206 F. F. SEELIG

This .work was supported partially by the German ‘“‘Fonds der Chemis¢]
Industrie”. Computer simulations were executed on the IBM 7094 of 4hs

“Deutsches Rechenzentrum” in Darmstadt, Germany.

REFERENCES

Bak, T. A. (1963). “Contributions to the Theory of Chemical Kinetics’. New
W. A. Benjamin, Inc. : :

DENBIGH, K. G., Hicks, M. & PAGE, F. M. (1948). Trans. Faraday Soc. 44, 479.

HEARON, J. Z. (1953). Bull. math. Biophys. 15, 121.

LoTKA, A. J. (1910). J. phys. Chem. Ithaca 14, 271.

MEIXNER, J. (1949). Z. Naturf. 4a, 594.

MOORE, M. J. (1949). Trans. Faraday Soc. 43, 1088.

SucITA, M. (1961). J. theor. Biol. 1, 415.

theor. Biol. (1970) 27, 207-220

Interspecific Competition, Predation and Species Diversity
J. D. PARRISH AND S. B. SAILA

Graduate School of Oceanography, University of Rhode Island,
Kingston, Rhode Island 02881, U.S.A.

(Received 5 May 1969, and in revised form 10 October 1969)

A review was made of some mathematical population models and their
applications to problems of interspecific competition and predator-prey
relationships. These were considered in relation to some observations and
-experiments suggesting local increases in species diversity under predation
in competitive situations. A mathematical model of a three-species trophic
subweb was developed and examined critically. Model results indicated
‘that the equilibrium assumptions postulated in previous models may be
unrealistic, and that local species: diversity may indeed increase with
predation under some competitive conditions.

1. Introduction

Gause (1935) and Gause & Witt (1935) have demonstrated from the mathe-
ical formulation of a theory of competition that the outcome of equal
npetition between two species, subsisting on a common resource at a
bonstant trophic potential in a homogeneous closed environment, depends
holy on the initial proportions of the two species. In a number of instances,
erimental and observational research has shown that when several
cies are in approximately the same ecological niche, competing for a
fmmon resource, the most capable species becomes dominant and the
bthers become extinct. Gause’s (1935) formulation also predicts this result
two unequally competing species. The idea of one species to a niche
become known (in ecological literature) as Gause’s Principle.

Jutchinson (1961) pointed out that differential predation on competing
cies may theoretically permit some diversification of prey. Recently Paine
1966) suggested that predation, under some circumstances at least, may
d to increase species diversity locally in competitive situations. He
orized that with predation acting on both (or all) competing species, total
ource utilization is decreased and both weaker and stronger species may
ive in the resulting situation which is less resource-limited. He explored
e ideas by observing species diversity vs. trophic structure (i.e. numbers
d kinds of predators and numbers and kinds of prey) in some intertidal
. 207 14
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¢, and &, are intrinsic rates of natural increase (biotic potential), o;; and a5,
coefficients representing intraspecific checks on rate of increase, a;, and
, are coefficients of decrease or increase of a species due to interaction
th the other species.

This system of equations was utilized by Larkin (1963) to describe inter-
ific competition and exploitation effects in natural fisheries. Larkin
nsidered the properties of equations (1) and (2) under an equilibrium
ndition based on the assumption that both the rates of population change
¢ simultaneously zero, i.e. (dN,/dt = 0 when dN,/d¢ = 0). He solved the
ulting simultaneous algebraic equations to provide the following expres-
ns for N, and N, at the equilibrium:

communities of marine invertebrates, and found a positive correlati
between high species diversity and increased predation. He also experimen
by removing the major predator from-an intertidal community and observ
its change from a 15-species to an 8-species system during a period of les
than two years. ‘

Paine’s experiments and observations are intuitively appealing and se
to suggest an ecological outcome of predation in natural systems, in addit
to that of maintaining populations (such as the Kaibab deer) in sta
equilibrium. However, from the limited data at hand it does not ap
intuitively clear what the outcome of predation will be on a given compet
tive situation involving more than one prey species. It might be argued th

predation, if it imposes an additional depressing effect equally on bot 0281 —00g28s

