coordinates. We express these through the variables lambda and X:

〈stiffness-matrix-check.maple 94c〉+≡ / 95a 95c .

lambda := B . <x[1], x[2], 1>;

X := A . <lambda1, lambda2, lambda3>;

The calculation of the basis function Qi is identical to the corresponding part
of the previous script:

〈stiffness-matrix-check.maple 94c〉+≡ / 95b 96 .

for i from 1 to 3 do

j := i+1:

k := i+2:

if j > 3 then j := j - 3 end if:

if k > 3 then k := k - 3 end if:

Q[(6*(i-1)+1)] := P||(6*(i-1)+1);

Q[(6*(i-1)+2)] :=

E[k][1] * P||(6*(i-1)+2)

- E[j][1] * P||(6*(i-1)+3);

Q[(6*(i-1)+3)] :=

E[k][2] * P||(6*(i-1)+2)

- E[j][2] * P||(6*(i-1)+3);

Q[(6*(i-1)+4)] :=

E[k][1]^2 * P||(6*(i-1)+4)

+ E[i][1]^2 * P||(6*(i-1)+5)

+ E[j][1]^2 * P||(6*(i-1)+6);

Q[(6*(i-1)+5)] :=

E[k][2]^2 * P||(6*(i-1)+4)

+ E[i][2]^2 * P||(6*(i-1)+5)
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+ E[j][2]^2 * P||(6*(i-1)+6);

Q[(6*(i-1)+6)] := 2 * (

E[k][1] * E[k][2] * P||(6*(i-1)+4)

+ E[i][1] * E[i][2] * P||(6*(i-1)+5)

+ E[j][1] * E[j][2] * P||(6*(i-1)+6) );

end do:

for i from 1 to 3 do

j := i+1:

if j > 3 then j := j - 3 end if:

ei2 := E[i]^%T . E[i];

ej2 := E[j]^%T . E[j];

eij := E[i]^%T . E[j];

h := sqrt((ei2*ej2 - eij^2)/ei2);

Q[18+i] := h * P||(18+i);

end do:

Now we apply the defintion (??) of stiffness matrix and the integration for-
mula (4.17) to cacluate and print the lower triangle of the 21 × 21 stiffness
matrix:

〈stiffness-matrix-check.maple 94c〉+≡ / 95c

for i from 1 to 21 do

printf("%2d ", i-1);

Q[i](lambda[1], lambda[2], lambda[3], E[1], E[2], E[3]);

qi := unapply(%, [ x[1], x[2] ] );

qix := unapply(D[1](qi)(X[1],X[2]), [lambda1, lambda2, lambda3]);

qiy := unapply(D[2](qi)(X[1],X[2]), [lambda1, lambda2, lambda3]);

for j from 1 to i do

Q[j](lambda[1], lambda[2], lambda[3], E[1], E[2], E[3]);

qj := unapply(%, [ x[1], x[2] ] );

qjx := unapply(D[1](qj)(X[1],X[2]), [lambda1, lambda2, lambda3]);

qjy := unapply(D[2](qj)(X[1],X[2]), [lambda1, lambda2, lambda3]);

integrand :=

qix(1-t,t-s,s) * qjx(1-t,t-s,s)

+

qiy(1-t,t-s,s) * qjy(1-t,t-s,s);

M[i,j] := J * int(int( integrand, s=0..t), t=0..1):

printf("%8.4f ", M[i,j]);

end do;

printf("\n");

end do:
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See the instruction near the end of Section 6.4.1 for running this script.

6.6 Symbolic computation of the bending ma-
trix

The Maple script for the symbolic computation of the bending matrix is mostly
similar to the scripts for computing the mass and stiffness matrices which we
described in the previous section. The main novelty is the application of the
formula (4.15) to compute the Laplacian ∆xPi. We present the script with little
commentary except for the places where we need to highlight the differences with
the previoous ones.

The preamble of the script is as before, except the output file name which now
is called dpxdp.incl :

ADD EXPLANATION

〈bending-matrix.maple 97〉≡
# read the note in 00how-to-compute-the-laplaican

read "catalog-all.maple";

a := Vector(2, symbol=convert(’a’, ‘local‘));

b := Vector(2, symbol=convert(’b’, ‘local‘));

c := Vector(2, symbol=convert(’c’, ‘local‘));

myrels1 := [

a^%T . a = aa,

b^%T . b = bb,

c^%T . c = cc,

a^%T . b = ab,

b^%T . c = bc,

c^%T . a = ca ];

myrels3 := [ bc = -(bb + cc -aa)/2, ca = -(cc + aa -bb)/2, ab = -(aa + bb - cc)/2 ];

fracs := [seq(seq(aa^i*bb^j*cc^(2-i-j), j=-4..4), i=-4..4)];

fracs_short := select(x -> degree(numer(x)) <= 4, fracs);

myrels_x := [ seq( fracs_short[k] = x||k, k=1..nops(fracs_short)) ];

### myrels_x := [ cc^4/aa^2 = x1, bb*cc^3/aa^2 = x2, bb^2*cc^2/aa^2 = x3, bb^3*cc/aa^2 = x4, bb^4/aa^2 = x5, cc^4/(aa*bb) = x6, cc^3/aa = x7, bb*cc^2/aa = x8, bb^2*cc/aa = x9, bb^3/aa = x10, bb^4/(aa*cc) = x11, cc^4/bb^2 = x12, cc^3/bb = x13, cc^2 = x14, bb*cc = x15, bb^2 = x16, bb^3/cc = x17, bb^4/cc^2 = x18, aa*cc^3/bb^2 = x19, aa*cc^2/bb = x20, aa*cc = x21, aa*bb = x22, aa*bb^2/cc = x23, aa*bb^3/cc^2 = x24, aa^2*cc^2/bb^2 = x25, aa^2*cc/bb = x26, aa^2 = x27, aa^2*bb/cc = x28, aa^2*bb^2/cc^2 = x29, aa^3*cc/bb^2 = x30, aa^3/bb = x31, aa^3/cc = x32, aa^3*bb/cc^2 = x33, aa^4/bb^2 = x34, aa^4/(bb*cc) = x35, aa^4/cc^2 = x36 ];

A := < < u[1] | v[1] | w[1] >,

< u[2] | v[2] | w[2] >,

< 1 | 1 | 1 > >;

B := < < -a[2] | a[1] | v[1]*w[2]-w[1]*v[2]>,

< -b[2] | b[1] | w[1]*u[2]-u[1]*w[2]>,

< -c[2] | c[1] | u[1]*v[2]-v[1]*u[2]> > / (a[1]*b[2]-b[1]*a[2]);

BJ := simplify(B * denom(B[1,1]));
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Z := Matrix(3,3, shape=symmetric);

Z[1,1] := aa; Z[2,2] := bb; Z[3,3] := cc; Z[1,2] := ab; Z[2,3] := bc; Z[3,1] := ca;

D2P := Matrix(3,3,shape=symmetric);

k := 1:

# compute the Laplacian of P_i and simplify:

for i from 1 to 21 do

DD :=

[ P || i || xx (1-t, t-s, s, a, b, c),

P || i || yy (1-t, t-s, s, a, b, c),

P || i || zz (1-t, t-s, s, a, b, c),

P || i || xy (1-t, t-s, s, a, b, c),

P || i || yz (1-t, t-s, s, a, b, c),

P || i || zx (1-t, t-s, s, a, b, c) ];

for tt in myrels1 do

algsubs(tt, %);

end do;

DD := %;

D2P[1,1] := DD[1];

D2P[2,2] := DD[2];

D2P[3,3] := DD[3];

D2P[1,2] := DD[4];

D2P[2,3] := DD[5];

D2P[3,1] := DD[6];

LP[i] := LinearAlgebra:-Trace(Z.D2P);

end do:

PP := Vector(21*22/2):

k := 1: for i from 1 to 21 do

for j from 1 to i do

int(int(LP[i] * LP[j], s=0..t), t=0..1);

subs(myrels3, %);

PP[k] := subs(myrels_x, expand(%));

k := k + 1;

end do; # end of the j loop

end do; # end of the i loop

outfile := "/tmp/d2pxd2p.incl":
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fp := fopen(outfile, WRITE):

fprintf(fp, "/* Do not edit!\n"):

fprintf(fp, " *\n"):

fprintf(fp, " * This C file was machine-generated by running\n"):

fprintf(fp, " * the script %s through Maple.\n", "bending-matrix.maple"):

fprintf(fp, " * Creation date: %s\n", StringTools[FormatTime]()):

fprintf(fp, " * Maple version: %s\n", kernelopts(version)):

fprintf(fp, "*/\n"):

fprintf(fp, "{ /* encloses everything in a block */\n"):

myrels_r := [ seq(rhs(i) = lhs(i), i in myrels_x) ];

mystr := CodeGeneration:-C(myrels_r, optimize, output=string):

mystrlist := StringTools:-Split(mystr, "\n"):

for i in mystrlist do

if i <> "" then

fprintf(fp, "double %s\n", i);

end if;

end do:

fclose(fp);

CodeGeneration:-C(convert(PP,list), resultname=pxp, output=outfile);

fp := fopen(outfile, APPEND):

fprintf(fp, "} /* encloses everything in a block */\n"):

fclose(fp):

6.6.1 Sample bending matrix generated in Maple

ADD EXPLNATION HERE
〈bending-matrix-check.maple 99〉≡

read "catalog-all.maple":

nodes := [ <0.,0.>, <4.,-1.2>, <1.1,3.7> ]:

V[1] := nodes[1]:

V[2] := nodes[2]:

V[3] := nodes[3]:

E[1] := V[3] - V[2]:

E[2] := V[1] - V[3]:

E[3] := V[2] - V[1]:

J := E[1][1]*E[2][2] - E[1][2]*E[2][1]:

A := < <V[1]|V[2]|V[3]>,<1|1|1> >:

B := A^(-1):

lambda := B . <x[1], x[2], 1>;

X := A . <lambda1, lambda2, lambda3>;

for i from 1 to 3 do
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j := i+1:

k := i+2:

if j > 3 then j := j - 3 end if:

if k > 3 then k := k - 3 end if:

Q[(6*(i-1)+1)] := P||(6*(i-1)+1);

Q[(6*(i-1)+2)] :=

E[k][1] * P||(6*(i-1)+2)

- E[j][1] * P||(6*(i-1)+3);

Q[(6*(i-1)+3)] :=

E[k][2] * P||(6*(i-1)+2)

- E[j][2] * P||(6*(i-1)+3);

Q[(6*(i-1)+4)] :=

E[k][1]^2 * P||(6*(i-1)+4)

+ E[i][1]^2 * P||(6*(i-1)+5)

+ E[j][1]^2 * P||(6*(i-1)+6);

Q[(6*(i-1)+5)] :=

E[k][2]^2 * P||(6*(i-1)+4)

+ E[i][2]^2 * P||(6*(i-1)+5)

+ E[j][2]^2 * P||(6*(i-1)+6);

Q[(6*(i-1)+6)] := 2 * (

E[k][1] * E[k][2] * P||(6*(i-1)+4)

+ E[i][1] * E[i][2] * P||(6*(i-1)+5)

+ E[j][1] * E[j][2] * P||(6*(i-1)+6) );

end do:

for i from 1 to 3 do

j := i+1:

if j > 3 then j := j - 3 end if:

ei2 := E[i]^%T . E[i];

ej2 := E[j]^%T . E[j];

eij := E[i]^%T . E[j];

h := sqrt((ei2*ej2 - eij^2)/ei2);

Q[18+i] := h * P||(18+i);

end do:

for i from 1 to 21 do

Q[i](lambda[1], lambda[2], lambda[3], E[1], E[2], E[3]);

qi := unapply(%, [ x[1], x[2] ] );

qixx := D[1,1](qi)(X[1],X[2]);

qiyy := D[2,2](qi)(X[1],X[2]);

LQ[i] := unapply(qixx + qiyy, [lambda1, lambda2, lambda3]);

end do:
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for i from 1 to 21 do

printf("%2d ", i-1);

for j from 1 to i do

integrand := LQ[i](1-t,t-s,s) * LQ[j](1-t,t-s,s);

M[i,j] := J * int(int( integrand, s=0..t), t=0..1):

printf("%8.4f ", M[i,j]);

end do;

printf("\n");

end do:
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Chapter 7

The boundary series

A boundary patch is a connected set of one or more boundary edges which
have a common type of boundary data. The precise definition was given in
Section 2.2.4. In that section we developed code that identifies boundary patches
from the user specified data and enumerates them, beginning with zero. We
arranged things so that upon the triangulation of the domain, edges on the
mesh boundary inherit patch numbers from their parent edge segments.

In this chapter we make a linked list from the edges of each boundary patch. We
sort each list so that the edges are back to back within each patch, that is, the
second node of an edge connects to the first node of the next edge. Additionally,
we enforce a positive orientation of the boundary in the sence that traversing
the linked list correponds to traversing the domain’s boundary in the poisitive
direction. We call the resulting linked list a boundary series corresponding to
that patch. See Section 1.1.3 for the meaning of positive orientation.

The member bseries of the Mesh structure is an array of pointers to a boundary
series, one per boundary patch. The number of boundary patches which has
been computed in 〈function identify boundary patches() (never defined)〉 is stored
in the npatches member of the Mesh structure. Here we allocate memory for
bseries array, create the of boundary series and set the array elements to point
the them.

