
Appendix B

Rvachev’s R-functions

B.1 Introduction
The expression 𝜙(𝑥 , 𝑦) = 12𝑅 (𝑅2 − 𝑥2 − 𝑦2) (B.1)

characterizes the disk of radius 𝑅 centered at the origin in the Cartesian 𝑥𝑦 coordinate
plane in the sense that 𝜙(𝑥 , 𝑦) is positive inside the disk, negative outside the disk, and
zero on the disk’s boundary. Similarly, the expression

𝜙(𝑥 , 𝑦) = 12𝑎 (𝑎2 − 𝑥2) (B.2)

characterizes the strip −𝑎 < 𝑥 < 𝑎 in the Cartesian coordinate plane in the sense that𝜙(𝑥 , 𝑦) is positive inside the strip, negative outside the strip, and zero on the strip’s bound-
ary. The normalizing factors 1/2𝑅 and 1/2𝑎 are chosen so that the derivatives of 𝜙 in the
inward normal directions at the boundary are +1. This normalization is not absolutely
necessary but helps simplify some of our calculations.

Generalizing the above, we say that the continuous function 𝜙 ∶ ℝ2 → ℝ is an indicator
function104 of the open domain Ω in the Cartesian 𝑥𝑦 coordinate plane, if

i. 𝜙 is infinitely differentiable everywhere in ℝ2, with the possible exception of the
points where the boundary of Ω is non-smooth, e.g., at Ω’s corners;

ii. for all (𝑥 , 𝑦) ∈ ℝ2 we have
𝜙(𝑥 , 𝑦) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

positive if (𝑥 , 𝑦) is inside Ω,
zero if (𝑥 , 𝑦) is on Ω’s boundary,
negative otherwise; (B.3)

iii. at the points of Ω’s boundary where 𝜙 is differentiable, the derivative of 𝜙 in the
inward normal direction is +1.

104The phrase indicator function used in the current context should not be confused with the same phrase
used with an entirely different meaning in other areas of analysis, such as measure theory. There, the indicator
function 𝜙 of the subset of a set takes on the value 1 inside the set and 0 outside the set.
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Given such a 𝜙, we may readily sketch the domainΩ by hand, or perhaps with the help
of a graphing software. The converse, that is, finding an indicator function 𝜙 for a givenΩ, is quite nontrivial, and that’s the subject of this appendix. That task is accomplished
through a technique that was introduced by Rvachev [57] in 1963; see also [58] for an
expanded treatment and an extensive bibliography. We limit our treatment of Rvachev’s
method to domains in ℝ2, but much of what is said here generalizes to higher-dimensional
domains.

We have already seen examples of indicator functions for a disk and a strip in (B.1)
and (B.2) above. Constructing an indicator function for the square𝑆 = {(𝑥 , 𝑦)∶ − 1 < 𝑥 , 𝑦 < 1},
however, imposes some challenges. Here are a few attempts:

1. Take 𝜙∶ (𝑥 , 𝑦) ↦ 1 −max(|𝑥 |, |𝑦 |). This function is continuous in ℝ2, positive in 𝑆,
and negative in the complement of the closure of 𝑆, but it fails to be differentiable
along the lines 𝑥 ± 𝑦 = 0.

2. Take 𝜙∶ (𝑥 , 𝑦) ↦ (1 − 𝑥2)(1 − 𝑦2). This function is continuous and differentiable.
However it fails to be negative outside of 𝑆. For instance, (2, 2) is outside of 𝑆 yet𝜙(2, 2) = +9. Furthermore, its gradient vanishes at the corners of 𝑆. This can lead
to numerical instabilities in some applications.

3. Take 𝜙∶ (𝑥 , 𝑦) ↦ √(1 − 𝑥2)(1 − 𝑦2). This function is continuous and differentiable
in the interior of 𝑆 but it’s undefined outside of 𝑆. Furthermore, the normal deriva-
tives on the square’s edges do not exist.