(or all) competing species, severely lowers the population growth potentia 1 gy — 02 Oay @)
of both or all species. Thus the competitive differences resulting may ac
to eliminate the weaker species at an even eatlier time than without predation, N, = b2 %1 @

Other hypotheses might be postulated, but it seems unreasonable to attemp Oy %22 = %5202
to predict the consequences of the dynamic interactions of three or mor
populations without constructing and testing an analytical model of th
system. It is the object of this paper to consider a model of the dynar i
interactions of a three-species population consisting of one predator an
two prey organisms. It is suggested that although the model is applied
only a restricted and somewhat hypothetical situation, model construc
and analysis provide additional insight and understanding of com
phenomena not attainable by observation and intuition alone.

quations (3) and (4) are particularly convenient since they contain only
nstant coefficients. Larkin (1963) then used these relations to determine
¢ combinations of the coefficients for which one or the other of the two
ecies would go to extinction and the conditions under which both would
ersist. It appears from an examination of his results that both species can
| persist indefinitely only when the numerical values of the coefficients are
such as to provide equal rates when the numbers of both species are equal.
any event, all of Larkin’s conditions for indefinite survival of both species
clude offsetting competitive advantages for the two species. In the present
aper, the well-defined case of a definite competitive advantage for one
secies will be considered without the assumption of an equilibrium where
{ hoth rates of population change are zero.

arkin also made use of the relations described above by adding an exploi-
on or fishing rate (¢, and c,) which represents a fixed fraction of the
 nstantaneous population of each species. He then considered equilibrium
the point of maximum sustainable yield and calculated that yield Y,

2. Background

The usual approach to the study of the dynamics of competition
involved the logistic type equations of Lotka-Volterra (Volterra, 19
Volterra developed a variety of expressions describing the relations
between species. These include a generalized expression which (when utils
with proper coefficients and proper signs) provides some indication of
results of interactions between two species including: mutualism, proti
cooperation, competition and predation. He also developed a more complef
model of competition between two species which may be expressed as ’

Y, =c¢;Ny=¢, [“22(81—01)"“12(32—02)] )

0y %2 —012%1

Ny _ [e, =33 Ny —a;, N, IN

dt 1%y N —%g2N3 JIVy, Y, =c;N; = ¢ [“11(82—02)—“21(81—01)]. 6)
dN, 0yq Oz~ 012021
a8 [e2—a21 Ny =022 NN, rom equations (5) and (6), curves depicting Y, as f(c,) for various values

where N, and N, are the numbers of species 1 and species 2, respectivel fe, and Y, as f(c,) for various Cy were plotted.
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reying on both are:
dN

With reference to predation, the basic Volterra (1928) model of tw
interacting species, wherein species N; preys on species N; is as follows:

1
dN —— =[e;—ay Ny —a;, Ny —a 3 N3Ny, 11)
= = [&;—a;3N3]Ny, ( d

d, an,

d_— [82—a22N2 a21N1—-a23N3]N2, (12)
dt =[- 83+°‘31N1]N3,

dn,

where the terms are defined as in equations (1) and (2). 4 =[—e3+a3; Ny +a3;, N, IN3, 13)

Equations (7) and (8) have a serious limitation in the real world becaus
without predation the prey increases without limit, and conversely th
predator becomes extinct in the absence of prey. The form of these equatior
permits analytical solution and Doi (1962) has used these in an anale
computer simulation model. This system of equations describes a laggg
cyclic behavior with phase displacement of predator and prey, and
inherently unstable.

Larkin (1966) modified Volterra’s model of predator-prey relationships j
a manner similar to Kostitzin (1939) by adding a self-limiting term to th
prey and introducing a modified predator expression as follows: '

re &, (i = 1,2, 3) are the intrinsic rates of increase or decrease (biotic
ntial), a1, 0y 2, 013, X215 X2z, X23, X31, Uy, Tepresent the intraspecific and
rspecific coefficients similar to previous equations.

or equations (11), (12) and (13) the *“‘equilibrium” state can be formally
sidered by setting dN,/dt = 0, dN,/dt = 0 and dN,/dt = 0. Solution of
leabove equations then provides the following expressions for “equilibrium”
bers of each species:

