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This book offers a passionate account of the theories of linear elasticity
and thermoelasticity and fills a significant niche, since finding both
theories in one volume is rather rare.
The book seems to be addressed to theoretically inclined engineers.

There is much to be learned from it by graduate students and re-
searchers who wish to gain deeper understanding of the subject than
is usually offered under the umbrella of “strength of materials” or
“mechanics of materials”. A large number of exercises at the end of
each chapter provide opportunities for testing and extending one’s
understanding.
The elasticity part is firmly grounded in M. E. Gurtin’s monograph

[in Handbuch der Physik. Band VIa/2, 1–295, Springer, Berlin, 1972;
see MR0347187 (49 #11907)] but there are significant additions in the
treatment of elastodynamics. The thermoelasticity part shares some
elements with D. E. Carlson’s [in Handbuch der Physik. Band VIa/2,
297–345, Springer, Berlin, 1972; see MR0347187 (49 #11907)]. An ap-
plied mathematician would find the book under review somewhat too
wordy and insufficiently precise. Gurtin’s and Carlson’s monographs
are more concise and accurate but they lack illustrative examples and
exercises.
Chapter 1 is a moderately long (16 pages) discussion of the history

of linear elasticity, told in the form of capsule biographies of men who
contributed to the creation and development of the theory. I found
that compendium interesting and informative.
Chapter 2 introduces the mathematical notations and tools used

in the rest of the book. Tensors are viewed as coordinate-free linear
operators, which is the right approach for this subject. Coordinate-
dependent index notation is also given in each instance for the benefit
of those who find the coordinate-free concept too abstract. A good
treatment of the Laplace transformation and convolutions is also
included; these are used later in the formulation and analysis of initial
value problems of elastodynamics.
Chapter 3 contains the core material of the subject. The notions

of strain, stress, and constitutive equations are introduced and the
equations of equilibrium and motion are derived. Thermoelasticity is
also introduced here and treated as an integral part of the theory.
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A nice feature is the explicit display of the elasticity tensors (as
6× 6 symmetric matrices) for orthotropic, transversely isotropic, and
isotropic materials in terms of Young’s modulus, Poisson’s ratio, etc.
Chapters 4 and 5 deal with the analysis of initial and boundary value

problems. Chapters 6 through 8 deal with variational formulations and
reductions related to two-dimensional geometry.
The second half of the book, Chapters 9 through 13, presents

an extensive collection of initial and/or boundary value problems of
elasticity that are solvable in (more or less) closed form. In most
cases the derivations of the solutions are given in minute details.
This can be a valuable resource for graduate students interested in
developing their skills in analytical techniques pertaining to elasticity
in particular, and mathematics in general.
My initial impression of this book was quite positive. I even began

imagining it as a textbook for an interesting course for graduate
students of applied mathematics. Unfortunately I had to change my
mind upon closer examination of the book’s details. In the rest of this
review I will list some of the concerns that led me to that conclusion.
Most of these would not be difficult to fix and I would hope that they
will be fixed in a future edition.

• The book’s title, “The Mathematical Theory of Elasticity”,
is somewhat misleading since finite elasticity receives hardly
a mention at all—the book is strictly on linear theories. A
better title would have been “Theories of Linear Elasticity and
Thermoelasticity”.

• As far as I could detect, no formal definition of an elastic body
is given anywhere. The opening sentence in Section 1.1 comes
close: “A body is called elastic if it returns to its original shape
upon the removal of applied forces.” But according to this, a
rubber hemispherical shell is not an elastic body because it has
at least two force-free equilibrium states. The fix requires the
concept of infinitesimal deformations which doesn’t appear until
Chapter 3.

• In Section 3.1.1 we have: “The condition det(∇κ) > 0 means
that the mapping κ is uniquely invertible.” This is not en-
tirely true; it is quite easy to construct a noninvertible κ with
det(∇κ)> 0. The inequality det(∇κ)> 0 is a condition of local
invertibility.