Rvachev’s technique, introduced in the subsequent sections, enables us to construct a
good indicator function for a square, as well as for significantly more complex geometric
shapes, as we shall see.

B.2 Rvachev’s R-functions
A function 𝜌∶ ℝ𝑛 → ℝ is called an R-function if the signs of its arguments, not their values,
determine the sign of the function’s value. For instance, 𝑓 (𝑥) = 𝑥 is an R-function since a
positive 𝑥 yields a positive 𝑓 (𝑥), and a negative 𝑥 yields a negative 𝑓 (𝑥), regardless of the
magnitude of 𝑥 . As another example, 𝑓 (𝑥 , 𝑦) = 𝑥𝑦 is an R-function since the sign of 𝑓 (𝑥 , 𝑦)
is determined solely by the signs of 𝑥 and 𝑦, and not their magnitudes. In contrast, the𝑓 (𝑥 , 𝑦) = 𝑥 + 𝑦 is not an R-function, since the sign of 𝑓 (𝑥 , 𝑦) depends on the magnitudes
of 𝑥 and 𝑦, and not solely on their signs. For instance, 𝑓 (3,−2) = +1 while 𝑓 (2,−4) = −1.

Of the infinitely many possible R-functions, the following three play key roles in our
subsequent developments: 𝑅 𝑐(𝑢) ≡ −𝑢, (B.4a)𝑅∩(𝑢, 𝑣) ≡ 𝑢 + 𝑣 − √𝑢2 + 𝑣2, (B.4b)𝑅∪(𝑢, 𝑣) ≡ 𝑢 + 𝑣 +√𝑢2 + 𝑣2. (B.4c)

The reason for the peculiar symbols/notation for these functions will become clear in
the sequel. It should be immediately obvious that 𝑅 𝑐 is an R-function since a positive 𝑢
yields a negative value, and vice versa. That the other two are also R-functions may not
be immediately obvious but upon a close inspection one may see that their signs are also
determined solely by the signs of their arguments; see Figure B.1 for their graphs.
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Figure B.1: The graphs of the R-functions 𝑅∩ on the left and 𝑅∪ on the right, plotted
along with zero-level planes. Observe that 𝑅∩ is positive only if both 𝑢 and𝑣 are positive, and 𝑅∪ is positive only if at least one of 𝑢 and 𝑣 are positive.

𝑢 𝑣 + −+ + −− − −
𝑢 𝑣 + −+ + +− + −

(a) The signs of 𝑅∩(𝑢, 𝑣) (b) The signs of 𝑅∪(𝑢, 𝑣)
Table B.1: The sign of 𝑅∩(𝑢, 𝑣) is positive if and only if both 𝑢 and 𝑣 are positive. The

sign of 𝑅∪(𝑢, 𝑣) is positive if and only if at least one of 𝑢 and 𝑣 is positive.

Table B.1 summarize the dependence of the signs of the R-functions 𝑅∩ and 𝑅∪ on the
signs of their arguments. The crucial observation here is that those tables are identical
with the truth tables of Boolean algebra, where “+” and “−” correspond to “true” and
“false”, respectively. In that sense, the functions 𝑅∩ and 𝑅∪ correspond to logical “and”
and “or”, and 𝑅 𝑐 corresponds to logical negation, or “not”.

Now, let us see how one may use the three R-function defined in (B.4) to construct
indicator functions of domains of varying complexity.