〈function create boundary series() 103〉≡ (108c)

void create_boundary_series(Mesh *mesh)

{

int i;

MAKE_VECTOR(mesh->bseries, mesh->nbseries);

for (i = 0; i < mesh->nbseries; i++)

mesh->bseries[i] = NULL;

for (i = 0; i < mesh->nedges; i++) {

Edge *edge = &mesh->edges[i];

103
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if (edge->bc != NULL) {

int series = edge->bc->patch;

mesh->bseries[series]

= List_push(mesh->bseries[series], edge);

}

}

/* TEMPORARY: print bseries */

for (i = 0; i < mesh->nbseries; i++) {

List *p;

printf("edges series %d:\n", i);

for (p = mesh->bseries[i]; p != NULL; p = p->rest) {

Edge *edge = p->first;

printf("\tbseries %d, edge %d\n", edge->bc->patch, edge->edgeno);

}

}

}

At this point, edges in a boundary series are not in any particular order. Here
we sort each boundary series to put the edges in their natural order as described
in the opening paragraph of this chapter. The sorting algorithm we use here is
rather native and has a complexity of O(n2) where n is the number the edges to
sort. It is possible to reduce the complexity to O(n lnn) through the use of hash
tables but we don’t do it here because its impact on the overall performance of
the solver is doubtful.

The function sort bseries that will be described below, receives a pointer
bseries to a boundary series. It removes the first link and start a new linked
list, designated as list, which has the removed link as its only member. Then
list is extended by repeatedly removing links from bseries and merging into
list. This is done in two distinct phases.

In phase 1, we we build up the linked list list ‘from the left’ by repeatedly
selecting and removing links from bseries and pushing them into list. The
criterion for selectting links is that they ‘fit’ in the sense that node number 2 of
the edge being pushed equals node number 1 of the edge that it is being pushed
into. Figure 7.1 illustrates this.

After exhausting all edges that can be pushed from the left, we shift to phase 2
where we continue building the list by selecting and removing links from bseries
and appending them to list. The criterion for selectting links is that they ‘fit’ in
the sense that node number 1 of the edge being appended equals node number 2
of the edge that it is being appended to. Figure 7.2 illustrates this.

We introduce functions select n1() and select n2() to help with selecting the
desired edge. Each of these receive a pointer to and edge and a node number.
The first one returns true if the node number of the edge’s first node matches
the given node number. The second one does the same with the edge’s second
node number. The selector functions will be passed as arguments to our sorting
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edgeB

push

edge edge edge

NULL

A

list tail

Figure 7.1: Phase 1 of builing a linked list of sorted edges. Links are ‘pushed’
from the left. Node 2 of the edge B matches node 1 of edge A. The list

pointer is set to point to the leftmost link after each insertion. The tail

pointer continues pointing to the last link.

edge edge edgeA

list tail

edgeB

NULL

append

Figure 7.2: Phase 2 of building a linked list of sorted edges. Links are
appended to the right. Node 1 of edge B matches node 2 of edge A. The
list pointer remains stationary. The tail pointer is advanced to the newly
appeded link.
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function therefore we typedef their prototype:

〈edge selector functions 106a〉≡ (108c)

typedef int (*EdgeSelector)(Edge *e, int n);

static int select_n1(Edge *e, int n)

{

return e->n1->nodeno == n;

}

static int select_n2(Edge *e, int n)

{

return e->n2->nodeno == n;

}

Another helper funciton is extract edge() which searches a linked list of edges
for an edge with a specified first or second node number. If the desired edge is
found, the corresponding link is removed from the list and the shortened list is
returned. The edge argument is set to point to the located edge. If no suitable
link is found, it returns the unmodified list and sets the edge argument to NULL.

〈function extract edge() 106b〉≡ (108c)

static List *extract_edge(List *list, int n,

EdgeSelector select, Edge **edge)

{

List **pp, *p;

Edge *q;

for (pp = &list; (p = *pp) != NULL; pp = &p->rest) {

q = p->first;

if (select(q, n))

break;

}

if (p == NULL)

*edge = NULL;

else {

*edge = q;

*pp = p->rest;

}

return list;

}

With the help of this auxiliary function, sorting a boundary series is quite simple.
The function sort bseries receives a pointer to a bounday series and returns a
pointer to the sorted series. If the argument is NULL, it returns NULL. Otherwise
it begins by extracting the first element from the given series and initializes a
new linked list, called list, with it. The pointer tail is set to point to the last
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link of list. It will be used in phase 2 of the sorting process.

〈function sort bseries() 107a〉≡ (108c) 107b .

List *sort_bseries(List *bseries)

{

List *list, *tail;

if (bseries == NULL)

return NULL;

list = bseries;

bseries = list->rest;

list->rest = NULL;

tail = list;

Now we are ready to perform phase 1:

〈function sort bseries() 107a〉+≡ (108c) / 107a 107c .

while (bseries != NULL) {

Edge *edge = list->first;

int n1 = edge->n1->nodeno;

bseries = extract_edge(bseries, n1, select_n2, &edge);

if (edge == NULL)

break;

list = List_push(list, edge);

}

At this point if bseries is exhausted, then the list is completely sorted and
there is nothing else to do. We return:

〈function sort bseries() 107a〉+≡ (108c) / 107b 107d .

if (bseries == NULL)

return list;

But in the more likely event when bseries is not exhausted, we shift to phase 2:
〈function sort bseries() 107a〉+≡ (108c) / 107c 108a .

do {

Edge *edge = tail->first;

int n2 = edge->n2->nodeno;

bseries = extract_edge(bseries, n2, select_n1, &edge);

if (edge == NULL)

break;

List_append(tail, List_list(edge, NULL));

tail = tail->rest;

} while (bseries != NULL);
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At this point bseries should be exhausted otherwise we have a bug in the
program. Check this and abort the program if need be. Otherwise return list
to the caller:

〈function sort bseries() 107a〉+≡ (108c) / 107d

if (bseries != NULL)

ABORT("shouldn’t be here!");

else

return list;

}

7.1 The files

〈boundary.h 108b〉≡
#ifndef H_BOUNDARY_H

#define H_BOUNDARY_H

#include "linked-list.h"

#include "fem.h"

void create_boundary_series(Mesh *mesh);

List *sort_bseries(List *bseries);

#endif /* H_BOUNDARY_H */

〈boundary.c 108c〉≡
#include "abort.h"

#include "array.h"

#include "boundary.h"

〈function create boundary series() 103〉
〈edge selector functions 106a〉
〈function extract edge() 106b〉
〈function sort bseries() 107a〉
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The front end

In this chapter we describe the contents of the file main.c which serves as a
front end to the FEM software. It is expected that the user will vary some parts
of it to suit specific needs.

8.1 The structure of main.c

Here is the overall structure of the file main.c:

〈main.c 109a〉≡
〈included headers for main.c 109b〉
int main(int argc, char **argv)

{

〈declarations for main.c 111c〉
〈parse command line options 111d〉
〈load problem module 112f〉
〈perform user requested action 113f〉
〈clean up 114f〉

}

We include the standard headers
〈included headers for main.c 109b〉≡ (109a) 109c .

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

for declarations of functions such as sprintf(), strchr() from the C stan-
dard library and preprocessor symbols, such as EXIT SUCCESS. Additionally we
include the header
〈included headers for main.c 109b〉+≡ (109a) / 109b 111b .

#include <dlfcn.h>

109
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which is not a part of the C standard library but a POSIX extension which
should be available of all Unix or Unix-like operating systems that conform to
the POSIX standard. Among other things, this header file declares the functions
dlopen() and dlsym() which are interfaces to the dynamic linking loader.

8.2 Parsing command line options

FEM has to be invoked with at least one command line option that specifies a
module (see Chapter 1) to load. To load the module my module.so, for instance,
we may invoke the program through either of the two equivalent forms:

fem -m my_module.so
fem --module my_module.so

Most option flags have a long form and a short form variants. A flag in the long
form consists of two hyphens followed by a descriptive name, such as --module.
A flag in the short form consists of a hyphen and a single letter, such as -m. The
long form flag need not be spelled out fully. For instance, --mod or even --m
may be sufficient if that uniquely identifies the flag among all possible flags.

The flags -h or --help cause FEM to print the list of all available options and
exit. Here is what we see:

fem 0.1, July 2007

Usage: fem [OPTIONS]...

-h, --help Print help and exit
-V, --version Print version and exit
-m, --module=module.so Load problem specification module
-a, --area=max_area Max area of an element (default=‘1.0’)
-s, --show-mesh Write mesh to an OFF (geomview) file
-d, --dump-mesh Dump mesh details

8.2.1 Gengetopt

The parsing of the command line options is a straightforward but tedious task
which is best handled by automated tools rather than in ad hoc ways. In FEM
we use the open source GNU gengetopt command line parser generator which
may be obtained from

<http://www.gnu.org/software/gengetopt/gengetopt.html>.

Since the documentation is available online, we won’t reproduce it here. In brief,
gengetopt reads a list of command line option definitions from a user-supplied
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text file which we call cmdline.ggo. Here is the file in its entirety:
〈cmdline.ggo 111a〉≡

option "module" m "Load problem specification module"

string typestr="module.so" required

option "area" a "Max area of an element"

float default="1.0" typestr="max_area" optional

option "show-mesh" s "Write mesh to an OFF (geomview) file" optional

option "dump-mesh" d "Dump mesh details " optional

The parser is generated by invoking gengetopt as:

gengetopt --set-package=fem --set-version="0.1, July 2007" < cmdline.ggo

This generates the parser and writes it to the files cmdline.c and cmdline.h.
The main interface to the parse is the cmdline parser() function which we
will described in the next section.

8.2.2 Calling the parser

The command line data captured in main()’s argc and argv arguments is passed
to the function cmdline parser() for analysis. The header file cmdline.h de-
clares the function’s prototype:

〈included headers for main.c 109b〉+≡ (109a) / 109c 112a .

#include "cmdline.h"

Additionally, cmdline.h declares a ‘struct gengetopt args info’ structure
which will hold the results of the parser’s analysis. For each long form com-
mand line flag ‘xxx ’, the structure has a member named ‘xxx given’ which is a
boolean variable which indicates if the long flag ‘xxx ’ (or its short equivalent)
was or was not specified on the command line. If ‘xxx ’ takes an argument,
then the structure has a member named ‘xxx arg’ which holds the value of that
argument.

〈declarations for main.c 111c〉≡ (109a) 112b .

struct gengetopt_args_info args_info;

We call the parser as:

〈parse command line options 111d〉≡ (109a) 112c .

if (cmdline_parser(argc, argv, &args_info) != 0)

ABORT("Command line parser failed. Out of memory?\n");
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The command may fail, possibly due to lack of sufficient memory, in which case
the preprocessor macro, ABORT(), defined in the header file abort.h, will print
the specified message and terminate the program.

〈included headers for main.c 109b〉+≡ (109a) / 111b 112d .

#include "abort.h"

8.3 Loading the dynamic module

The ‘--module’ option is the only required flag of our program. (We have
marked it “required” in cmdline.ggo, the oxymoron oddity of ‘option’ and ‘re-
quired’ notwithstanding.) The argument to ‘--module’ is the file name of the
problem specification module. The dlopen() dynamic linking loader expects
to receive a full (relative or absolute) path to the file name, otherwise it looks
for the module in a set of system-specific places (see the dlopen() documen-
tation for details.) In our program we allow to user to the enter the name of
the module file with or without a path specification. If no path is specified,
we prepend a ./ to the file name to make dlopen() read the module from the
current directory. The string module holds the modified name:

〈declarations for main.c 111c〉+≡ (109a) / 111c 112e .

char *module;

〈parse command line options 111d〉+≡ (109a) / 111d

if (strchr(args_info.module_arg, ’/’) == NULL) {

MAKE_VECTOR(module, strlen(args_info.module_arg) + 3);

sprintf(module, "./%s", args_info.module_arg);

} else {

MAKE_VECTOR(module, strlen(args_info.module_arg) + 1);

sprintf(module, "%s", args_info.module_arg);

}

The preprocessor macro MAKE VECTOR() is defined in filenamearray.h:
〈included headers for main.c 109b〉+≡ (109a) / 112a 113b .

#include "array.h"

Now we call dlopen() to load the specified module:
〈declarations for main.c 111c〉+≡ (109a) / 112b 113c .

void *handle;

〈load problem module 112f〉≡ (109a) 113a .

handle = dlopen(module, RTLD_LAZY);

if (handle == NULL)

ABORT("%s\n", dlerror());
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The module string is no longer needed therefore we free the memory associated
with it:
〈load problem module 112f〉+≡ (109a) / 112f 113d .

FREE_VECTOR(module);

The only externally visible object in the module is the function get fem() which
returns a structure that contains the complete problem specification. We call
dlsym() to locate that object within the module and assign it to a local pointer
which we also name get fem:
〈included headers for main.c 109b〉+≡ (109a) / 112d 114d .

#include "fem.h"

〈declarations for main.c 111c〉+≡ (109a) / 112e 113e .