N, = ——%23%3261 F 0303283+ 01202383 —0y3%283 (14)
1= ’
— Oy 03032+ 0y30pq 03, + 03 %p3037 — 030022031

dN

"—1 =[e;—a;; Ny —a 3 N3Ny, N2=33"°‘31N1’ (15)
dN , *32

d—t-" = [e3— 33 Ny +a3; N{]Ns. Ny= g —ay3 Ny—ay, N, — “3281—“1283"‘[0‘12“31"“11“32]N1. (16)

. — et ey . %13 Xy3%32
Again, considering the ‘“equilibrium” case (where dN,/dt =0 whe :

dN,/dt = 0) he solved for N; and N; in terms of constant coefficients.
applying a percentage exploitation (fishing) to the predator/prey systel
and deriving sustained yield expressions similar to equations (5) and (6)
achieved results of the same general type as those for two competing spe

nce these expressions are in terms only of constant coefficients, the
ber of individuals are readily calculated. The numbers thus predicted
e with those which the N; appear to be approaching after a long period
ime in the model results to be presented. It was impossible to examine
ossible combinations of coefficients which might satisfy equations (14),
and (16) mathematically. Furthermore, the difficulties in ecological
nterpretation of most coefficient combinations would not appear to justify
effort involved. The combinations of coefficients used in this study are
ecological interest, and the ‘“‘equilibrium™ predicted by equations (14)
16) occurs when the number of one of the competing species, N,
pproaches zero and, the number of the other, Ny, approaches its maxi-
im. However, this condition is not the only pomt of interest ecologically.
n though eventual extinction of the weaker species is predicted, it is not
ous from the steady-state formulation when this will occur, nor is it
ible to determine how predation affects the period of time involved. In
tder to obtain answers to these questions, the dynamics of the system must
tudied.

3. The Model

To consider the effects of predation on species diversity of competin|
species, a three-species model or “trophic subweb” is a minimum requir
ment. It would obviously be more realistic to deal with more species -
predator as well as prey. However, with the data available, such an increa
in complexity might provide no increase in insight.

The Lotka-Volterra competition equations [equations (1) and (2)] we!
used for competing species N, and N, and a modified Volterra predator—pre;
equation [equation (13)] was used for species N, which is a predator preyi
on N, and N,. The equations for the three species “trophic subweb” mod
which describe competition between species 1 and species 2, with species
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4. Model Results
A continuous systems modeling program (IBM, 1968) was written

solve this system of simultaneous non-linear differential equations (Apper

dix A) on an IBM 360/50 Data Processing System.

The program was utilized with assumed model coefficients which we;

believed to have some direct bearing on Paine’s (1966) problem. In

model species 1 and species 2 compete, and comparisons are made of po
lations of these species with and without predation by species 3. To re
to Paine’s case, the subweb might be assumed to consist of the acorn barna
Balanus glandula and Tetraclita squamosa competing for space and the st

Pisaster ochraceus eating them. The model coefficients were varied ove
fairly wide range compatible with the data at hand which was estima

primarily from Paine (1966) and Thorson (1956).
The first computer run involved equal competition and no predat

(ie. ay3 = a3y = a3, = 0, N3 = 0). The results of this run are shown

Fig. 1. The scales on this and all following figures are similar. That is, t
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Fic. 1. Results of simulated equal competition between two species and no predation.

in years is shown on the abscissa and the numbers of N, and N, (x1
are shown on the left-hand ordinate and the numbers of the predator
shown on the right ordinate. Lines (curves) for each species are labeled

the figure. From Fig. 1 it is apparent that the two species increase togeth .

They asymptotically approach some maximum and persist indefinitely.
first run involved equal competition, and ecologically it is not reasona
to expect exactly this condition in the real world.
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. Flo. 2. Results of simulated competition between two species (e2 = 0-7g;) with no
edation.

In Fig. 2 the results of a case involving no predation but giving species 1
competitive advantage are shown. The advantage to species 1 was given
making its intrinsic rate of increase higher than that of species 2 (i.e.
is 309 less than e,). The results in Fig. 2 clearly show that species 2
uld be virtually extinct after 10 years (only six individuals remaining).
¢ break in the numbers of species 1 relates to data lying within the com-
pressed left ordinate scale.

