
Chapter 28

Neural networks for
solving PDEs

Prerequisites: Chapters 7, 8 18 27

28.1 Introduction
In Chapter 27 we implemented a neural networks methodology for solving boundary
value problem (27.6) for general second order ordinary di�erential equations (ODEs) in
one unknown. The purpose of this chapter is to produce a similar solver for boundary
value problems for general second order partial di�erential equations (PDEs) general sec-
ond order in in two independent variables and one unknown. Writing 𝑢(𝑥 , 𝑦) for the
unknown, and 𝑢𝑥 for the derivative 𝜕𝜕𝑥 𝑢(𝑥 , 𝑦), etc., boundary value problem is expressed
as 𝐹�𝑥 , 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑥𝑥 , 𝑢𝑥𝑦 , 𝑢𝑦𝑦� = 0 𝑥 ∈ Ω ⊂ 𝑅2, (28.1a)𝑢(𝑥 , 𝑦) = 0, (𝑥 , 𝑦) ∈ 𝜕Ω, (28.1b)

where Ω is a domain in 𝑅2, and 𝜕Ω is the domain’s boundary. As in the case of ODEs, we
choose a neural network with a single hidden layer of 𝑞 units as depicted in Figure 28.1.
The inputs marked 𝑥1 and 𝑥2 on the diagram correspond to the independent variables 𝑥
and 𝑦 in the formulation (28.1).

𝑥1

𝑥2

𝑢1
𝑢2
𝑢3

𝑤11
𝑤12𝑤13

𝑤21
𝑤22
𝑤23

𝑣1𝑣2
𝑣3 𝑦 = 𝑁 (𝑥1, 𝑥2)

Figure 28.1: A neural network with a single hidden layer of 𝑞 = 3 units, for solving the
boundary value problem (28.1).

379

380 Chapter 28. Neural networks for solving PDEs

The units within the hidden layer operate as depicted in Figure 27.2. Thus, the unit 𝑖
gathers weighted inputs from 𝑥1 and 𝑥2, and adds a bias 𝑢𝑖 , as in𝑧𝑖 = 𝑢𝑖 + 𝑤𝑖1𝑥1 + 𝑤𝑖2𝑥2,
and produces the output 𝜎 (𝑧𝑖), where 𝜎 is the sigmoid function (27.1). The outputs of
the unit are summed with weights 𝑣𝑖 at the output unit, which then produces the overall
output 𝑁 (𝑥1, 𝑥2) = 𝑞�𝑖=1 𝑣𝑖𝜎 (𝑧𝑖). (28.2)

We note that 𝑁 is de�ned in terms of 4𝑞 parameters, 𝑢𝑖 , 𝑣𝑖 , 𝑤1𝑖 , 𝑤2𝑖 , 𝑖 = 1, 2, … , 𝜈 .
Derivatives of any order of𝑁 with respect to the input variableswas calculated in (27.3).

In the current case the general formula reduces to𝜕𝑁𝜕𝑥1 = 𝑞�𝑖=1 𝑣𝑖𝑤𝑖1𝜎′(𝑧𝑖), 𝜕𝑁𝜕𝑥2 = 𝑞�𝑖=1 𝑣𝑖𝑤𝑖2𝜎′(𝑧2),𝜕2𝑁𝜕𝑥21 = 𝑞�𝑖=1 𝑣𝑖𝑤2𝑖1𝜎′′(𝑧𝑖), 𝜕2𝑁𝜕𝑥1𝜕𝑥2 = 𝑞�𝑖=1 𝑣𝑖𝑤𝑖1𝑤𝑖2𝜎′′(𝑧𝑖), 𝜕2𝑁𝜕𝑥22 = 𝑞�𝑖=1 𝑣𝑖𝑤2𝑖1𝜎′′(𝑧𝑖).
(28.3)

We seek a solution to (28.1) of the form 𝑢(𝑥 , 𝑦) = 𝜙(𝑥 , 𝑦)𝑁 (𝑥 , 𝑦), where 𝑁 (𝑥 , 𝑦) is
the transfer function of a suitably tuned neural network, and 𝜙(𝑥 , 𝑦) is a function which
we pick, a priori, to enforce the boundary condition (28.1b). Unlike in the case of ODEs,
�nding a 𝜙 which is positive in the domain Ω zero on the boundary, and negative in the
outside, is generally a nontrivial task. We will have more to say about this in Section 28.8.
Other than that, the work�ow is pretty much the same as that in the case of ODEs. We
evaluate the residual at (𝑥 , 𝑦):𝑅(𝑥 , 𝑦) = 𝐹�𝑥 , 𝑦, 𝜙𝑁 , (𝜙𝑁)𝑥 , (𝜙𝑁)𝑦 , (𝜙𝑁)𝑥𝑥 , (𝜙𝑁)𝑥𝑦 , (𝜙𝑁)𝑦𝑦�, (28.4)

and then calculate the residual error𝐸 = 𝜈�𝑖= 𝑅(𝑥𝑖 , 𝑦𝑦)2, (28.5)

where (𝑥𝑖 , 𝑦𝑖) ∈ Ω, 𝑖 = 1, 2, … , 𝜈 are suitably selected training points. We pass 𝐸 to Nelder
Mead module to �nd the network’s parameters 𝑢, 𝑣, and 𝑤 that minimize 𝐸. Once the
network is thus trained, we apply it to calculate the solution at arbitrary inputs (𝑥 , 𝑦) ∈ Ω.