Mesh *(*get_fem)(double);

char *error;

〈load problem module 112f〉+≡ (109a) / 113a

*(void **)(&get_fem) = dlsym(handle, "get_fem");

if ((error = dlerror()) != NULL)

ABORT("%s\n", error);

The ugly cast in the chunk above is not really necessary but it makes the program
conform to standard C. The problem is, dlsym() returns a ‘pointer to a function’
cast to ‘poiter to void’. Standard C forbids assigning a ‘pointer to void’ to a
‘pointer to a function’. Because of this, our compiler, gcc, issues a warning when
compiling the program in the strict mode with the -pedantic flag. The tricky
cast comes from an example in dlsym()’s manual page distributed with Linux.

8.4 Running the program

The program’s ‘--area’ flag, which takes a required a numerical argument,
max area, specifies an upper bound to the area that a mesh triangle may have.
The smaller the value, the finer the mesh.

In the file cmdline.ggo we have given default="1.0" for the value of the
‘--area’ flag which means that if the user does not give the ‘--area’ flag,
then max area is taken to be 1.0.

Here we extract the max area value received by the parser and store it in a
variable named max area:
〈declarations for main.c 111c〉+≡ (109a) / 113c 114a .

double max_area;

〈perform user requested action 113f〉≡ (109a) 114b .

max_area = args_info.area_arg;

if (max_area <= 0.0)

ABORT("argument to ‘--area’ should be positive");
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Now call get fem() to read the problem specification, mesh the domain, and
produce the fem structure:

〈declarations for main.c 111c〉+≡ (109a) / 113e

Mesh *mesh;

〈perform user requested action 113f〉+≡ (109a) / 113f 114c .

mesh = get_fem(max_area);

There is no more need for the problem specification module therefore we unlink
it:

〈perform user requested action 113f〉+≡ (109a) / 114b 114e .

dlclose(handle);

Now we look at the remaining command line options and perform the actions
requested by the user:

〈included headers for main.c 109b〉+≡ (109a) / 113b

#include "show_mesh_in_geomview.h"

#include "dump_mesh.h"

〈perform user requested action 113f〉+≡ (109a) / 114c

if (args_info.show_mesh_given) {

show_mesh_in_geomview(mesh);

return EXIT_SUCCESS;

} else if (args_info.dump_mesh_given)

dump_mesh(mesh);

else

fprintf(stderr, "Nothing to do?\n");

Finally we clean up and exit:

〈clean up 114f〉≡ (109a)

cmdline_parser_free(&args_info);

return EXIT_SUCCESS;



Appendix A

Argyris shape function via
Maple

Maple’s notation is sufficiently close to that of standard mathematics so as to
make many of its commands described in this section understandable to those
unfamiliar with it. We will explain the meanings of some of the more intricate
constructions.

A Maple script is a sequence of statements which are executed in the given
order. Maple statements are terminated by a colon or semicolon. In a typical
interactive Maple session, the result of evaluation of each statement is printed
to screen if the terminator is a semicolon. The printing is suppressed if the
terminator is a colon. The latter is useful to avoid cluttering the screen with
the printout of lengthy intermediate results. The special variable “%” holds the
result of the previous statement. The assignment operator is “:=”. Thus “x :=
5;” assigns the value 5 to the variable x.

Maple distinguishes between a function f and its value, just as one does in
ordinary mathematics. To evaluate a function f : R3 → R a at a generic
point (x, y, z), we write “apply(f, [x,y,z])” or simply “f(x,y,z)”, the lat-
ter variant being identical to the usual mathematical notation. The result of the
application is an expression involving the three variables x, y and z. Conversely,
given an expression expr in variables x, y and z, we may produce a correspond-
ing function f : R3 → R by “f := unapply(expr, [x,y,z])”. There is no
standard mathematical notation for this operation.

We begin our script by defining a generic fifth degree polynomial function p in
three variables:

p(λ1, λ2, λ3) =
5∑

k=0

k∑
i=0

k−i∑
j=0

Ci,j,k−i−jλ
i
1λ

j
2λ

k−i−j
3 .

〈argyris-elem.maple 115〉≡ 116a .

115
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add(add(add(C[i,j,k-i-j] * lambda1^i * lambda2^j * lambda3^(k-i-j),

j=0..k-i), i=0..k), k=0..5):

p := unapply(%, [lambda1, lambda2, lambda3]);

The nops command returns the number of “terms” in a Maple object. We may
apply nops to verify that the polynomial p(λ1, λ2, λ3) is a sum of 56 monomials:
〈argyris-elem.maple 115〉+≡ / 115 116b .

nops(p(lambda1,lambda2,lambda3));

We isolate those terms of p(λ1, λ2, λ3) that are free of λ3. There are 21 of them:
〈argyris-elem.maple 115〉+≡ / 116a 116c .

sub_terms := remove(has,

convert(p(lambda1,lambda2,lambda3), list), lambda3);

nops(sub_terms);

Then make a list of the Cijk coefficients of those terms:
〈argyris-elem.maple 115〉+≡ / 116b 116d .

vars := map(coeffs, sub_terms, [lambda1,lambda2]);

The 21 coefficients stored in var are:

C0,0,0, C0,1,0, C0,2,0, C0,3,0, C0,4,0, C0,5,0, C1,0,0, C1,1,0, C1,2,0, C1,3,0, C1,4,0,

C2,0,0, C2,1,0, C2,2,0, C2,3,0, C3,0,0, C3,1,0, C3,2,0, C4,0,0, C4,1,0, C5,0,0,

Next, we introduce the three edge vectors a, b, c (see Figure 4.1):

〈argyris-elem.maple 115〉+≡ / 116c 116e .

a := <a1,a2>; b := <b1,b2>; c := <c1,c2>;

The vertices u, v, w enter through their barycentric coordinates (1, 0, 0), (0, 1, 0),
(0, 0, 1), therefore they receive no explicit mention in the computation.

We are ready to construct the system of 21 equations that determine the Argyris
shape function P1. The value of p is 1 at the vertex u and 0 at the other two
vertices:

〈argyris-elem.maple 115〉+≡ / 116d 116f .

sys := {

p(1,0,0) = 1,

p(0,1,0) = 0,

p(0,0,1) = 0,

The two first derivatives of p at each vertex in the direction of edges that meet
at that vertex are zero. According to (4.11a), (4.11b), (4.11c):
〈argyris-elem.maple 115〉+≡ / 116e 117a .

(D[2] - D[1])(p)(1,0,0) = 0,

(D[1] - D[3])(p)(1,0,0) = 0,

(D[3] - D[2])(p)(0,1,0) = 0,
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(D[2] - D[1])(p)(0,1,0) = 0,

(D[1] - D[3])(p)(0,0,1) = 0,

(D[3] - D[2])(p)(0,0,1) = 0,

The three second derivatives of p at each vertex in the directions of edges that
meet at that vertex are zero. According to (4.11d), (4.11e), (4.11f):

〈argyris-elem.maple 115〉+≡ / 116f 117b .

(D[1,1] - 2*D[1,2] + D[2,2])(p)(1,0,0) = 0,

(D[2,2] - 2*D[2,3] + D[3,3])(p)(1,0,0) = 0,

(D[3,3] - 2*D[3,1] + D[1,1])(p)(1,0,0) = 0,

(D[1,1] - 2*D[1,2] + D[2,2])(p)(0,1,0) = 0,

(D[2,2] - 2*D[2,3] + D[3,3])(p)(0,1,0) = 0,

(D[3,3] - 2*D[3,1] + D[1,1])(p)(0,1,0) = 0,

(D[1,1] - 2*D[1,2] + D[2,2])(p)(0,0,1) = 0,

(D[2,2] - 2*D[2,3] + D[3,3])(p)(0,0,1) = 0,

(D[3,3] - 2*D[3,1] + D[1,1])(p)(0,0,1) = 0,

Derivatives at midpoints of the three edges, in the direction of outward normal
to the respective edge are zero. According to (4.14):

〈argyris-elem.maple 115〉+≡ / 117a 117c .

- a^%T . (

a*D[1](p)(0,1/2,1/2)

+ b*D[2](p)(0,1/2,1/2)

+ c*D[3](p)(0,1/2,1/2) ) = (a^%T . a) * 0,

- b^%T . (

a*D[1](p)(1/2,0,1/2)

+ b*D[2](p)(1/2,0,1/2)

+ c*D[3](p)(1/2,0,1/2) ) = (b^%T . b) * 0

- c^%T . (

a*D[1](p)(1/2,1/2,0)

+ b*D[2](p)(1/2,1/2,0)

+ c*D[3](p)(1/2,1/2,0) ) = (c^%T . c) * 0,

}:

where the notation c^%T means the transpose of the vector c.

This completes the construction of the system of 21 equations for the shape
function P1. To construct a corresponding system for the shape function Pk for
k = 2, . . . , 21, move the “1” from the right hand side of the first equation to the
right hand side of kth equation.

Now we call Maple’s solve to solve the system of 21 equations in sys for the
21 unknowns in vars:

〈argyris-elem.maple 115〉+≡ / 117b 118a .
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sol := solve(sys, vars):

The solution in sol consists of a set of 21 equations of the form:

C0,0,0 = · · · , C0,1,0 = · · · , · · · , C5,0,0 = · · ·

for each of the 21 Cijk coefficients that were shown earlier. The “· · · ” are huge
expressions involving the remaining 35 Cijk coefficients as well as a1, a2, b1, b2,
c1, c2 and λ1, λ2, λ3. We change these equalities into assignments by applying
the assign() function:
〈argyris-elem.maple 115〉+≡ / 117c 118b .

assign(sol);

This removes 21 of the 56 Cijk coefficients in p(λ1, λ2, λ3). We can verify that
some Cijk coefficients remain by asking Maple:
〈argyris-elem.maple 115〉+≡ / 118a 118c .

has(p(lambda1,lambda2,lambda3), C);

to which it responds “true”.

The huge expressions noted above simplify considerably by applying the equa-
tions λ1 + λ2 + λ3 = 1 and a + b + c = 0 to eliminate λ3 and c:
〈argyris-elem.maple 115〉+≡ / 118b 118d .

P := simplify(subs(c1=-a1-b1,c2=-a2-b2,

p(lambda1,lambda2,1-lambda1-lambda2))):

As we could have expected, there are no more Cikj coefficients in the resulting
expression. We ask Maple:

〈argyris-elem.maple 115〉+≡ / 118c 118e .

has(P, C);

to which it responds “false”.

We rearrange P into a sum of monomials in λ1 and λ2:
〈argyris-elem.maple 115〉+≡ / 118d 118f .

P := collect(P, [lambda1,lambda2], distributed, factor);

The result, although not immense, will fill up about half a printed page therefore
we won’t show it here. A close inspection of it, however, exhibits many recog-
nizable combinations such as a2

1 + a2
2 and a1b1 + a2b2. We perform extensive

manual simplification and rearrangement of terms of P, and call the result P1:

〈argyris-elem.maple 115〉+≡ / 118e 119 .

r := (a^%T . b) / (b^%T . b);

s := (c^%T . a) / (c^%T . c);

P1 := lambda1^2 * (6*lambda1^3 - 15*lambda1^2

+ 10*lambda1 - 30*lambda2*lambda3 * (s*lambda2+r*lambda3));
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The typeset form of P1 is:

P1 = λ2
1

(
6λ3

1 − 15λ2
1 + 10λ1 − 30λ2λ3(sλ2 + rλ3)

)
,

where r = (a · b)/‖b‖2 and s = (c · a)/‖c‖2.

Note that we have restored the parameters c1, c2 and λ3 which were eliminated
in the computation of P. Finally, to verify that no errors were introduced in the
process of manual manipulation, we compute the difference between P1 and P:

〈argyris-elem.maple 115〉+≡ / 118f

simplify(subs(c1=-a1-b1, c2=-a2-b2, lambda3 =1-lambda1-lambda2,

P1 - P));

If all is well, Maple will respond with “0”.

The sequence of Maple commands described in this section are stored in the
script file argyris-elem.maple. At the Maple command type:
read "argyris-elem.maple";

to read and execute the script. This will compute P1. You may edit the file
according to the instruction in the paragraph following the construction of the
script’s sys variable to compute the Argyris shape functions P2 through P21.
Actually it is sufficient to compute P1 through P7; the rest may be obtained
from these by cyclic permutations of variables. Here are the simplified forms of
the first seven shape functions:

P1 = λ2
1

(
6λ3

1 − 15λ2
1 + 10λ1 − 30λ2λ3(sλ2 + rλ3)

)
where r = (a · b)/‖b‖2 and s = (c · a)/‖c‖2,

P2 = −λ2
1λ2(3λ2

1 − 4λ1 + 5λ2
3 − rλ2λ3) where r = 12 + 7(b · c)/‖c‖2,

P3 = −λ2
1λ3(3λ2

1 − 4λ1 + 5λ2
2 − rλ2λ3) where r = 12 + 7(b · c)/‖b‖2,

P4 = −λ2
1λ2(λ2

2 + λ1 − 1 + 2λ2
3 − rλ2λ3)/2 where r = (b · c)/‖c‖2,

P5 = −λ2
1λ3(λ2

3 + λ1 − 1 + 2λ2
2 − rλ2λ3)/2 where r = (b · c)/‖b‖2,

P6 = λ2
1(1− 2λ1)λ2λ3/2,

P7 = −16λ1λ
2
2λ

2
3.