Consider a pair of overlapping domains Ω1 and Ω2 in ℝ2, and let 𝜙1 and 𝜙2 be their
indicator functions. We claim that 𝑅∩(𝜙1(𝑥 , 𝑦),𝜙2(𝑥 , 𝑦)) is the indicator function of the
intersection Ω1 ∩ Ω2. To see that, consider a point 𝑃(𝑥 , 𝑦) in the intersection. Since 𝑃 is
both in Ω1 and Ω2, we have 𝜙1(𝑥 , 𝑦) > 0 and 𝜙2(𝑥 , 𝑦) > 0. Then, referring to Table B.1(a),
we see that 𝑅∩(𝜙1(𝑥 , 𝑦),𝜙2(𝑥 , 𝑦)) > 0. On the other hand, if a point 𝑄(𝑥 , 𝑦) is not in
the intersection, then one or both of 𝜙1(𝑥 , 𝑦) and 𝜙2(𝑥 , 𝑦) are negative, and therefore,
referring to Table B.1(a) again, we see that 𝑅∩(𝜙1(𝑥 , 𝑦),𝜙2(𝑥 , 𝑦)) < 0. We conclude that(𝑥 , 𝑦) ↦ 𝑅∩(𝜙1(𝑥 , 𝑦),𝜙2(𝑥 , 𝑦)) is the indicator function of the intersection Ω1 ∩ Ω2 of the
domains Ω1 and Ω2. This explains the notation 𝑅∩ for this R-function.

A similar reasoning shows that (𝑥 , 𝑦) ↦ 𝑅∪(𝜙1(𝑥 , 𝑦),𝜙2(𝑥 , 𝑦)) is the indicator func-
tion of the unionΩ1∪Ω2 of the domainsΩ1 andΩ2. Finally, if 𝜙 is the indicator function of
a domain Ω ∈ ℝ2, then (𝑥 , 𝑦) ↦ 𝑅𝑐(𝜙(𝑥 , 𝑦)) is the indicator function of the complementΩ𝑐 of the Ω in ℝ2. Figure B.2 summarizes the preceding conclusions.
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Ω1𝜙1 > 0 Ω2
𝜙2 > 0

Ω1 ∩ Ω2 ∶ 𝑅∩(𝜙1,𝜙2)

Ω1𝜙1 > 0 Ω2
𝜙2 > 0

Ω1 ∪ Ω2 ∶ 𝑅∪(𝜙1,𝜙2)
Ω2 Ω𝑐2

𝜙2 > 0
Ω𝑐2 ∶ 𝑅 𝑐(𝜙2)

Figure B.2: The indicator function of the intersection of the domains Ω1 and Ω2 is𝑅∩(𝜙1,𝜙2). That of their union is 𝑅∪(𝜙1,𝜙2), and that of the complementΩ2 is 𝑅 𝑐(𝜙2).
B.3 Complex geometries from simple shapes

The purpose of this section is to demonstrate that indicator functions of fairly complex
domains may be constructed through expressing the domains as the unions, intersections,
and complements of simple domains.

B.3.1 Strips

The vertical strip
{(𝑥 , 𝑦) ∶ −𝑎 < 𝑥 < 𝑎} may be viewed as the intersection of the half-

spaces corresponding to the indicator functions 𝜙1(𝑥 , 𝑦) = 𝑥 + 𝑎 and 𝜙2(𝑥 , 𝑦) = 𝑎 − 𝑥 .
Thus, we may apply the intersection function 𝑅∩ defined in (B.4b) to obtain the indicator
function of the strip:𝜙v-strip(𝑥 , 𝑦; 𝑎) ≡ 𝑅∩(𝜙1(𝑥 , 𝑦),𝜙2(𝑥 , 𝑦))= 𝜙1(𝑥 , 𝑦) + 𝜙2(𝑥 , 𝑦) − √𝜙1(𝑥 , 𝑦)2 + 𝜙2(𝑥 , 𝑦)2= (𝑥 + 𝑎) + (𝑎 − 𝑥) − √(𝑥 + 𝑎)2 + (𝑎 − 𝑥)2= 2𝑎 − √2(𝑥2 + 𝑎2).
Although this is a perfectly fine indicator function for the strip, it is not the simplest. The
ad hoc function 𝜙v-strip(𝑥 , 𝑦; 𝑎) = 12𝑎 (𝑎2 − 𝑥2),
is also an indicator function for that strip. In our future constructions we prefer to use the
latter since it is algebraically simpler. Figure B.3 shows the graphs of these two indicator
functions, and Figure B.4 illustrates the construction of the strip as the intersection of two
half-spaces.