In solving ODEs, we distributed the 𝜈 training points uniformly within the ODE’s
domain. The equivalent in the case of PDEs would be to enclose the domain Ω within
a bounding box, let’s say (𝑎, 𝑏) × (𝑐, 𝑑), impose a uniform grid on the bounding box, and
then pick those grid points that fall inside Ω as training points. For the sake of variety,
however, we choose a di�erent approach. We select 𝜈 points within the bounding box
from a random distribution, and pick the subset that falls inside Ω for training.

28.2 An overview of the program
Our implementation of the neural networks for solving PDEs is in the �le neural-net-pde.c.
The header �le neural-net-pde.h provides the application’s interface.

Additionally, the program relies on the xmallocmodule of Chapter 7) to allocate mem-
ory, the Nelder Mead module of Chapter 18 to minimize the objective function, and the

28.2. An overview of the program 381

array.h header �le of Chapter 8 to construct vectors and matrices. Therefore, following
the recommendations of Chapters 2 and 6, the program’s directory will look like this:

$ cd neural-nets
$ ls -F
Makefile nelder-mead.c@ plot-with-matlab.c
array.h@ nelder-mead.h@ xmalloc.c@
demo-L-shaped.c neural-nets-pde.c xmalloc.h@
demo-square-with-hole.c neural-nets-pde.h
demo-square.c plot-with-maple.c

The primary task in neural-net-pde.c is to provide the infrastructure to encode the
residual error function 𝐸 (equation (28.5)) for the generic second order boundary value
problem (28.1). The �les demo-*.c de�ne concrete instances of the boundary value prob-
lem (28.1)—see Section 28.5 for the details—and then call the Nelder Mead module to mini-
mize 𝐸 by tuning the neural network’s parameters. With the network thus trained, the so-
lution 𝑢(𝑥 , 𝑦) of the boundary value problem may be evaluated at any desired point (𝑥 , 𝑦).

The �les plot-with-maple.c de�nes a functionwhich applies the trained neural network
to produce a sequence of pairs �𝑥𝑖 , 𝑦𝑖𝑢(𝑥𝑖 , 𝑦𝑖)�, 𝑖 = 0, 1, … , 𝑛, and writes the result in the
form of a M���� script, which when loaded into M����, produces a graph of the solution.
The �les plot-with-matlab.c does the same, but writes a script suitable for loading into
M�����.

Note: This chapter’s plot-with-maple.c and plot-with-matlab.c which are available at the
book’s website, are quite di�erent from the previous chapter’s �les of the same name
which were made for plotting solution curves of ODEs. The ones in this chapter plot
solutions of PDEs as surfaces in 3D.

Here is the transcript of a session on executing the compiled demo-square.c:

$./demo-square
Usage:

./demo-square q nu
q : number of units in the hidden layer (q ≥1)
nu : number of training points (nu ≥1)

We see that when demo-square is invoked without additional arguments, it prints a
help message and exits. The message indicates the need to specify two arguments. The
�rst argument is the number 𝑞 of units in the hidden layer. The second argument is
the number 𝜈 which is used to generate the random training points, as described in the
previous section.

When demo-square is supplied with the requisite arguments, it produces the output
shown in Listing 28.1. That corresponds to solving the boundary value problem with �ve
units in the hidden layer, and six training points. The Nelder–Mead algorithm minimizes
the residual error 𝐸 after 8983 function evaluation. The minimum value of 𝐸 is of the order10−11, which is pretty good. The discrepancy between the calculated and exact solutions
is small, and can be made smaller by increasing the number of training points.

Not visible in that transcript are the two script �les, generated silently, for plotting the
solution in M���� and M�����. The scripts are written to �les whose names are speci�ed
by the user in demo-square.c. Figure 28.2 shows the graphs plotted by M���� for the
solutions of the boundary value problems de�ned in demo-square.eps, demo-square-with-
hole.eps, and demo-L-shaped.eps. Listing 28.2 shows the outputs generated by executing
demo-square-with-hole and demo-L-shaped.c.