A.1 The C interface to Argyris shape functions

In our finite element solver we need to evaluate the Argyris shape functions P1

through P21 at prescribed quadrature points on each element. (The quadrature
points are given in terms of the barycentric coordinates λ1, λ2, λ3). In addi-
tion to the value of the function, the solver needs the values of its three first
derivatives and six second derivatives—a total of 10 values per shape function
per point. We find it convenient to calculate all the required values of the shape



120 APPENDIX A. ARGYRIS SHAPE FUNCTION VIA MAPLE

functions only once, during the initialization stage of the program, and store
them in an array of the type “double Pvals[N][21][10]” where N is the num-
ber of points at which the functions will be evaluated. The first index in Pvals
refers to the evaluation point. The second index refers to the shape function
Pi. Note that since array indices in C are zero-based, the shape function P1

through P21 are actually indexed 0 through 20.

For the third index, which refers to the type of derivative, we use a mnemonic
device to access entries in a convenient way. We let:

〈derivative codes 120a〉≡ (128)

enum which_deriv {

D000, D100, D010, D001, D200, D020, D002, D110, D011, D101 };

where Dijk indicates the ∂i+j+k/∂λi
1∂λ

j
2∂λ

k
3 derivative. Thus Pvals[42][13][D110]

holds the value of ∂2P14/∂λ1∂λ2 at the point indexed 42.

In an N -point quadrature, the total storage needed for the Pvals array is:
N*21*10*sizeof(double). For instance, if N is 78 (corresponding to a quadra-
ture strength of 20; see Appendix D) and sizeof(double) is 8, then the storage
is 78 × 21 × 10 × 8 = 131040 bytes or approximately 130 kilobytes. We need
to compute the Pvals array for every element in the triangulated domain, how-
ever we won’t need its values for more than one element at a time, therefore the
storage for Pvals is fixed, independent of the number of elements.

The Pvals array is computed by calling the function function get shape data()
which receives a pointer to an element, a pointer to an array of barycentric
coordinates, and a pointer to a pre-allocated array in which it calculates and
stores the values of Pi and its derivatives. The prototype of get shape data()
is:
〈prototype of get shape data 120b〉≡

void get_shape_data(Elem *elem, Point3d *points, int npoints, double ***Pvals);

The body of the function get shape data() consists of hand-crafted formulas
obtained by manually simplifying Maple’s output, as described above. The
function is quite large but has a simple and repetitive structure. We have chosen
not to split it into multiple smaller function for efficiency; in this combined form
the calculations of aa, . . . , ca and x, . . . z3 (see the material near the top of the
function’s listing) are shared among the 21 subsequent blocks that compute the
data for P1 to P21.

We have relegated the lengthy listing of the body of get shape data() function
to the end of this chapter in order not to disturb the flow of exposition.

A.2 Computing the basis functions

Equation (4.21) gives the
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A.3 The function get shape data()

This section contains the complete listing of the function get shape data()
which was described in Section A.1. Its purpose to evaluate the Argyris shape
functions Pi(λ1, λ2, λ3), i = 1, . . . , 21 and their first and second derivatives
(210 values) at a presecribed set of points. The expressions for Pi and their
derivatives are hand-crafted formulas obtained by simplifying Maple’s output
manually as described in Section A.

Alert! Within the body of get shape data(), we use the single-letter identi-
fiers x, y and z for barycentric coordinates lambda1, lambda2 and lambda3 to
maintain some readability in the code; they should not be confused for Cartesian
coordinates.

〈function get shape data() 121〉≡ (127)

void get_shape_data(Elem *elem, Point3d *points, int npoints, double ***Pvals)

{

double u1 = elem->n[0]->x;

double u2 = elem->n[0]->y;

double v1 = elem->n[1]->x;

double v2 = elem->n[1]->y;

double w1 = elem->n[2]->x;

double w2 = elem->n[2]->y;

double a1 = w1-v1;

double a2 = w2-v2;

double b1 = u1-w1;

double b2 = u2-w2;

double c1 = v1-u1;

double c2 = v2-u2;

double aa = a1*a1+a2*a2;

double bb = b1*b1+b2*b2;

double cc = c1*c1+c2*c2;

double ab = a1*b1+a2*b2;

double bc = b1*c1+b2*c2;

double ca = c1*a1+c2*a2;

int m;

for (m = 0; m < npoints; m++) {

/*!! NOTE: x, y, z stand for lambda1, lambda2, lambda3 !!*/

double x = points[m].x;

double y = points[m].y;

double z = points[m].z;

double x2 = x*x;

double y2 = y*y;

double z2 = z*z;

double x3 = x2*x;

double y3 = y2*y;
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double z3 = z2*z;

{ /* P1 */

double r = ab/bb;

double s = ca/cc;

Pvals[m][0][D000] = x2*(6*x3-15*x2+10*x-30*y*z*(s*y+r*z));

Pvals[m][0][D100] = -30*x*(-x3+2*x2-x+2*y*z*(s*y+r*z));

Pvals[m][0][D010] = -30*x2*z*(r*z+2*s*y);

Pvals[m][0][D001] = -30*x2*y*(s*y+2*r*z);

Pvals[m][0][D200] = 60*(2*x3-3*x2+x-y*z*(s*y+r*z));

Pvals[m][0][D020] = -60*s*x2*z;

Pvals[m][0][D002] = -60*r*x2*y;

Pvals[m][0][D110] = -60*x*z*(2*s*y+r*z);

Pvals[m][0][D011] = -60*x2*(s*y+r*z);

Pvals[m][0][D101] = -60*x*y*(s*y+2*r*z);

}

{ /* P2 */

double r = 12 + 7*bc/cc;

Pvals[m][1][D000] = -x2*y*(3*x2-4*x+5*z2-r*y*z);

Pvals[m][1][D100] = -2*x*y*(6*x2-6*x+5*z2-r*y*z);

Pvals[m][1][D010] = -x2*(3*x2-4*x+5*z2-2*r*y*z);

Pvals[m][1][D001] = -x2*y*(10*z-r*y);

Pvals[m][1][D200] = -2*y*(18*x2-12*x+5*z2-r*y*z);

Pvals[m][1][D020] = 2*r*x2*z;

Pvals[m][1][D002] = -10*x2*y;

Pvals[m][1][D110] = -2*x*(6*x2-6*x+5*z2-2*r*y*z);

Pvals[m][1][D011] = -2*x2*(5*z-r*y);

Pvals[m][1][D101] = -2*x*y*(10*z-r*y);

}

{ /* P3 */

double r = 12 + 7*bc/bb;

Pvals[m][2][D000] = -x2*z*(3*x2-4*x+5*y2-r*y*z);

Pvals[m][2][D100] = -2*x*z*(6*x2-6*x+5*y2-r*y*z);

Pvals[m][2][D010] = -x2*z*(10*y-r*z);

Pvals[m][2][D001] = -x2*(3*x2-4*x+5*y2-2*r*y*z);

Pvals[m][2][D200] = -2*z*(18*x2-12*x+5*y2-r*y*z);

Pvals[m][2][D020] = -10*x2*z;

Pvals[m][2][D002] = 2*r*x2*y;

Pvals[m][2][D110] = -2*x*z*(10*y-r*z);

Pvals[m][2][D011] = -2*x2*(5*y-r*z);

Pvals[m][2][D101] = -2*x*(6*x2-6*x+5*y2-2*r*y*z);

}

{ /* P4 */

double r = bc/cc;

Pvals[m][3][D000] = -x2*y*(y2+x-1+2*z2-r*y*z)/2;

Pvals[m][3][D100] = -x*y*(2*y2+3*x-2+4*z2-2*r*y*z)/2;
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Pvals[m][3][D010] = -x2*(3*y2+x-1+2*z2-2*r*y*z)/2;

Pvals[m][3][D001] = -x2*y*(4*z-r*y)/2;

Pvals[m][3][D200] = -y*(y2+3*x-1+2*z2-r*y*z);

Pvals[m][3][D020] = -x2*(3*y-r*z);

Pvals[m][3][D002] = -2*x2*y;

Pvals[m][3][D110] = -x*(6*y2+3*x-2+4*z2-4*r*y*z)/2;

Pvals[m][3][D011] = -x2*(2*z-r*y);

Pvals[m][3][D101] = -x*y*(4*z-y*r);

}

{ /* P5 */

double r = bc/bb;

Pvals[m][4][D000] = -x2*z*(z2+x-1+2*y2-r*y*z)/2;

Pvals[m][4][D100] = -x*z*(4*y2+3*x+2*z2-2-2*r*y*z)/2;

Pvals[m][4][D010] = -x2*z*(4*y-r*z)/2;

Pvals[m][4][D001] = -x2*(2*y2+x+3*z2-1-2*r*y*z)/2;

Pvals[m][4][D200] = -z*(2*y2+z2+3*x-1-r*y*z);

Pvals[m][4][D020] = -2*x2*z;

Pvals[m][4][D002] = -x2*(3*z-r*y);

Pvals[m][4][D110] = -x*z*(4*y-r*z);

Pvals[m][4][D011] = -x2*(2*y-r*z);

Pvals[m][4][D101] = -x*(4*y2+3*x+6*z2-2-4*r*y*z)/2;

}

{ /* P6 */

Pvals[m][5][D000] = x2*(1-2*x)*y*z/2;

Pvals[m][5][D100] = x*(1-3*x)*y*z;

Pvals[m][5][D010] = x2*(1-2*x)*z/2;

Pvals[m][5][D001] = x2*(1-2*x)*y/2;

Pvals[m][5][D200] = (1-6*x)*y*z;

Pvals[m][5][D020] = 0;

Pvals[m][5][D002] = 0;

Pvals[m][5][D110] = x*(1-3*x)*z;

Pvals[m][5][D011] = x2*(1-2*x)/2;

Pvals[m][5][D101] = x*(1-3*x)*y;

}

{ /* P7 */

double r = bc/cc;

double s = ab/aa;

Pvals[m][6][D000] = y2*(6*y3-15*y2+10*y-30*z*x*(s*z+r*x));

Pvals[m][6][D100] = -30*y2*z*(s*z+2*r*x);

Pvals[m][6][D010] = -30*y*(-y3+2*y2-y+2*z*x*(s*z+r*x));

Pvals[m][6][D001] = -30*y2*x*(r*x+2*s*z);

Pvals[m][6][D200] = -60*r*y2*z;

Pvals[m][6][D020] = 60*(2*y3-3*y2+y-z*x*(s*z+r*x));

Pvals[m][6][D002] = -60*s*y2*x;

Pvals[m][6][D110] = -60*y*z*(s*z+2*r*x);

Pvals[m][6][D011] = -60*y*x*(2*s*z+r*x);

Pvals[m][6][D101] = -60*y2*(s*z+r*x);
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}

{ /* P8 */

double r = 12 + 7*ca/aa;

Pvals[m][7][D000] = -y2*z*(3*y2-4*y+5*x2-r*z*x);

Pvals[m][7][D100] = -y2*z*(10*x-r*z);

Pvals[m][7][D010] = -2*y*z*(6*y2-6*y+5*x2-r*z*x);

Pvals[m][7][D001] = -y2*(3*y2-4*y+5*x2-2*r*z*x);

Pvals[m][7][D200] = -10*y2*z;

Pvals[m][7][D020] = -2*z*(18*y2-12*y+5*x2-r*z*x);

Pvals[m][7][D002] = 2*r*y2*x;

Pvals[m][7][D110] = -2*y*z*(10*x-r*z);

Pvals[m][7][D011] = -2*y*(6*y2-6*y+5*x2-2*r*z*x);

Pvals[m][7][D101] = -2*y2*(5*x-r*z);

}

{ /* P9 */

double r = 12 + 7*ca/cc;

Pvals[m][8][D000] = -y2*x*(3*y2-4*y+5*z2-r*z*x);

Pvals[m][8][D100] = -y2*(3*y2-4*y+5*z2-2*r*z*x);

Pvals[m][8][D010] = -2*y*x*(6*y2-6*y+5*z2-r*z*x);

Pvals[m][8][D001] = -y2*x*(10*z-r*x);

Pvals[m][8][D200] = 2*r*y2*z;

Pvals[m][8][D020] = -2*x*(18*y2-12*y+5*z2-r*z*x);

Pvals[m][8][D002] = -10*y2*x;

Pvals[m][8][D110] = -2*y*(6*y2-6*y+5*z2-2*r*z*x);

Pvals[m][8][D011] = -2*y*x*(10*z-r*x);

Pvals[m][8][D101] = -2*y2*(5*z-r*x);

}

{ /* P10 */

double r = ca/aa;

Pvals[m][9][D000] = -y2*z*(z2+y-1+2*x2-r*z*x)/2;

Pvals[m][9][D100] = -y2*z*(4*x-r*z)/2;

Pvals[m][9][D010] = -y*z*(2*z2+3*y-2+4*x2-2*r*z*x)/2;

Pvals[m][9][D001] = -y2*(3*z2+y-1+2*x2-2*r*z*x)/2;

Pvals[m][9][D200] = -2*y2*z;

Pvals[m][9][D020] = -z*(z2+3*y-1+2*x2-r*z*x);