As to the horizontal strip
{(𝑥 , 𝑦) ∶ −𝑏 < 𝑦 < 𝑏}, we will use the indicator function
𝜙h-strip(𝑥 , 𝑦; 𝑏) = 12𝑏 (𝑏2 − 𝑦2).

B.3.2 A square

The square
{(𝑥 , 𝑦)∶ −1 < 𝑥 , 𝑦 < 1}may be viewed as the intersection of the strips char-

acterized through the 𝜙v-strip(𝑥 , 𝑦; 1) and 𝜙h-strip(𝑥 , 𝑦; 1) indicator functions constructed
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Figure B.3: The strip
{(𝑥 , 𝑦) ∶ −1 < 𝑥 < 1} may be characterized by the indicator

function 2−√2(𝑥2 + 1) (a hyperbola, plotted in red) or 12 (1−𝑥2) (a parabola,
plotted in blue). Both satisfy the requirements of an indicator function but
we prefer the parabola since it is algebraically simpler.

𝑥
(a)

𝑦
−1 1 𝑥

(b)

𝑦
−1 1 𝑥

(c)

𝑦
−1 1

Figure B.4: The intersection of the half-spaces 𝑥 > −1 (left) and 𝑥 < 1 (center) results
in the strip −1 < 𝑥 < 1 shown on the right.

earlier. The indicator function 𝜙square(𝑥 , 𝑦) of the square is obtained by applying the R-
function 𝑅∩ defined in (B.4b) to the two strips:

𝜙square(𝑥 , 𝑦) = 𝑅∩(𝜙v-strip(𝑥 , 𝑦; 1),𝜙h-strip(𝑥 , 𝑦; 1))= 12(1 − 𝑥2) + 12(1 − 𝑦2) −√(12(1 − 𝑥2))2 + (12(1 − 𝑦2))2
= 12[(1 − 𝑥2) + (1 − 𝑦2) − √(1 − 𝑥2)2 + (1 − 𝑦2)2]. (B.5)

Figure B.5 illustrates the construction of the square as the intersection of the two
strips. The graph of the indicator function 𝜙square is shown in Figure B.8(a).

B.3.3 A square with a hole

Consider the square Ω1 = {(𝑥 , 𝑦)∶ − 1 < 𝑥 , 𝑦 < 1} and the disk Ω2 = {(𝑥 , 𝑦)∶ 𝑥2 +𝑦2 <1/4} of radius 1/2 centered at the origin. Figure B.6 shows the domain Ω = Ω1 ∩ Ω𝑐2
obtained by removing the disk Ω2 from the square Ω1.

The indicator function 𝜙square of Ω1 was constructed in the previous section. The indi-
cator function ofΩ2 is 𝜙disk(𝑥 , 𝑦) = 14 −𝑥2−𝑦2; see equation (B.1). Therefore, the indicator
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𝑥
(a)

𝑦
1−1

1
−1 𝑥

(b)

𝑦
1−1

1
−1 𝑥

(c)

𝑦
1−1

1
−1

Figure B.5: The intersection of the strips −1 < 𝑥 < 1 (left) and −1 < 𝑦 < 1 (center) and
results in the square shown on the right.

𝑥

𝑦

1−1
1

−1
Figure B.6: The square with a hole removed is the domain Ω = Ω1 ∩ Ω𝑐2 , where Ω1 ={(𝑥 , 𝑦) ∶ −1 < 𝑥 , 𝑦 < 1} and Ω2 = {(𝑥 , 𝑦) ∶ 𝑥2 + 𝑦2 < 1/4}.

function 𝜙square-hole of Ω is calculated as

𝜙square-hole(𝑥 , 𝑦) = 𝑅∩(𝜙square(𝑥 , 𝑦),𝑅 𝑐(𝜙disk(𝑥 , 𝑦)))= 𝑅∩(𝜙square(𝑥 , 𝑦),−𝜙disk(𝑥 , 𝑦))= 𝜙square(𝑥 , 𝑦) − 𝜙disk(𝑥 , 𝑦) − √𝜙square(𝑥 , 𝑦)2 + 𝜙disk(𝑥 , 𝑦)2.
The graph of the indicator function 𝜙square-hole is shown in Figure B.8(c).