100~

2“50— -125
1 Joe
2 N: K]
= : g
S 30} Hi5 2
2 N P
w5 20} 410 =
§
g 10F 45
'é N2

0 Lo T N IS W R BTN INTT TSN U 0

0 2 4 6 8 0o 2 14 18 1B 20

Time (years)

Fig. 3. Results of simulated competition between two species (e, = 0-7¢;) with equal
redation on both species. .
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N, and N, are considerably lower than in the previous figure (Fig. 2). N
reduced to one individual after 10 years. There are cyclic oscillations
both N, and N3, with N, lagging N,. The results resemble a damped Volte
predation equation with reference to N, and N,.

Next the competitive advantage of species 1 was reduced by making
(the intrinsic rate of increase) only 109; less than ¢,, with no predation.
results are shown in Fig. 4. From this figure it is evident that N, does bettes
for a while and appears to persist for a longer time, but eventually becom
extinct. If we superimpose the same predation as used previously (Fig.
the results are as shown in Fig. 5. It is evident that N, again dies out faster

nder predation. The results of the simulation modeling thus far do not
dicate that predation (under the competitive conditions described) has any
ndency to increase relative survival and thus increase species diversity.
Ip to this point only the ¢ coefficients, which relate to intrinsic rates of
crease, were altered.

The next approach involved giving species 1 a competitive advantage
anifested in a self-limiting factor. The coefficient «,, was set at a value
09 less than a,,. With all other factors equal and similar to those above
nd without predation, the model results shown in Fig. 6 were obtained.
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FiG. 4. Results of simulated competition between two species (e; = 0-9¢;) with
predation.
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FIG. 6. Results of simulated competition between two species (a;; = 0:9a,z) with no

100
Y sof 125
2 e results show only that N, persists somewhat longer than under the
;'— 40} 120 nditions of Fig. 4. If we now add a predator to the system, the results are
° W, = shown in Fig. 7. This figure illustrates dramatic changes in the relative
e 3 . g. 7. This figu al ama ang re
2 30 415 3 -populations of N, and N, after a few years. Also, the much greater absolute
B z umbers of N, even after 20 years, are of interest. It seems that under the
s 20 410 5 nditions described, N, is virtually extinct in 20 years without predation
8 = ig. 6). On the other hand, under identical conditions, except with predation,
g 0 45 , is at a relatively high numerical value with little indication of change
g ‘over the time span considered (Fig. 7).

O e 0 © Another competitive coefficient examined was the limiting effect of the

Time (years)

FIG. 5. Results of simulated competition between two species (s; = 0-9¢,) with equal
predation on both species.

ther competing species (a;, and a,,). If «,, is reduced to 109 less than
@, it is found that N, survives better and remains larger compared to N,
even after several years. Figure 8 illustrates the case of «,, being 109 less
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, (predator) was increased from 10 to 16 at time zero. It should be pointed
ut that the basic effect of predation is not changed. Runs with and without
arly oscillations show very nearly the same N, and N, after 20 years. The
ositive effect of predation on N, is still apparent. It is also apparent that
e predator still shows small cycles, and dN,/d¢ and dN,/dt cycle as well.
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5. Discussion

Although it would be possible to exercise the model under other sets of
{ conditions, the results to date are adequate to lend support to Paine’s
ypothesis. Figure 9 is a summary of results. In this figure the ratio N,/N,
 plotted on a logarithmic scale vs. time on a linear scale. N;/N, can be
onsidered a crude index number related to the inverse of species diversity
1 the models. That is, as the ratio N,/N, increases, the species diversity
tends to decrease. At some extremely high value of N,/N, species 1 would

No. individuals N3

n
o
L
S

Thousands of individuals N} and

K<l
T
1

o

o
N

| T N S T T AT NN W N A AN T
o 2 "4 6 8 o 12 14 16 18 28
Time (years)