Pvals[m][9][D002] = -y2*(3*z-r*x);

Pvals[m][9][D110] = -y*z*(4*x-z*r);

Pvals[m][9][D011] = -y*(6*z2+3*y-2+4*x2-4*r*z*x)/2;

Pvals[m][9][D101] = -y2*(2*x-r*z);

}

{ /* P11 */

double r = ca/cc;

Pvals[m][10][D000] = -y2*x*(x2+y-1+2*z2-r*z*x)/2;

Pvals[m][10][D100] = -y2*(2*z2+y+3*x2-1-2*r*z*x)/2;

Pvals[m][10][D010] = -y*x*(4*z2+3*y+2*x2-2-2*r*z*x)/2;

Pvals[m][10][D001] = -y2*x*(4*z-r*x)/2;
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Pvals[m][10][D200] = -y2*(3*x-r*z);

Pvals[m][10][D020] = -x*(2*z2+x2+3*y-1-r*z*x);

Pvals[m][10][D002] = -2*y2*x;

Pvals[m][10][D110] = -y*(4*z2+3*y+6*x2-2-4*r*z*x)/2;

Pvals[m][10][D011] = -y*x*(4*z-r*x);

Pvals[m][10][D101] = -y2*(2*z-r*x);

}

{ /* P12 */

Pvals[m][11][D000] = y2*(1-2*y)*z*x/2;

Pvals[m][11][D100] = y2*(1-2*y)*z/2;

Pvals[m][11][D010] = y*(1-3*y)*z*x;

Pvals[m][11][D001] = y2*(1-2*y)*x/2;

Pvals[m][11][D200] = 0;

Pvals[m][11][D020] = (1-6*y)*z*x;

Pvals[m][11][D002] = 0;

Pvals[m][11][D110] = y*(1-3*y)*z;

Pvals[m][11][D011] = y*(1-3*y)*x;

Pvals[m][11][D101] = y2*(1-2*y)/2;

}

{ /* P13 */

double r = ca/aa;

double s = bc/bb;

Pvals[m][12][D000] = z2*(6*z3-15*z2+10*z-30*x*y*(s*x+r*y));

Pvals[m][12][D100] = -30*z2*y*(r*y+2*s*x);

Pvals[m][12][D010] = -30*z2*x*(s*x+2*r*y);

Pvals[m][12][D001] = -30*z*(-z3+2*z2-z+2*x*y*(s*x+r*y));

Pvals[m][12][D200] = -60*s*z2*y;

Pvals[m][12][D020] = -60*r*z2*x;

Pvals[m][12][D002] = 60*(2*z3-3*z2+z-x*y*(s*x+r*y));

Pvals[m][12][D110] = -60*z2*(s*x+r*y);

Pvals[m][12][D011] = -60*z*x*(s*x+2*r*y);

Pvals[m][12][D101] = -60*z*y*(2*s*x+r*y);

}

{ /* P14 */

double r = 12 + 7*ab/bb;

Pvals[m][13][D000] = -z2*x*(3*z2-4*z+5*y2-r*x*y);

Pvals[m][13][D100] = -z2*(3*z2-4*z+5*y2-2*r*x*y);

Pvals[m][13][D010] = -z2*x*(10*y-r*x);

Pvals[m][13][D001] = -2*z*x*(6*z2-6*z+5*y2-r*x*y);

Pvals[m][13][D200] = 2*r*z2*y;

Pvals[m][13][D020] = -10*z2*x;

Pvals[m][13][D002] = -2*x*(18*z2-12*z+5*y2-r*x*y);

Pvals[m][13][D110] = -2*z2*(5*y-r*x);

Pvals[m][13][D011] = -2*z*x*(10*y-r*x);

Pvals[m][13][D101] = -2*z*(6*z2-6*z+5*y2-2*r*x*y);

}
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{ /* P15 */

double r = 12 + 7*ab/aa;

Pvals[m][14][D000] = -z2*y*(3*z2-4*z+5*x2-r*x*y);

Pvals[m][14][D100] = -z2*y*(10*x-r*y);

Pvals[m][14][D010] = -z2*(3*z2-4*z+5*x2-2*r*x*y);

Pvals[m][14][D001] = -2*z*y*(6*z2-6*z+5*x2-r*x*y);

Pvals[m][14][D200] = -10*z2*y;

Pvals[m][14][D020] = 2*r*z2*x;

Pvals[m][14][D002] = -2*y*(18*z2-12*z+5*x2-r*x*y);

Pvals[m][14][D110] = -2*z2*(5*x-r*y);

Pvals[m][14][D011] = -2*z*(6*z2-6*z+5*x2-2*r*x*y);

Pvals[m][14][D101] = -2*z*y*(10*x-r*y);

}

{ /* P16 */

double r = ab/bb;

Pvals[m][15][D000] = -z2*x*(x2+z-1+2*y2-r*x*y)/2;

Pvals[m][15][D100] = -z2*(3*x2+z-1+2*y2-2*r*x*y)/2;

Pvals[m][15][D010] = -z2*x*(4*y-r*x)/2;

Pvals[m][15][D001] = -z*x*(2*x2+3*z-2+4*y2-2*r*x*y)/2;

Pvals[m][15][D200] = -z2*(3*x-r*y);

Pvals[m][15][D020] = -2*z2*x;

Pvals[m][15][D002] = -x*(x2+3*z-1+2*y2-r*x*y);

Pvals[m][15][D110] = -z2*(2*y-r*x);

Pvals[m][15][D011] = -z*x*(4*y-x*r);

Pvals[m][15][D101] = -z*(6*x2+3*z-2+4*y2-4*r*x*y)/2;

}

{ /* P17 */

double r = ab/aa;

Pvals[m][16][D000] = -z2*y*(y2+z-1+2*x2-r*x*y)/2;

Pvals[m][16][D100] = -z2*y*(4*x-r*y)/2;

Pvals[m][16][D010] = -z2*(2*x2+z+3*y2-1-2*r*x*y)/2;

Pvals[m][16][D001] = -z*y*(4*x2+3*z+2*y2-2-2*r*x*y)/2;

Pvals[m][16][D200] = -2*z2*y;

Pvals[m][16][D020] = -z2*(3*y-r*x);

Pvals[m][16][D002] = -y*(2*x2+y2+3*z-1-r*x*y);

Pvals[m][16][D110] = -z2*(2*x-r*y);

Pvals[m][16][D011] = -z*(4*x2+3*z+6*y2-2-4*r*x*y)/2;

Pvals[m][16][D101] = -z*y*(4*x-r*y);

}

{ /* P18 */

Pvals[m][17][D000] = z2*(1-2*z)*x*y/2;

Pvals[m][17][D100] = z2*(1-2*z)*y/2;

Pvals[m][17][D010] = z2*(1-2*z)*x/2;

Pvals[m][17][D001] = z*(1-3*z)*x*y;

Pvals[m][17][D200] = 0;

Pvals[m][17][D020] = 0;

Pvals[m][17][D002] = (1-6*z)*x*y;
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Pvals[m][17][D110] = z2*(1-2*z)/2;

Pvals[m][17][D011] = z*(1-3*z)*x;

Pvals[m][17][D101] = z*(1-3*z)*y;

}

{ /* P19 */

Pvals[m][18][D000] = -16*x*y2*z2;

Pvals[m][18][D100] = -16*y2*z2;

Pvals[m][18][D010] = -32*x*y*z2;

Pvals[m][18][D001] = -32*x*y2*z;

Pvals[m][18][D200] = 0;

Pvals[m][18][D020] = -32*x*z2;

Pvals[m][18][D002] = -32*x*y2;

Pvals[m][18][D110] = -32*y*z2;

Pvals[m][18][D011] = -64*x*y*z;

Pvals[m][18][D101] = -32*y2*z;

}

{ /* P20 */

Pvals[m][19][D000] = -16*y*z2*x2;

Pvals[m][19][D100] = -32*y*z2*x;

Pvals[m][19][D010] = -16*z2*x2;

Pvals[m][19][D001] = -32*y*z*x2;

Pvals[m][19][D200] = -32*y*z2;

Pvals[m][19][D020] = 0;

Pvals[m][19][D002] = -32*y*x2;

Pvals[m][19][D110] = -32*z2*x;

Pvals[m][19][D011] = -32*z*x2;

Pvals[m][19][D101] = -64*y*z*x;

}

{ /* P21 */

Pvals[m][20][D000] = -16*z*x2*y2;

Pvals[m][20][D100] = -32*z*x*y2;

Pvals[m][20][D010] = -32*z*x2*y;

Pvals[m][20][D001] = -16*x2*y2;

Pvals[m][20][D200] = -32*z*y2;

Pvals[m][20][D020] = -32*z*x2;

Pvals[m][20][D002] = 0;

Pvals[m][20][D110] = -64*z*x*y;

Pvals[m][20][D011] = -32*x2*y;

Pvals[m][20][D101] = -32*x*y2;

}

}

}

〈shape functions.c 127〉≡
#include "shape_functions.h"

〈function get shape data() 121〉
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〈shape functions.h 128〉≡
#ifndef H_SHAPE_FUNCTIONS_H

#define H_SHAPE_FUNCTIONS_H

#include "twb-quad.h"

#include "fem.h"

〈derivative codes 120a〉

void get_shape_data(Elem *elem, Point3d *points, int npoints, double ***Pvals);

#endif /* H_SHAPE_FUNCTIONS_H */
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Utility functions

The functions described in the chapter are not essential to FEM’s operation.
They provide support for producing graphics output and debugging information.

B.1 Front end to Geomview graphics

Geomview is a open source software for producing graphics on X11 Window Sys-
tem which is a common display protocol for Unix-like workstations. Geomview
may be downloaded from free from 〈http://www.geomview.org/〉.
The function show mesh in geomview() receives a pointer to a Mesh structure
which points to a triangulated domain and writes a file named zz.off in Ge-
omview ’s Object File Format, which then may be read and displayed by Ge-
omview, by typing:

geomview zz.off

on the command line. By default, Geomview displays its graphics on a dark
background. To produce graphics on a white background, replace the above
with:

geomview -b 1 1 1 zz.off

Figure B.1 shows a sample result.

The general structure of the contents of a *.off file is as follows.

{ appearance { +edge }
OFF
... data goes here ...

}

The part marked as... data goes here ... consists of three sections.

129
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Figure B.1: This is the output of Geomview on the L-shaped domain de-
scribed in the file ell-shaped.c in Section 1.2. The mesh was created by demo

0.01 > z1.off and displayed with geomview -b 1 1 1 z1.off. There is
one reentrant vertex. The vertex’s local neighborhood is shown in red.

The first section consists of a single line containing three numbers, e.g.,

271 476 -1

The first number is the number of nodes (in the rest of this section we will call
it n), the second is the number of triangles (in the rest of this section we will
call it t), and third one is a dummy placeholder; it is read but not used. By the
way, the specific numbers shown above correspond to the mesh in Figure B.1.

The second section consists of a sequence of n pairs of floating point num-
bers where each pair represents the x and y coordinates of a node. The numbers
must be separated by whitespace (e.g., space, tab, newline) otherwise no special
formatting requirement is imposed.

The third section consists of a sequence of t septuplets of numbers, one
septuplet per triangle. The first element of each septuplet is the number 3,
indicating that our objects are triangles. (An OFF file may define polygonal
objects other than triangles.) The next 3 elements of a septuplet are the node
numbers of the vertices of the triangle, specified in the counter-clockwise order.
The final 3 elements in the septuplet are floating point numbers in the range
[0, 1] that specify the RGB components of the triangle’s color.
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Several variations in the contents of a *.off file are possible. Refer to the
website

http://www.geomview.org/docs/html/OFF.html
for details.

Here is show mesh in geomview():

〈show mesh in geomview.c-old 131a〉≡
#include <stdio.h>

#include "show_mesh_in_geomview.h"

void show_mesh_in_geomview(Mesh *mesh)

{

int i;

puts("{ appearance { +edge }");

puts("OFF");

printf("%d %d -1\n", mesh->nnodes, mesh->nelems);

for (i = 0; i < mesh->nnodes; i++)

printf("%g %g 0.0\n", mesh->nodes[i].x, mesh->nodes[i].y);

for (i = 0; i < mesh->nelems; i++) {

printf("3 %d %d %d ",

mesh->elems[i].n[0]->nodeno,

mesh->elems[i].n[1]->nodeno,

mesh->elems[i].n[2]->nodeno);

if (mesh->elems[i].marker == -1)

puts("1.0 1.0 0.0");

else

puts("1.0 0.0 0.0");

}

puts("}");

}

An associated header file declares show mesh in geomview()’s prototype:

〈show mesh in geomview.h 131b〉≡
#ifndef H_SHOW_MESH_IN_GEOMVIEW_H

#define H_SHOW_MESH_IN_GEOMVIEW_H

#include "fem.h"

void show_mesh_in_geomview(Mesh *mesh);

#endif /* H_SHOW_MESH_IN_GEOMVIEW_H */
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B.2 Cancel the previous section

I rewrote show mesh in geomview() but haven’t gotten around to change the
doucmentation. Here is the replacement. But even this is temporary and will
have to be rewritten after we analyze the boundary data more fully.