Remark B.1. The ad hoc designed function𝜙square-hole-alt(𝑥 , 𝑦) = 𝜙square(𝑥 , 𝑦) × (−𝜙disk(𝑥 , 𝑦))
can also serve as an indicator function for the domainΩ. Indeed, the first factor is positive
inside the square, and the second factor is positive outside the hole. It has the advantage
over 𝜙square-hole in having a significantly simpler algebraic form. Its drowback is that unlike
the cut-off functions constructed through R-functions, its inward normal derivatives on
the domain’s bounary are not constants, but that is not a concern if we are going to use
this merely as a cut-off function in our neural network applications.
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𝑥
𝑦

1−1
1

−1
Figure B.7: The L-shaped domain is the intersection of the square

{(𝑥 , 𝑦)∶ −1 < 𝑥 , 𝑦 <1}with the union of the half-spaces
{(𝑥 , 𝑦)∶ 𝑥 > 0} and

{(𝑥 , 𝑦)∶ 𝑦 > 0}.
B.3.4 An L-shaped domain

There are various ways of constructing the indicator function of the L-shaped domain
shown in Figure B.7. The simplest is to begin with the union of the half-spaces 𝑥 > 0 and𝑦 > 0 which encompasses the entire ℝ2 minus the third quadrant. Then we intersect the
result with the square whose indicator function 𝜙square was constructed in section B.3.2.
Writing 𝜙1(𝑥 , 𝑦) = 𝑥 and 𝜙2(𝑥 , 𝑦) = 𝑦 for the indicator functions of the two half-spaces,
we conclude that the indicator function 𝜙L-shaped of the L-shaped domain is𝜙L-shaped(𝑥 , 𝑦) = 𝑅∩(𝜙square(𝑥 , 𝑦),𝑅∪(𝜙1(𝑥 , 𝑦),𝜙2(𝑥 , 𝑦))).
In view of the definition 𝑅∪ in (B.4c) we have𝑅∪(𝜙1(𝑥 , 𝑦),𝜙2(𝑥 , 𝑦))= 𝜙1(𝑥 , 𝑦) + 𝜙2(𝑥 , 𝑦) +√𝜙1(𝑥 , 𝑦)2 + 𝜙2(𝑥 , 𝑦)2= 𝑥 + 𝑦 + √𝑥2 + 𝑦2,
and therefore 𝜙L-shaped(𝑥 , 𝑦) = 𝜙square(𝑥 , 𝑦) + (𝑥 + 𝑦 +√𝑥2 + 𝑦2)−√𝜙square(𝑥 , 𝑦)2 + (𝑥 + 𝑦 +√𝑥2 + 𝑦2)2, (B.6)

where 𝜙square(𝑥 , 𝑦) is given in (B.5). Here is the expanded version of that expression:

𝜙L-shaped(𝑥 , 𝑦) = 1 − 12𝑥2 − 12𝑦2 − 12√(𝑥2 + 1)2 + (𝑦2 + 1)2 + 𝑥 + 𝑦 +√𝑥2 + 𝑦2
−√(1 − 12𝑥2 − 12𝑦2 − 12√(𝑥2 + 1)2 + (𝑦2 + 1)2)2 + (𝑥 + 𝑦 +√𝑥2 + 𝑦2)2.

The graph of 𝜙L-shaped is shown in Figure B.8(d).

B.3.5 A quarter-disk

The quarter-disk Ω = {(𝑥 , 𝑦)∶ 𝑥2 + 𝑦2 < 1, 𝑥 > 0, 𝑦 > 0} is the intersection of of the
full disk Ω0 = {(𝑥 , 𝑦)∶ 𝑥2 + 𝑦2 < 1} and the half-spaces Ω1 = {(𝑥 , 𝑦) ∶ 𝑥 > 0} and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure B.8: A gallery of indicator functions.