FIG. 7. Results of simulated competition between two species (a,; = 0:9az;) with equa}
predation on both species.
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FiG. 8. Results of simulated competition between two species (a;z = 0-9az;) with equal o B

predation on both species.

than the other coefficients with equal predation on both species. Also, this
figure illustrates a case where the system is started near “equilibrium
where the values of dN,/df, dN,/dt and dN,/dt are not large at time zero,
In the other figures the system was initialized with relatively large positi
values of dN,/dt and dN,/ds. The larger initial values better illustrate the
possible dynamics of the system and are also believed to be reasonabls
values in the real world. In Fig. 8 some of the oscillations of the system
are eliminated by modifying the initial conditions. In this case the value

| predation

(o] 49 8 12 16 20
Time (years)

'FIG. 9. Theoretical time history of species diversity as measured by the ratio Ny/N
nder the various conditions studied.
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be completely dominant and species 2 would be scarcely measurable.
this point the ecosystem would effectively have decreased from three speci
to two. From Fig. 9 it is evident that when N, has a competitive advant

N,. With predation, N, is smaller and therefore the rate of increase of the
atio is smaller. Similarly, if all coefficients are equal except a, ,, equation (17)
implifies to:

in its biotic potential ¢,, predation greatly decreased total numbers but d[log N,/N,] _ N 0
not affect the ratio N/N,. In the case where N, has a competitive advantage TR [o22—y2]N,.

in oy, (its self-limiting factor), predation can greatly decrease the ra
After 20 years we found that N, /N, ~ 310 without predationand N, /N, ~ 2
with predation. For the time span considered it is suggested that this differen ,
indicates a greater species diversity with predation than without predatior

The overall results of the modeling with several combinations of valu
of model coefficients, as indicated by the figures, showed a tendency tow:
“equilibrium” only as N, tended toward zero. Gause’s Principle of “o
niche—one species” persists when there are no perturbations by influen
outside the model and when measured on an evolutionary time scal
However, these studies clearly indicate that two species may theoretica
persist in the same niche under predation for a much longer time than th
would without predation. With a. proper choice of model coefficients th
time span of coexistence may be very long on a humanly observable scal

It is also possible to consider the outcomes of some simple models
competition between two species with predation by deriving analytic
expressions describing the rate of change of N,/N, (or log N,/N,) as
function of time. The following expressions were derived:

d[log N4/N,] _
dt

For the general case, this expression [equation (17)] is still difficult t

handle. However, for the simple competitive examples considered the expre

sions become more tractable. If all the a coefficients are equal for the tw
species, the simplified expression can be integrated to give:

N{/N3 = Ny/N3Ginisiany € 2" (18

Equation (18) is an expression for the ratio N,/N, as a function of tim

N,;/N, was unity initially in the computer runs with the & coefficients

constants. It can be seen from equation (18) that predation cannot affect thi

expression, and this is of course a check on the validity of the compute

analysis. Now if all coefficients are equal except «,, equation (17) becomes

d[log N,/N,]

dt

which describes competition only in «,, with no predation or equal preda
tion. Equation (19) describes the rate of change of log N,/N,. The rati
N,/N, increases when log N,/N, increases, and log N,/N, is a linear functio

n equation (20) the rate of increase of the ratio N,/N, is a function of N,.
h predation N, is also smaller. Hence, the rate of increase of the ratio
Iso smaller.

6. Conclusions

he results obtained from this model study lend qualified support to
e’s (1966) theory of increased local species diversity under predation.
se results also demonstrate that the effects of predation upon diversity
mong competing species depend heavily upon the nature of the
ompetition.
0 a resource manager the concept of a balanced or equilibrium popula-
on is measured in terms of a relatively short time scale. For example,
man (in press) has developed analog computer models of competing
h species which are compared with empirical data for relatively short
riods of time (i.e. a few decades, at most). The theory enunciated by Paine
nd examined further in this report may have considerable application in
source management studies—especially those related to aquatic resources.
is suggested, for example, that critical studies of the characteristic decline
[ fishing in newly-established ponds and reservoirs over time may demon-
ate how selective removal of predators results in a decline in species
versity and later overpopulation by one or more of the competing forage
xcies. Work on fish populations in small ponds, such as that summarized
 Swingle (1953) may lend itself to comparisons of Paine’s hypothesis with
npirical data.
It is recognized that the model developed in this report is idealized, and
is limitation has often been justly emphasized in criticisms of analytical
pulation dynamics models. However, the system modeling technique
SMP) used in the report lends itself to much more complex models which
n include such effects as seasonal cycles, spawning, catastrophic mortality,
. The limitation to realism of systems examined now appears to rest with
e biological data available and not with the analytical tools.