(REWRITE THIS SECTION)

〈show mesh in geomview.c 132〉≡
#include <stdio.h>

#include "fem.h"

#include "abort.h"

#include "show_mesh_in_geomview.h"

static void draw_triangles(Mesh *mesh)

{

int i;

puts("OFF");

printf("%d %d -1\n", mesh->nnodes, mesh->nelems);

for (i = 0; i < mesh->nnodes; i++)

printf("%g %g 0.0\n", mesh->nodes[i].x, mesh->nodes[i].y);

for (i = 0; i < mesh->nelems; i++) {

printf("3 %d %d %d ",

mesh->elems[i].n[0]->nodeno,

mesh->elems[i].n[1]->nodeno,

mesh->elems[i].n[2]->nodeno);

if (mesh->elems[i].marker == -1)

puts("1.0 1.0 0.0");

else

puts("1.0 0.0 0.0");

}

}

static void draw_edge(Edge *edge)

{

double R, G, B;

/*

switch (edge->bc->bc_type) {

case BC_DIRICHLET:

R = 1.0; G = 0.0; B = 0.0;

break;

case BC_NEUMANN:

R = 0.0; G = 0.0; B = 1.0;

break;
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default:

ABORT("shouldn’t be here");

}

*/

switch(edge->bc->patch) {

case 0:

R = 1.0; G = 0.0; B = 0.0; /* red */

break;

case 1:

R = 0.0; G = 1.0; B = 0.0; /* green */

break;

case 2:

R = 0.0; G = 0.0; B = 1.0; /* blue */

break;

case 3:

R = 1.0; G = 0.0; B = 1.0; /* magenta */

break;

case 4:

R = 0.0; G = 1.0; B = 1.0; /* cyan */

break;

default: /* temporary, need to extend */

R = 0.0; G = 0.0; B = 0.0; /* black */

}

puts("{ SKEL");

puts("2 1");

printf("%g %g 0\n", edge->n1->x, edge->n1->y);

printf("%g %g 0\n", edge->n2->x, edge->n2->y);

printf("2 0 1 %g %g %g\n", R, G, B);

puts("}");

}

static void draw_boundary_edges(Mesh *mesh)

{

int i;

for (i = 0; i < mesh->nedges; i++) {

Edge *edge = &mesh->edges[i];

if (edge->bc != NULL)

draw_edge(edge);

}

}

void show_mesh_in_geomview(Mesh *mesh)

{

puts("LIST");

puts("{ appearance { linewidth 4 }");
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puts("LIST");

draw_boundary_edges(mesh);

puts("}");

puts("{ appearance { +edge }");

draw_triangles(mesh);

puts("}");

}

B.3 A dump of the mesh structure

The function dump mesh() produces a formatted output of most of the data in
a Mesh structure for debugging.

〈dump mesh.c 134a〉≡
#include <stdio.h>

#include "fem.h"

〈function dump nodes 134b〉
〈function dump edges 134c〉
〈function dump elems 135a〉
〈function dump mesh 135b〉

〈function dump nodes 134b〉≡ (134a)

static void dump_nodes(Mesh *mesh)

{

int i;

printf("--- Dump of %d nodes ---\n", mesh->nnodes);

for (i = 0; i < mesh->nnodes; i++) {

Node *np = &mesh->nodes[i];

printf("node %3d: ( %8.2g, %8.2g )\n",

np->nodeno, np->x, np->y);

}

}

〈function dump edges 134c〉≡ (134a)

static void dump_edges(Mesh *mesh)

{

int i;

printf("--- Dump of %d edges ---\n", mesh->nedges);

for (i = 0; i < mesh->nedges; i++) {

Edge *ep = &mesh->edges[i];

printf("edge %3d: (%3d -> %3d) ",
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ep->edgeno, ep->n1->nodeno, ep->n2->nodeno);

if (ep->bc != NULL)

printf("patch=%d, bc=%d", ep->bc->patch, ep->bc->bc_type);

putchar(’\n’);

}

}

〈function dump elems 135a〉≡ (134a)

static void dump_elems(Mesh *mesh)

{

int i;

printf("--- Dump of %d elems ---\n", mesh->nelems);

for (i = 0; i < mesh->nelems; i++) {

Elem *ep = &mesh->elems[i];

printf("elem %3d node [%3d, %3d, %3d] edge [%3d, %3d, %3d]",

ep->elemno,

ep->n[0]->nodeno, ep->n[1]->nodeno, ep->n[2]->nodeno,

ep->e[0]->edgeno, ep->e[1]->edgeno, ep->e[2]->edgeno);

if (ep->marker != -1)

printf(" (region %d)", ep->marker);

putchar(’\n’);

}

}

〈function dump mesh 135b〉≡ (134a)

void dump_mesh(Mesh *mesh)

{

dump_nodes(mesh);

putchar(’\n’);

dump_edges(mesh);

putchar(’\n’);

dump_elems(mesh);

}

〈dump mesh.h 135c〉≡
#ifndef H_DUMP_MESH_H

#define H_DUMP_MESH_H

void dump_mesh(Mesh *mesh);

#endif /* H_DUMP_MESH_H */
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Appendix C

The Triangle library

Triangle is an open-souce software tool for unstructured triangulation of two di-
mensional polygonal regions. It is written by Jonathan Richard Shewchuk
〈jrs@cs.berkeley.edu〉 and may be downloaded from:

〈http://www.cs.cmu.edu/ quake/triangle.html〉.
Triangle generates high-quality unstructured triangular meshes suitable for fi-
nite element computations.

The Triangle distribution contains stand-alone programs that read domain data
from a file and triangulate and display the mesh. It also contains a C library
which may be linked with other programs to make Triangle functions available
to it. In our work we use the library. In this section we describe the relevant
parts of that library.

C.1 Describing a doamin

By a domain we mean a region in the two dimensional plane bounded by a
polygon. The region may have hole, which are also polygonal. Figure C.1(a)
shows a domain with two holes. A domain may be partitioned into regions
(i.e., subdomains) bounded by straight line segments. Figure C.1(b) shows the
previous domain now partitioned into two regions.

In Triangle the points that define the domain are called nodes. The line seg-
ments that connect the nodes are called segments. Thus the domain shown
in Figure C.1(a) has 13 nodes and 13 segments. The domain shown in Fig-
ure C.1(b) has 16 nodes and 17 segments. Note that the introduction of the
node at E splits the segment AB into two segments AE and EB.

Triangle respects the segments in the sense that it creates no triangle that
straddles a segment. Figures C.1(c) and C.1(d) shows the result of trangulation
the domains shown in Figures C.1(a) and C.1(b), resepectively. Observe how

137
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Figure C.1: The domain in (a) has 13 nodes, 13 segments and two holes.
It consists of a single region. The domain in (b) is like domain (a) but
has been divided into two regions by adding 3 new nodes E, F and G,
two new segments EF and FG, and splitting the segments AB and BC
into four segments AE, EB, BG, GC. It has 16 nodes and 17 segments.
Triangulations of (a) and (b) result in domains in (c) and (d). Note that
triangulation preserves the region boundary EFG.

the internal boundary between the two regions of Figures C.1(b) is preserved in
Figures C.1(d).

Triangle vertices in the triangulated domain are output nodes to distinguish
them from the originally specified nodes which are called input nodes. Input
nodes form a subset of output nodes.

The introduction of new nodes subdivides the originally specified segments,
called input segments into subsegments called output segments. For instance,
comparing Figures C.1(b) and C.1(d) we see that each of the input segments
AE and EF has been subdivided into two output segments. Input segments
form a subset of output segments.

Line segments that interconnect the output nodes are called edges. Therefore
output segments form a subset of edges. In effect, segments are boundary edges.
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C.2 Triangle’s interface

Triangle’s interface is defined in its header file triangle.h which is sufficiently
commented to serve as the sole reference manual for the Triangle library. The
file declares a C structure called struct triangulateio and the prototype for
the function triangulate() which is the only interface to the Triangle library.
The prototype of triangulate() is:

void triangulate(char *opts,
struct triangulateio *in,
struct triangulateio *out,
struct triangulateio *vorout);

The opts arguments is a string of one-character switches which encode instruc-
tions to Triangle of what to do. A great deal of options are possible here. We
will describe what we need for our work. Our encoded string is QzpAjeq30ax
which is interpreted as:

Q Quiet operation; don’t print out statistics.

z Node numbering begins with zero.

p The input data specifies a segment list.

A The input data specifies regional attributes.

j Discard duplicate vertices, if any.

e Produce edge list data.

q30 Accept no triangles with an angle less than 30 degrees.

ax Produce triangulation where no triangle has area greater than x.

The vorout argument is for producing Voronoi triangulation which we don’t
need therefore we set it to NULL in our calls triangulate().

The in argument is a pointer to a struct triangulateio object, provided by
the user, which contains the domain specification before triangulation.

The out argument is a pointer to a struct triangulateio object which is
filled in by Triangle and contains the domain specification after triangulation.

The user is reponsible for allocating memory for the in and out structures and
initializing some of those structures’ members, as we describe in the following
sections.

C.2.1 Initializing the in structure

The following members of the in structure need to be initialized. Storage must
be allocated for arrays.
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int numberofpoints;

The number of nodes (n) on input.

double *pointlist;

Pointer to an array of of length 2n. The coordinates (xi, yi) of node
number i are stored in the array’s 2i and 2i+ 1 elements.

int *pointmarkerlist;

Pointer to an array of of length n. This is used to associate a user-defined
number with each node. (Probably we won’t need this in which case this
item will be deleted.)

int numberofsegments;

Number of segments (s) on input.

int *segmentlist;

Pointer to an array of of length 2s. Node numbers of the end points of
the segment i are stored in in the array’s 2i and 2i+ 1 elements.

int *segmentmarkerlist;

Pointer to an array of of length s. Associates an integer marker with each
input segment. Typically these carry information on boundary conditions
applied to that segment. When a segment is partitione into subsegments
upon triangulation, subsegments inherit their parent’s marker value.

int numberofholes;

Number of holes (h) in the domain.

double *holelist;

Pointer to an array of of length 2h. The array’s 2i and 2i+1 elements hold
the x and y coordinates of an arbitrary point inside the hole. If domain
has not holes, set numberofholes to zero and holelist to NULL.

int numberofregions;

Number of regions (r) that the domain is divided into.

double *regionlist;

Pointer to an array of of length 4r. The coordinates x and y of an ar-
bitrary point inside region i are stored in the array’s 4i and 4i + 1 ele-
ments. The 4i+2 element holds a region attribute, which is a user-specified
number associated with the region. We use this slot to store a unique
number that identifies the region. Upon triangulation, triangles that fall
within the region inherit the region’s attribute value. See the description
of triangleattributelist in the next section.

The value in the 4i + 3 element is not used by our program therefore we
leave it uninitialized.
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If domain is not divided into regions, set numberofregions to zero and
regionlist to NULL.

C.2.2 Interpreting the out structure

In this section we describe the meanning of the members of the struct triangulateio
object pointed to by out after returning from a call to triangle().

Important: Since the lengths of the output arrays of are not known to the user
before calling triangle(), it is best to leave it to Triangle to allocate memory
for those arrays as needed. We request Triangle to do so by initializing the array
pointer to NULL. These initializations are noted in the following description.
Other members need not be initialized.

int numberofpoints;

The number of nodes (n) on output.

double *pointlist;

Pointer to an array of of length 2n. The coordinates (xi, yi) of node
number i are stored in the array’s 2i and 2i + 1 elements. Initialize to
NULL.

int *pointmarkerlist;

Pointer to an array of of length n. Initialize to NULL. (Probably we won’t
need this in which case this item will be deleted.)

int numberofsegments;

Number of segments (s) on output.

int *segmentlist;

Pointer to an array of of length 2s. Node numbers of the end points of
segment i are stored in in the array’s 2i and 2i+ 1 elements. Initialize to
NULL.

int *segmentmarkerlist;

Pointer to an array of of length s. Segments inherit their parents’ marker
values that were specified on input. Initialize to NULL.

int numberofholes;

Number of holes (h) in the domain. This equals numberofholes specified
on input since number of holes does not change upon triangulation.

double *holelist;

Copy of the holelist pointer from input. Note that the pointer is copied,
not the object that it points to. Therefore don’t free the input holelist
if there is need for future reference to it.
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int numberofregions;

Number of regions (r) that the domain is divided into. This equals
numberofregions specified on input since number of regions does not
change upon triangulation.

double *regionlist;

Copy of the holelist pointer from input. Comments pertaining holelist
apply.

int numberofedges;

Number of edges (e) on output.

int *edgelist;

Pointer to an array of of length 2e. Node numbers of the end points of
edge i are stored in in the array’s 2i and 2i + 1 elements. Initialize to
NULL.

int *edgemarkerlist;

Pointer to an array of of length e of edge marker values.

Edges that are also segments, receive the segment’s marker value. All
others receive a deault marker value of 0 if interior to the domain and a
default markder value of 1 if on the boundary. In our use of Triangle all
boundary edges are also segments therefore the default value of 1 does not
apply. Initialize to NULL.

int numberoftriangles;

Number of triangles (t) on output.

int *trianglelist;

Pointer to an array of of length 3t. Node numbers of the vertices of triangle
i, in a counter-clockwise order, are stored in in the array’s 3i, 3i+ 1 and
3i+ 2 elements. Initialize to NULL.

int numberoftriangleattributes;

Number of attributes (k) stored per triangle.

double *triangleattributelist;

Pointer to an array of of length kt. Triangle attributes are stored in groups
of k numbers in the array.