Ω2 = {(𝑥 , 𝑦) ∶ 𝑦 > 0}. The domain Ω = Ω0 ∩ Ω1 ∩ Ω2 is shown in Figure B.9. Letting𝜙quarter-disk(𝑥 , 𝑦), 𝜙0(𝑥 , 𝑦), 𝜙1(𝑥 , 𝑦), 𝜙2(𝑥 , 𝑦) denote the indicator functions of the domain
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𝑥

𝑦

1

1

Figure B.9: The quarter-disk
{(𝑥 , 𝑦)∶ 𝑥2 + 𝑦2 < 1, 𝑥 > 0, 𝑦 > 0} is the intersection of

the full disk
{(𝑥 , 𝑦) ∶ 𝑥2 + 𝑦2 < 1} and the half-spaces

{(𝑥 , 𝑦)∶ 𝑥 > 0}
and

{(𝑥 , 𝑦)∶ 𝑦 > 0}.
Ω, Ω0, Ω1, Ω2, respectively, we have𝜙quarter-disk(𝑥 , 𝑦) = 𝑅∩(𝜙0(𝑥 , 𝑦),𝑅∩(𝜙1(𝑥 , 𝑦),𝜙2(𝑥 , 𝑦)))= 𝑅∩(12(1 − 𝑥2 − 𝑦2),𝑅∩(𝑥 , 𝑦))= 𝑅∩(12(1 − 𝑥2 − 𝑦2), 𝑥 + 𝑦 − √𝑥2 + 𝑦2)= 12(1 − 𝑥2 − 𝑦2) + 𝑥 + 𝑦 − √𝑥2 + 𝑦2−√[12(1 − 𝑥2 − 𝑦2)]2 + [𝑥 + 𝑦 − √𝑥2 + 𝑦2]2.
The graph of the indicator function 𝜙quarter-disk is shown in Figure B.8(e).

B.3.6 Combining disks

Consider the two disksΩ1 = {(𝑥 , 𝑦) ∶ (𝑥 + 1)2 + 𝑦2 < 22}, Ω2 = {(𝑥 , 𝑦) ∶ (𝑥 − 1)2 + 𝑦2 < 22},
whose indicator functions, according to (B.1), are𝜙1(𝑥 , 𝑦) = 14(4 − (𝑥 + 1)2 − 𝑦2), 𝜙2(𝑥 , 𝑦) = 14(4 − (𝑥 − 1)2 − 𝑦2).
Figure B.10 shows the domainsΩ1∪Ω2, Ω1∩Ω2, andΩ𝑐1 ∩Ω2. The corresponding indicator
functions may be obtained readily. For instance, the indicator function of the domainΩ𝑐1 ∩ Ω2 is 𝜙(𝑥 , 𝑦) = 𝑅∩(𝑅 𝑐(𝜙1(𝑥 , 𝑦)),𝜙2(𝑥 , 𝑦))= 𝑅∩(−𝜙1(𝑥 , 𝑦),𝜙2(𝑥 , 𝑦))= −𝜙1(𝑥 , 𝑦) + 𝜙2(𝑥 , 𝑦) − √𝜙1(𝑥 , 𝑦)2 + 𝜙2(𝑥 , 𝑦)2,
where 𝜙1 and 𝜙2 are given above. The graphs of the indicator functions of the domainsΩ1 ∪ Ω2, Ω1 ∩ Ω2, and Ω𝑐1 ∩ Ω2 are shown in Figure B.8(f), B.8(g), and B.8(h), respectively.
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𝑥
(a)

𝑦

1−1
1
−1Ω1 Ω2

𝑥
(b)

𝑦

1−1
1
−1

Ω1 ∪ Ω2

𝑥
(c)

𝑦

1−1
1
−1

Ω1 ∩ Ω2
𝑥

(d)

𝑦

1−1
1
−1

Ω𝑐1 ∩ Ω2

Figure B.10: The domains Ω1 and Ω2 are disks of radius 2 each, centered at (−1, 0) and(1, 0) (above left). The domains Ω1 ∪Ω2, Ω1 ∩Ω2, and Ω𝑐1 ∩Ω2 are shown in
he remaining subfigures.