&1 =&+ (01— )Ny + (05— a3 )Ny + (23— 3)N5. (1

= [“21"‘“11]N1 (19
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A Stochastic Development of the Reversible
Michaelis-Menten Mechanism

P. J. STAFF

The University of New South Wales,
Kensington, New South Wales, Australia

Appendix A (Received 14 October 1968, and in revised form 9 October 1969)

A stochastic model for the reversible one substrate-one intermediate-one
product enzymic mechanism is developed, from which an exact solution
is found for the bivariate distribution of substrate and product at equili-
brium. As the marginal distributions of all species are available, equili-
brium properties of the system are examined. An approximation method is
demonstrated which utilizes the deterministic prediction, negligibly differ-
ent from the stochastic mean, in providing an approximation for the vari-
ance of the enzyme variate. Calculation of the moments of substrate and
product is simplified by relationships derived in terms of the enzymic
mean and variance. In systems of physical interest, where the numbers of
reactant molecules are large, the relative fluctuations are small.

SAMPLE CSMP COMPUTER PROGRAM FOR SOLUTION OF A SINGLE CASE

****CONTINUOUS SYSTEM MODELING PROGRAM?****
***PROBLEM INPUT STATEMENTS***
INITIAL _
INCON  IC1 =10000-0, IC2 = 10000-0, IC3 =100 '
PARAM  E1=322, All=322E-05, A12=3-22E-05, A13 =00, E2=322, .
A21 =322E-05, A22 =3-22E-05, A23=0-0, E3 =00, ...
A31=00, A32=00
DYNAMIC
NIDOT = NI*EI-A11*N1-A12*N2-A13*N3)
-N1=INTGRI(IC1, NIDOT)
N2DOT = N2*(E2-A21*N1-A22¥N2-A23*N3)
N2=INTGRL(IC2, N2DOT)
N3DOT = N3*(-E3 + A31*N1 -+ A32*N2)
N3 =INTGRL(IC3, N3DOT)
PRTPLT  NI(N2,N3,N1DOT), N2(N1,N3,N2DOT), N3(N1,N2,N3DOT)
TIMER FINT IM = 10-0, OUTDEL = -05
END 4
PARAM  El =322, All=3-22E-05, A12=3-22E-05, A13 =0-161, E2=3-22,
A21 = 322E~05, A22=3-22E-05, A23 =0-161, E3=1-385, ...
A31 = 0-6925E-04, A32=0-6925E-04

1. Introduction

fhe classical mathematical formulations for analysing and studying kinetic
ata of chemical and biochemical reactions are deterministic in nature.
n these models, the concentrations of the components are continuous
nathematical variables expressable as real-valued functions of the time after
nitiation of the reaction. The transformations of individual molecular species

END ind complexes are thus traced en masse, as the description is not sufficiently
STOP efined to treat individual molecular events. Of course, random fluctuations,
OUTPUT VARIABLE SEQUENCE hich would necessarily occur from physico-chemical arguments, are not
NIDOT NI N2DOT N2 N3DOT N3 | accounted for in the predictions given by the deterministic approach and for
OUTPUTS INPUTS PARAMS INTEGS + MEM BLKS FORTRAN DATA heir consideration, one must turn to the corresponding stochastic approach.
10(500)  27(1400)  16(400) 3+ 0= 3(300) 7(600) 1 ’ P £ PP

In the early part of this century, Michaelis & Menten (1913) established
e hypothesis that the mechanism of enzyme catalysis in which substrate
 converted to product, could be described by the stoichiometric equations

E+S2ES—-E+P,

here, E, S, ES, P represent the enzyme, substrate, enzyme-substrate and
221