In our application we associate a unique region number to each of the
domain’s regions. Triangles in a region inherit the region’s attribute. By
examininig the triangle’s attribute value we can tell which region is belongs
to. Initialize to NULL.
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Integration on a triangle

The classical n point Gaussian quadrature approximates the integral of a func-
tion f on the interval [−1, 1] by a weighted sum of n values of f :∫ 1

−1

f(ξ) dξ ≈
n∑

j=1

wjf(p(j)).

The Gaussian quadrature points p(j) and weights wj depend on n but are
independent of f . It can be shown, see e.g., Atkinson [Atk], that the ap-
proximation error is zero for all polynomials of degree 2n − 1. Integration
over an arbitrary interval [a, b] is handled by an affine change of variables
χ : ξ 7→

(
(b − a)/2

)
ξ +

(
(b + a)/2

)
that maps the the standard interval [−1, 1]

onto [a, b]: ∫ b

a

f(x) dx =
b− a

2

∫ 1

−1

f
(b− a

2
ξ +

b− a
2

)
dξ. (D.1)

The (constant) derivative of χ which appears as the factor (b − a)/2 of the
integral on the right hand side, equals the the ratio of the lengths of the interval
[a, b] and the standard interval [−1, 1].

There are several ways of extending the idea of Gaussian quadrature to inte-
gration on triangles but none is as elegant as Gaussian quadrature on intervals.
One highly efficient method is provided by Taylor, Wingate and Bos [TWB]
where for a large selection of the values n they give quadrature points p(j) and
weights wj for quadrature on the standard triangle defined as:

Tstd = {〈ξ1, ξ2〉 ∈ R2 : ξ1 > −1, ξ2 > −1, ξ1 + ξ2 6 0} (D.2)

which has an area of 2 (just as the one-dimensional standard interval has
length 2). An n point quadrature over Tstd takes the form:∫

Tstd
f(ξ) dξ ≈

n∑
j=1

wjf(p(j)). (D.3)
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To integrate over an arbitary triangle T , we view T as the image under an affine
map χ of the standard triangle Tstd then change variables to reduce the problem
to integration over Tstd:∫

T
f(x) dx =

|T |
2

∫
Tstd

f
(
χ(ξ)

)
dξ (D.4)

where |T | is the area of T . The factor |T |/2 of the integral on the right hand
side is the (constant) Jacobian determinant of χ which also equals the ratio of
the areas of the triangle T and the standard triangle Tstd. Compare with (D.1).

TWB provide n-point quadrature tables for 14 choices of n. To each n there
corresponds a number d, called the quadrature’s strength, with the property that
the n-point approximation error is zero (within the floating point accuracy) for
all polynomials of degree less or equal d. The table below shows the 14 matching
n and d pairs. We see, for instance, that with 10 quadrature points we get exact
values for all polynomials of degree five in two variables.

n 3 6 10 15 21 28 36 45 55 66 78 91 105 120
d 2 4 5 7 9 11 13 14 16 18 20 21 23 25

Quadrature points in [TWB] are expressed in terms of barycentric coordi-
nates1 associated with the vertices 〈1,−1〉 and 〈−1, 1〉 of Tstd (see the definition
in (D.2). Here is an extract from their tables for n = 10 (which corresponds to
d = 5):

0.0000000000000 1.0000000000000 0.0262712099504
1.0000000000000 0.0000000000000 0.0262716612068
0.0000000000000 0.0000000000000 0.0274163947600
0.2673273531185 0.6728199218710 0.2348383865823
0.6728175529461 0.2673288599482 0.2348412238268
0.0649236350054 0.6716530111494 0.2480251793114
0.6716498539042 0.0649251690029 0.2480304922521
0.0654032456800 0.2693789366453 0.2518604605529
0.2693767069140 0.0654054874919 0.2518660533658
0.3386738503896 0.3386799893027 0.4505789381914

There are ten rows corresponding to the 10 quadrature points. The first two
numbers in each row are the barycentric coordinates and the third number is
the weight.

Barycentric coordinates are invariant under affine mappings therefore to inte-
grate a function f defined on an arbitrary triangle T , . . .

1Let the points A, B and C be the vertices of an arbitrary (non-degenerate) triangle. Any
point P inside the triangle may be written as a unique convex combination of the vertices:

P = λ1A+ λ2B + λ3C,

where 0 6 λi 6 1 for i = 1, 2, 3 and λ1 + λ2 + λ3 = 1. The coefficients λi are called P ’s
barycentric coordinates. Given any two of the barycentric coordinates, the third is determined
from λ1 + λ2 + λ3 = 1.
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D.1 Interface to the TWB quadrature tables

The barycentric coordinates and weight for a quadrature point are stored in a
TWB qdat structure:
〈the twb data structure 145a〉≡

typedef struct {

double lambda1;

double lambda2;

double weight;

double lambda2;

} TWB_qdat;

Each of the 14 quadrature tables is stored as an array of TWB qdat structures.
The arrays are named quaddatan where n is the number of quadrature points.
Here is the table quaddata6 corresponding to n = 6, d = 4:
〈quadrature data for n=6, d=4 145b〉≡

static TWB_qdat quaddata6[] = {

{ 0.0915762135098, 0.0915762135098, 0.2199034873106 },

{ 0.8168475729805, 0.0915762135098, 0.2199034873106 },

{ 0.0915762135098, 0.8168475729805, 0.2199034873106 },

{ 0.1081030181681, 0.4459484909160, 0.4467631793560 },

{ 0.4459484909160, 0.1081030181681, 0.4467631793560 },

{ 0.4459484909160, 0.4459484909160, 0.4467631793560 },

{ 0.0, 0.0, -1.0 } /* terminator */

};

The extraneous line, makred “terminator”, is added as an end-of-the-table
marker. In this way we don’t have to store the length of the table as an addi-
tional variable when pasing a pointer to it to a function. The end of the table
will be detected by the presence of the negative weight −1.0; all weights are
positive in a TWB quadrature.

The 14 tables are wrapped in an array of an anonymous structure type used for
internal management of the tables. There is no user interface to structure or
the array:
〈the 14 tables 145c〉≡

static struct {

int npoints;

int degree;

TWB_qdat *quaddata;

} QuadTables[] = {

{ 3, 2, quaddata3 },

{ 6, 4, quaddata6 },

{ 10, 5, quaddata10 },

{ 15, 7, quaddata15 },

{ 21, 9, quaddata21 },

{ 28, 11, quaddata28 },

{ 36, 13, quaddata36 },
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{ 45, 14, quaddata45 },

{ 55, 16, quaddata55 },

{ 66, 18, quaddata66 },

{ 78, 20, quaddata78 },

{ 91, 21, quaddata91 },

{ 105, 23, quaddata105 },

{ 120, 25, quaddata120 },

};

The sole user interface to the quadrature tables is through the function twb qdat()
declared as:

〈prototype of twb qdat() 146a〉≡
TWB_qdat *twb_qdat(int *degree, int *npoints);

It receives a request for a quadrature table of strength *d. It compares the
requested strength to available strengths and increases it to the next greater
one if there is no exact match. If the requested strength exceeds the largest
possible, it sets it to the largest possible. Then it sets *n to the number of
quadrature points (that is, to the length of the table) and returns a pointer to
the table. Thus the argument d is an in/out variable while the arguement n is
an out variable.

Here is the implementation of twb qdat:

〈function twb qdat() 146b〉≡
TWB_qdat *twb_qdat(int *d, int *n)

{

TWB_qdat *qdat;

int i;

for (i = 0; i < ntables; i++)

if (*d <= QuadTables[i].degree)

break;

if (i == ntables)

i = ntables - 1;

*d = QuadTables[i].degree;

*n = QuadTables[i].npoints;

qdat = QuadTables[i].quaddata;

for (i = 0; i < *n; i++)

qdat[i].lambda3 = 1.0 - qdat[i].lambda1 - qdat[i].lambda2;

return qdat;

}
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D.2 The files twb-quad.c and twb-quad.h

The header file twb-quad.h declares the TWB qdat structure and the twb qdat()
function:

〈twb-quad.h 147〉≡
#ifndef H_TWB_QUAD_H

#define H_TWB_QUAD_H

typedef struct {

double lambda1;

double lambda2;

double weight;

double lambda3;

} TWB_qdat;

TWB_qdat *twb_qdat(int *degree, int *npoints);

#endif /* H_TWB_QUAD_H */

The file twb-quad.c consists of 14 tables, one of which is shown in 〈quadrature
data for n=6, d=4 145b〉 and the definition of the function twb qdat() which is
shown in 〈function twb qdat() 146b〉. The complete twb-quad.c is over 800 lines
long therefore we won’t include it in this document.
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Appendix E

Interface to UMFPACK

The UMFPACK is an open-source library of function, made by Tim Davis, for
solving sparse linear systems. It may be obtained from:

〈http://www.cise.ufl.edu/research/sparse/umfpack/〉.
Here we will summarise the very limited interface to UMFPACK that we need
for our work. For complete details refer to UMFPACK’s manual.

E.1 Sparse matrix storage

A sparse matrix of m rows, n columns containing nz entires is encoded into three
arrays:

int Ap[n+1];
int Ai[nz];
double Ax [nz];

The particular method of storage, known as ‘compressed column form’, is de-
scribed in UMFPACK’s manual. We don’t need to know the details of the
encoding other than to know the types and sizes of the arrays in order to use
the library.

Additionally, UMFPACK provides an auxiliary ‘triplet form’ method of storage
which is particularly suited to finite element computations.

A triplet form consists of three vectors:

int Ti[nt];
int Tj[nt];
double Tx [nt];

The k-th triplet (Ti[k], Tj[k], Tx[k]) holds the (i, j, aij) values of the entry
aij in row i and column j of the matrix.

The length nt of the the vectors Ti, Tj, Tx is at least equal to the number of

149
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entries nz but it may longer. If the triplet form contains duplicate records, that
is, if multiple k values produce the same i an j, then the corresponding values
of aij are summed.

The UMFPACK function umfpack di triplet to col() translates a ‘triplet
form’ to the ‘compressed column form’. Its prototype is:

int umfpack di triplet to col(
int n row,
int n col,
int nz,
const int Ti[ ],
const int Tj[ ],
const double Tx[ ],
int Ap[ ],
int Ai[ ],
double Ax[ ],
int Map[ ]

);

The arguments n row, n col and nz are the numbers of rows, columns and
entries of the sparse matrix. Upon entry, the input arrays Ti, Tj, Tx hold the
matrix in the triplet form. Upon return, the output arrays Ap, Ai, Ax hold
the matrix in the compressed column form. Storage for all arrays should be
provided by the caller. The Map argument is not used in our application and
will be set to NULL.

The function umfpack di triplet to col() returns one of the following status
flags:

UMFPACK OK if successful.

UMFPACK ERROR argument missing if Ap, Ai, Ti, and/or Tj are missing.

UMFPACK ERROR n nonpositive if n row <= 0 or n col <= 0.

UMFPACK ERROR invalid matrix if nz < 0, or if for any k, Ti[k] and/or Tj[k]
are not in the range 0 to n row-1 or 0 to n col-1, respectively.

UMFPACK ERROR out of memory if unable to allocate sufficient workspace.

E.2 Symbolic analysis

UMFPACK’s umfpack di symbolic() reorders the columns of the matrix to
reduce fill-in upon LU factorization. It returns its result in an object pointed
to by the *Symbolic arguemnt in the prototype:

int umfpack di symbolic(
int n row,
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int n col,
const int Ap[ ],
const int Ai[ ],
const double Ax[ ],
void **Symbolic,
const double Control[UMFPACK CONTROL],
double Info[UMFPACK INFO]

);

Storage for the object is allocated as needed. It is the caller’s responsibility to
free the memory afterward by calling the function:

void umfpack di free symbolic(void **Symbolic);

The arguments n row and n col are the numbers of rows and columns of the ma-
trix. The input arguments Ap, Ai, Ax hold the matrix in the compressed column
form. The Control] and [[Info arguements are not used in our application
and will be set to NULL.

The function umfpack di symbolic() returns a large number of status values.
In our code if the return value is anything other than UMFPACK OK we consider
it a fatal error, we print the numerical value of status and exit the program.

E.3 The LU factorization

The UMFPACK function umfpack di numeric() receives a sparse matrix and
the symbolic analysis object computed in umfpack di symbolic(), performs an
LU factorization for the matrix and returns the result in an object pointed at
by the *Numeric argument in the protoype:

int umfpack di numeric(
const int Ap[ ],
const int Ai[ ],
const double Ax[ ],
void *Symbolic,
void **Numeric,
const double Control[UMFPACK CONTROL],
double Info[UMFPACK INFO]

);

Storage for the object is allocated as needed. It is the caller’s responsibility to
free the memory afterward by calling the function:

void umfpack di free numeric(void **Numeric);

The input argumentsAp, Ai, Ax hold the matrix in the compressed column form.
The Symbolic arguemnt referts to the result of the symbolic analysis of a prior
call to umfpack di symbolic(). The Control] and [[Info arguements are
not used in our application and will be set to NULL.
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The function umfpack di numeric() returns a large number of status values.
In our code if the return value is anything other than UMFPACK OK we consider
it a fatal error, we print the numerical value of status and exit the program.