B.3.7 A disk and a square

Consider the disk Ω1 = {(𝑥 , 𝑦) ∶ 𝑥2 + (𝑦 − 2)2 < 22} and the square Ω2 = {(𝑥 , 𝑦) ∶ −1 <𝑥 , 𝑦 < 1}. These, and the domains Ω1 ∪ Ω2 and Ω1 ∩ Ω𝑐2 are shown in Figure B.11. The
indicator function of Ω1 is

𝜙1 = 14(4 − 𝑥2 − (𝑦 − 2)2),
while the indicator function of Ω2 is given in (B.5). The reader should be able to construct
the indicator functions of the domains Ω1 ∪ Ω2 and Ω1 ∩ Ω𝑐2 in a manner similar to the
foregoing illustrations. The graphs of the indicator functions of the domains Ω1 ∪Ω2, andΩ1 ∩ Ω𝑐2 are shown in Figure B.8(i) and B.8(j), respectively.

B.3.8 A disk with an L-shaped hole

The domain Ω shown in Figure B.12 consists of a disk, Ω1, with an L-shaped hole, Ω2
removed from it. We have Ω = Ω1 ∩ Ω𝑐2. The indicator function of the disk is 𝜙1(𝑥 , 𝑦) =14 (4 − 𝑥2 − 𝑦2). The indicator function 𝜙2 of the L-shaped hole was constructed in sec-
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𝑥
(a)

𝑦

12

−1 1−1
Ω1

Ω2
(b)

Ω1 ∪ Ω2

(c)

Ω1 ∩ Ω𝑐2

Figure B.11: The domains Ω1 (a disk) and Ω2 (a square) are shown on the left. The
domains Ω1 ∪ Ω2 and Ω1 ∩ Ω𝑐2 are shown in lavender.

𝑥

𝑦

1−1
1

−1 2−2

2

−2

Ω1
Ω2

Ω
Figure B.12: The shaded domain, Ω, consists of a disk, Ω1, with an L-shaped hole, Ω2,

removed from it. We have Ω = Ω1 ∩ Ω𝑐2.
tion B.3.4. Therefore the indicator function of Ω is𝜙(𝑥 , 𝑦) = 𝑅∩(𝜙1(𝑥 , 𝑦),𝑅 𝑐(𝜙2(𝑥 , 𝑦)))= 𝑅∩(𝜙1(𝑥 , 𝑦),−𝜙2(𝑥 , 𝑦))= 𝜙1(𝑥 , 𝑦) − 𝜙2(𝑥 , 𝑦) − √𝜙1(𝑥 , 𝑦)2 + 𝜙2(𝑥 , 𝑦)2.
The graph of the indicator functions of Ω is shown in Figure B.8(k).

B.4 The need for symbolic calculus software
A striking aspect of the indicator functions constructed in the previous sections is that
their algebraic expressions tend to be quite complex. What is of concern is that in our
applications we need not only the indicator function 𝜙 of a domain, but also the deriva-
tives 𝜕𝜙𝜕𝑥 , 𝜕𝜙𝜕𝑦 , 𝜕2𝜙𝜕𝑥2 , 𝜕2𝜙𝜕𝑥𝜕𝑦 , 𝜕2𝜙𝜕𝑦2 . In anything other than the most trivial cases, the calculation of
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those derivatives can be tedious and error-prone, and the task is best delegated to com-
puter software dedicated to symbolic calculus. As of this writing, the most popular such
software are Maple and Mathematica. In this section we will see how one may perform
the calculation in Maple105 and translate the result to C code.