• In Section 3.1 the concepts of finite and infinitesimal deforma-
tions are intertwined in an unpleasant way and present quite a
muddy picture. This material forms the mathematical founda-
tion of the subject and deserves a more lucid treatment.
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• The finite strain tensor corresponding to the deformation gra-
dient F is defined as D = 1

2

(
F TF −1

)
on page 76 with no ex-

planation or motivation. Consequently, the statement on page
78 that the deformation field κ(x) = y0 +Q(x−x0) (where Q

is an orthogonal tensor) is a rigid rotation because [my empha-
sis] the strain tensor D vanishes, makes little sense. The polar
decomposition of tensors, which is the missing key here, is not
mentioned at all in the book.

• An infinitesimal rigid displacement is defined on page 78 as
a field of the form u(x) = u0 +W (x− x0), where W is a
skew tensor. The qualifier “infinitesimal” is dropped afterward
without a notice or warning. For example, on page 81 the terms
“infinitesimal rigid displacement” and “rigid displacement” are
used interchangeably.

• Mathematical symbols for vectors and tensors are set in serif
fonts within the main text, e.g., u and D, but inexplicably and
annoyingly switch to sans serif, e.g., u and D, in all examples
throughout the book. This is probably due to a glitch in a
typesetting macro.

• The definition of a linearly elastic material is introduced on
page 137 through the linear constitutive equation S =CCC[E]. It
is assumed right from the beginning that the elasticity tensor
CCC is symmetric, that is, A·CCC[B] = B·CCC[A] for all symmetric
second-order tensors A and B. It would have been appropriate
to note at this point that a material with such a symmetry is
called hyperelastic. A good part of the theory of elasticity may
be developed without the assumption of hyperelasticity.

• On page 139 we have the definition: “By an anisotropic elastic
body we mean a body for which the tensor CCC possesses in general
21 different components.” I know what the authors intend to
say here but what they say is ambiguous at best and wrong
at worst. For instance, what does this definition imply about a
material whose CCC has only three independent components? Does
it make it isotropic? What about a material whose CCC has only
two independent components? The way to avoid the problem is
to define an isotropic material first, then say that anything else
is anisotropic.

• The proposition that the symmetry of the elasticity tensor is
equivalent to the existence of a stored energy function is pre-
sented in a rambling argument that takes up three pages (152–
154). See [M. E. Gurtin, op. cit.] for a concise and transparent
proof.
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• Section 3.3.5 introduces the constitutive equation S = CCC[E] +
TM for a thermoelastic body, where T is the temperature and
M is the stress-temperature tensor. It then states that M =
−(3λ+2µ)α1 for an isotropic material (µ and λ are the Lamé
moduli). Some elaboration of the reasons for this would not
have been out of place.

• Section 4.1.5 states a theorem on the uniqueness of solutions of
the mixed boundary value problems of elastostatics. Specifically,
suppose that displacements and tractions are specified on the
disjoint subsets ∂B1 and ∂B2 of the boundary, respectively. The
theorem states that if ∂B1 is nonempty, then the solution is
unique. This does not pass careful scrutiny. For example, if ∂B1

is a straight line, then the mixed boundary value problem can
have infinitely many solutions that pivot about that line. The
flaw in the statement becomes apparent upon an examination
of the “proof”.

• Section 5.1.2 introduces the method of Rayleigh-Ritz to approx-
imate the displacements u of mixed boundary value problems

of elastostatics by sums of the form u(N) = û(N) +
∑

N

n=1 anfn,

where û(N) is chosen to capture the displacement boundary con-
ditions on part ∂B1 of the boundary and each fn vanishes on
∂B1. It is stated that: “If N →∞ the approximate displacement
u(N) converges to the displacement corresponding to the exact
solution.” This is not true in the absence of further assumptions
on fns, e.g., linear independence, completeness, orthogonality.

Despite these issues, the book still is of value as a quick reference
for concepts and formulae, and especially for its large collection of
exactly solvable problems. I intend to keep it at close reach on my
bookshelf.
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