E.4 The solver

The UMFPACK function umfpack di solve() solves the linear system AX =
B where A is a sparse matrix and B is a given vector. The solution is returned
in the vector X in the prototype:

int umfpack di solve(
int sys,
const int Ap[ ],
const int Ai[ ],
const double Ax[ ],
double X[ ],
const double B[ ],
void *Numeric,
const double Control[UMFPACK CONTROL],
double Info[UMFPACK INFO]

);

Memory for X should be allocated by the caller.

The argument sys passes one of a large number of option to the solver. The
only option relevant to our application is UMFPACK A. The input argumentsAp,
Ai, Ax hold the matrix in the compressed column form. The Numeric arguemnt
referts to the result of a prior call to umfpack di numeric(). The Control]
and [[Info arguements are not used in our application and will be set to NULL.

The function umfpack di solve() returns a large number of status values. In
our code if the return value is anything other than UMFPACK OK we consider it a
fatal error, we print the numerical value of status and exit the program.
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Index of chunks

〈 ell-shape.c 12a〉 12a
〈 square hole.c 8a〉 8a
〈functions associated with ell-shape.c 12b〉 12a, 12b
〈functions associated with square hole.c 9a〉 8a, 9a
〈geometry and boundary conditions for ell-shape.c 13a〉 12a, 13a, 13b, 13c
〈geometry and boundary conditions for square hole.c 9b〉 8a, 9b, 10, 11a
〈headers for problem specification 8b〉 8a, 8b, 12a
〈the trailing material for ell-shape.c 13d〉 12a, 13d
〈the trailing material for square hole.c 11b〉 8a, 11b
〈complete edge arrays 21a〉 18, 21a
〈complete node arrays 19b〉 18, 19b
〈complete edge array() 21b〉 21b, 21c, 36
〈complete node array() 20a〉 20a, 20b, 20c, 36
〈convert node and edge arrays into linked lists 24b〉 18, 24b
〈data structures for capturing user input 15a〉 15a, 15b, 16a, 16b, 17a, 17c
〈function fits in() 24a〉 24a, 36
〈function identify boundary patches() 22b〉 22b, 23a, 36
〈function make mesh 18〉 18, 36
〈function split edgelist() 23b〉 23b, 36
〈functions defined in Chapter 2 36〉 36
〈functions for sorting node and edge lists 31b〉 31b, 36
〈identify boundary patches 22a〉 18, 22a
〈insert satellite nodes 29〉 18, 29
〈insert satellite nodes and edges 30a〉 30a, 30b, 30c, 30d, 30e, 31a, 36
〈localize reentrant vertices 25a〉 18, 25a
〈localize reentrant vertices 25b〉 25b, 26a, 36
〈make mesh.h 17c〉 17c
〈make satellite nodes 26b〉 26b, 26c, 26d, 27a, 27b, 27c, 28a, 36
〈prototype make mesh 17b〉 17b, 17c
〈run triangle 32c〉 32c, 33a, 33b, 34a, 34b, 34c, 35a, 35b, 36
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〈sanity check 19a〉 18, 19a
〈sort node and edge lists 32a〉 18, 32a
〈split edge 28b〉 28b, 36
〈triangulate 32b〉 18, 32b
〈boundary condition types 37b〉 37b, 45b
〈fem.h 45b〉 45b
〈fill the array of edges 40b〉 39b, 40b
〈fill the array of elems 40c〉 39b, 40c
〈fill the array of nodes 40a〉 39b, 40a
〈free triangle out 42a〉 39b, 42a
〈function assign elem edges 41〉 41, 45c
〈function free mesh 44a〉 44a, 45c
〈function triangle to mesh 39b〉 39b, 45c
〈functions defined in Chapter 2 (never defined)〉 45c
〈generic function prototype 38a〉 38a, 45b
〈make mesh.c 45c〉 45c
〈mesh constructor/destructor functions 42b〉 42b, 43a, 43b, 45c
〈mesh data structures 37a〉 37a, 38b, 38c, 38d, 39a, 44b, 45b
〈prototype get fem 45a〉 45a, 45b
〈allocate memory for the Pvals and Qvals arrays 63a〉 62a, 63a
〈basis functions.c 65b〉 65b
〈basis functions.h 65c〉 65c
〈calculate edge vectors 63b〉 62a, 63b
〈call get shape data() to fill the Pvals array 63d〉 62a, 63d
〈check-basis-funcs.maple 67〉 67
〈compute matrix B 63c〉 62a, 63c
〈declarations for function get basis data() 62b〉 62a, 62b
〈evaluate the x, y, xx, xy, yyy derivatives of the basis functions 64c〉 62a, 64c
〈evaluate the 21 basis functions 64b〉 62a, 64b
〈for each point. . . 64a〉 62a, 64a
〈free memory for the Pvals and Qvals arrays 65a〉 62a, 65a
〈function get basis data() 62a〉 62a, 65b
〈unit test for basis functions.c 66〉 65b, 66
〈x derivative codes 61〉 61, 65c
〈define a simple domain 71a〉 71a, 71b, 72a, 72b
〈prototype plot in geomview 72d〉 72d
〈sample argyris data 72c〉 72c
〈sample argyrys data (never defined)〉 73
〈To be doucmented 73〉 73
〈bending-matrix-check.maple 99〉 99
〈bending-matrix.maple 97〉 97
〈flags for get matrix() 81a〉 81a, 87b
〈function get matrix() 81b〉 81b, 82a, 82b, 83a, 83b, 83c, 84, 85a, 85b, 87a
〈mass-matrix-check.maple 90b〉 90b, 90c, 90d, 91
〈mass-matrix.maple 87c〉 87c, 88a, 88b, 88c, 88d, 89a, 89b, 90a
〈mass-stiffness-bending.c 87a〉 87a
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〈mass-stiffness-bending.h 87b〉 87b
〈stiffness-matrix-check.maple 94c〉 94c, 95a, 95b, 95c, 96
〈stiffness-matrix.maple 92〉 92, 93a, 93b, 93c, 94a, 94b
〈the file pxp.incl 80〉 80
〈unit test for get matrix() 86〉 86, 87a
〈boundary.c 108c〉 108c
〈boundary.h 108b〉 108b
〈edge selector functions 106a〉 106a, 108c
〈function create boundary series() 103〉 103, 108c
〈function extract edge() 106b〉 106b, 108c
〈function sort bseries() 107a〉 107a, 107b, 107c, 107d, 108a, 108c
〈clean up 114f〉 109a, 114f
〈cmdline.ggo 111a〉 111a
〈declarations for main.c 111c〉 109a, 111c, 112b, 112e, 113c, 113e, 114a
〈included headers for main.c 109b〉 109a, 109b, 109c, 111b, 112a, 112d, 113b,

114d
〈load problem module 112f〉 109a, 112f, 113a, 113d
〈main.c 109a〉 109a
〈parse command line options 111d〉 109a, 111d, 112c
〈perform user requested action 113f〉 109a, 113f, 114b, 114c, 114e
〈argyris-elem.maple 115〉 115, 116a, 116b, 116c, 116d, 116e, 116f, 117a, 117b,

117c, 118a, 118b, 118c, 118d, 118e, 118f, 119
〈derivative codes 120a〉 120a, 128
〈function get shape data() 121〉 121, 127
〈prototype of get shape data 120b〉 120b
〈shape functions.c 127〉 127
〈shape functions.h 128〉 128
〈dump mesh.c 134a〉 134a
〈dump mesh.h 135c〉 135c
〈function dump edges 134c〉 134a, 134c
〈function dump elems 135a〉 134a, 135a
〈function dump mesh 135b〉 134a, 135b
〈function dump nodes 134b〉 134a, 134b
〈show mesh in geomview.c 132〉 132
〈show mesh in geomview.c-old 131a〉 131a
〈show mesh in geomview.h 131b〉 131b
〈function twb qdat() 146b〉 146b
〈prototype of twb qdat() 146a〉 146a
〈quadrature data for n=6, d=4 145b〉 145b
〈the 14 tables 145c〉 145c
〈the twb data structure 145a〉 145a
〈twb-quad.h 147〉 147
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Appendix G

Index of identifiers

edges: 10, 11b, 13b, 13d, 71b, 72a, 72b, 73
f: 9a, 12b
g1: 9a, 10
g2: 12b, 13b
g3: 9a, 10
g4: 12b, 13b
get fem: 11b, 13d, 45a, 113c, 113d, 114b
holes: 11a, 11b, 13c, 13d
N: 11b, 13d, 73
nodes: 9b, 11b, 13a, 13d, 71a, 71b, 72a, 72b, 73
cmp edges: 31b
cmp nodes: 31b
complete edge array: 21a, 21b
complete node array: 19b, 20a
dump node and edge lists: 18
fits in: 23b, 24a
H MAKE MESH H: 17c
HoleData: 16b, 17b, 18, 32c
identify boundary patches: 22a, 22b
insert satellite nodes and edges: 29, 30a
localize reentrant vertices: 25a, 25b
make mesh: 17b, 18
make satellite nodes: 26a, 26b
MIN: 26d, 36
Pi: 26c, 36
RegionData: 17a, 27b, 34b
run triangle: 32b, 32c
sort node and edge lists: 31b, 32a
split edge: 28b, 30c, 30d
split edgelist: 23a, 23b
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assign elem edges: 40c, 41
BC: 38b, 38c, 40b
Edge: 38c, 38d, 39a, 41, 43a
Elem: 38d, 39a, 41, 43b
free edgelist: 43a, 44a
free elemlist: 43b, 44a
free mesh: 44a
free nodelist: 42b, 44a
Func: 38a, 38b
get fem: 11b, 13d, 45a, 113c, 113d, 114b
H FEM H: 45b
make edgelist: 39b, 43a
make elemlist: 39b, 43b
make nodelist: 39b, 42b
Mesh: 39a, 39b, 41, 44a, 45a
Node: 37a, 38c, 38d, 39a, 42b
Point2d: 44b
Point3d: 44b
triangle to mesh: 39b
Vec2d: 44b
Vec3d: 44b
B: 62b, 63c, 64c, 67
edge: 62b, 63b, 63c, 64b
get basis data: 62a, 65c, 66
H BASIS FUNCTIONS H: 65c
i: 62b, 63b, 64b, 64c, 66, 67
idx: 62b, 64c
idx2: 62b, 64c
J: 62b, 63c
kernelopts: 67
m: 62b, 64a, 64b, 64c
main: 66, 73, 86, 109a
printf: 66, 67, 67
Pvals: 62b, 63a, 63d, 64b, 65a
Qvals: 62b, 63a, 64b, 64c, 65a
with: 66, 67
argyris data: 72c, 73
ArgyrisData: 73
BLUEHUE: 73
edges: 10, 11b, 13b, 13d, 71b, 72a, 72b, 73
elems: 72a, 72b, 73
GREENHUE: 73
huefunc: 73
main: 66, 73, 86, 109a
mesh: 72b, 72d, 73, 111a, 114a, 114b, 114e
N: 11b, 13d, 73



159

nodes: 9b, 11b, 13a, 13d, 71a, 71b, 72a, 72b, 73
plot elem in geomview: 73
plot in geomview: 72d, 73
REDHUE: 73
fclose: 88d, 90a, 92, 94b, 97
fprintf: 88d, 88d, 88d, 88d, 88d, 88d, 88d, 88d, 90a, 92, 92, 92, 92, 92, 92,

92, 92, 94b, 97, 97, 97, 97, 97, 97, 97, 97, 97
get matrix: 81b, 86, 87b
H MASS STIFFNESS BENDING H: 87b
main: 66, 73, 86, 109a
create boundary series: 103, 108b
EdgeSelector: 106a, 106b
extract edge: 106b, 107b, 107d
H BOUNDARY H: 108b
select n1: 106a, 107d
select n2: 106a, 107b
sort bseries: 107a, 108b
args info: 111c, 111d, 112c, 113f, 114e, 114f
error: 113c, 113d
get fem: 11b, 13d, 45a, 113c, 113d, 114b
handle: 112e, 112f, 113d, 114c
main: 66, 73, 86, 109a
max area: 111a, 113e, 113f, 114b
mesh: 72b, 72d, 73, 111a, 114a, 114b, 114e
module: 111a, 112b, 112c, 112f, 113a
get shape data: 120b, 121, 128
H SHAPE FUNCTIONS H: 128
draw boundary edges: 132
draw edge: 132
draw triangles: 132
dump edges: 134c, 135b
dump elems: 135a, 135b
dump mesh: 135b, 135c
dump nodes: 134b, 135b
H DUMP MESH H: 135c
H SHOW MESH IN GEOMVIEW H: 131b
show mesh in geomview: 131a, 131b, 132
H TWB QUAD H: 147
quaddata6: 145b, 145c
QuadTables: 145c, 146b
TWB qdat: 145a, 145b, 145c, 146a, 146b, 147
twb qdat: 146a, 146b, 147