The calculation of the partial derivatives and the translation of the result to C code is
performed through the following general-purpose Maple procedure:

to_C := proc(expr)
local phi, ans := Array(0..2, 0..2);
ans[0,0] := expr:
ans[1,0] := diff(expr, x):
ans[0,1] := diff(expr, y):
ans[2,0] := diff(expr, x, x):
ans[1,1] := diff(expr, x, y):
ans[0,2] := diff(expr, y, y):
CodeGeneration:-C(ans, declare=[x::numeric, y::numeric],

optimize, resultname=phi);
end proc:

The procedure to_C() takes an expression in the 𝑥 and 𝑦 variables and prints to
the screen the C code for evaluating that expression as well as the five partial derivatives
noted above. For instance, executing to_C(sqrt(x^2 + y^2)) in Maple, prints

t1 = y * y;
t2 = x * x;
t3 = t2 + t1;
t4 = pow(t3, -0.3e1 / 0.2e1);
t5 = t3 * t4;
phi[0][0] = pow(t3, 0.2e1) * t4;
phi[0][1] = t5 * y;
phi[0][2] = -t1 * t4 + t5;
phi[1][0] = t5 * x;
phi[1][1] = -t4 * x * y;
phi[1][2] = 0;
phi[2][0] = -t2 * t4 + t5;
phi[2][1] = 0;
phi[2][2] = 0;

We then copy that output and paste it into our C programs. The auxiliary variablest1, t2,
etc., introduced here need to be declared of the type double in the C code. Therefore we
edit/modify Maple’s output by declaring their types. The resulting C function will look
like this:

void my_phi(double x, double y, double phi[3][3])
{

double t1 = y * y;
double t2 = x * x;
double t3 = t2 + t1;
double t4 = pow(t3, -0.3e1 / 0.2e1);
double t5 = t3 * t4;

105The calculation may be performed in Mathematica as well, but as of this writing I don’t know enough
about Mathematica to provide a useful guide.
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phi[0][0] = pow(t3, 0.2e1) * t4;
phi[0][1] = t5 * y;
phi[0][2] = -t1 * t4 + t5;
phi[1][0] = t5 * x;
phi[1][1] = -t4 * x * y;
phi[1][2] = 0;
phi[2][0] = -t2 * t4 + t5;
phi[2][1] = 0;
phi[2][2] = 0;

}

The function receives the values of x and y, and a pointer to the 3 × 3 array phi. It
evaluates 𝜙 and its derivatives at (𝑥 , 𝑦), and places those values in the array phi according
to the scheme⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[phi[0][0] [phi[0][1] [phi[0][2]
[phi[1][0] [phi[1][1] [phi[1][2]
[phi[2][0] [phi[2][1] [phi[2][2]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜙 𝜕𝜙𝜕𝑦 𝜕2𝜙𝜕𝑦2𝜕𝜙𝜕𝑥 𝜕2𝜙𝜕𝑥𝜕𝑦 0𝜕2𝜙𝜕𝑥2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

B.5 Exercises
1. Let Ω1 = {(𝑥 , 𝑦)∶ 𝑥2 + 𝑦2 < 4} and Ω2 = {(𝑥 , 𝑦)∶ − 2 < 𝑥 < 2, − 1 < 𝑦 < 1}.

Find the indicator function of the domain Ω1 ∩ Ω𝑐2 .
2. Let Ω0 = {(𝑥 , 𝑦)∶ − 2 < 𝑥 < 2, − 2 < 𝑦 < 2},Ω1 = {(𝑥 , 𝑦)∶ − 1 < 𝑥 < 1},Ω2 = {(𝑥 , 𝑦)∶ − 1 < 𝑦 < 1}.

Find the indicator function of the domain Ω0 ∩ (Ω1 ∪ Ω2).
3. Let Ω1 and Ω2 be disks of radius 1/4 each, centered at (−1/2, 0) and (1/2, 0), and

let Ω0 be the unit disk centered at (0, 0). Find the indicator function of the domain
formed by removing the “holes” Ω1 and Ω2 from Ω0. Here is the graph of the indi-
cator function.