382 Chapter 28. Neural networks for solving PDEs

Listing 28.1: Output produced by executing demo-square.
$./demo-square 5 6
q = 5, nu = 6
number of training points = 6 of 6
weights before training:
-0.135 0.013 0.452 0.416 0.136 0.217 -0.358
0.107 -0.484 -0.257 -0.363 0.304 -0.343 -0.099
-0.370 -0.391 0.499 -0.282 0.013 0.339
Nelder-Mead: Converged after 8983 function evaluations
Nelder-Mead: Neural network’s residual error = 5.35436e-11
weights after training:
20.108 -23.137 9.365 -7.271 -9.930 24.238 -1.786
-8.237 16.158 12.689 -18.810 -1.276 3.854 -11.819
8.867 17.996 -6.666 3.778 -10.032 -20.416

Error versus the pde’s exact solution = 0.00154184

Listing 28.2: Outputs produced by executing demo-square-with-hole and demo-L-shaped.c.
$./demo-square-with-hole 5 12

q = 5, nu = 12
number of training points = 9 of 12
weights before training:
-0.343 -0.099 -0.370 -0.391 0.499 -0.282 0.013
0.339 0.113 -0.204 0.138 0.024 -0.006 0.473
-0.207 0.271 0.027 0.270 -0.100 0.392
Nelder-Mead: Converged after 12839 function evaluations
Nelder-Mead: Neural network’s residual error = 0.000888615
weights after training:
-2.850 0.214 -0.391 -0.687 1.502 -0.103 -0.678
0.457 4.097 1.023 0.311 -0.489 -1.341 0.851
1.874 -0.904 -0.089 -1.671 0.054 0.552

Error versus the pde’s exact solution = 0.00759185

$./demo-L-shaped 5 12
q = 5, nu = 12
number of training points = 11 of 12
weights before training:
-0.343 -0.099 -0.370 -0.391 0.499 -0.282 0.013
0.339 0.113 -0.204 0.138 0.024 -0.006 0.473
-0.207 0.271 0.027 0.270 -0.100 0.392
Nelder-Mead: Converged after 12172 function evaluations
Nelder-Mead: Neural network’s residual error = 7.36134e-07
weights after training:
-1.200 -0.299 1.243 -1.440 2.030 0.124 -2.435
1.176 1.800 -0.276 0.601 -0.470 1.655 1.125
-1.807 -1.794 0.156 0.235 0.274 0.097
Error versus the pde’s exact solution = 0.00610988

28.3 The interface
The contents of the header �le neural-nets-pde.h is shown in Listing 28.3. It declares a
structure struct Neural_Net_PDE that holds the necessary data for de�ning a bound-
ary value problem for a PDE and a neural network to solve it. Let us begin by examining
the structure’s details. Line numbers refer to those in Listing 28.3.

Line 4: Themember PDE of the struct Neural_Net_PDE points to a user-de�ned func-
tion that de�nes the di�erential equation to be solved, which is, in e�ect, the func-

28.3. The interface 383

Figure 28.2: The graphs of the solutions 𝑢(𝑥) of the boundary value problems de�ned
in demo-square.eps, demo-square-with-hole.eps, and demo-L-shaped.eps, as
plotted in M����.

Listing 28.3: The header �le neural-nets-pde.h.
1 #ifndef H_NEURAL_NET_PDE_H
2 #define H_NEURAL_NET_PDE_H
3
4 struct Neural_Net_PDE {
5 double (*PDE)(double x, double y, double u,
6 double u_x, double u_y,
7 double u_xx, double u_xy, double u_yy);
8 void (*phi_func)(struct Neural_Net_PDE *nn, double x, double y);
9 double bb_xrange[2];
10 double bb_yrange[2];
11 int q; / / number of units in the hidden layer
12 int nu; / / the number of training points
13 double **training_points; / / the array of training points
14 double (*exact_sol)(double x, double y);
15 char *geomview_out; / / output �le for geomview graphics
16 char *maple_out; / / output �le for maple graphics
17 char *matlab_out; / / output �le for matlab graphics
18 int grid[2]; / / plotting grid size
19
20 / / no user modi�able parts beyond this point
21 int nweights; / / 4 × 𝑞
22 double *weights; / / the array of 𝑢, 𝑣, 𝑤
23 double sigma[3]; / / array to hold 𝜎 , 𝜎′, 𝜎′′
24 double phi[3][3]; / / array to hold 𝜙 and its derivatives
25 double N[3][3]; / / array to hold 𝑁 and its derivatives
26 };
27
28 void Neural_Net_init(struct Neural_Net_PDE *nn);
29 void Neural_Net_end(struct Neural_Net_PDE *nn);
30 void Neural_Net_eval(struct Neural_Net_PDE *nn, double x, double y);
31 void Neural_Net_plot_with_maple(struct Neural_Net_PDE *nn, int n, int m,
32 char *outfile);
33 void Neural_Net_plot_with_matlab(struct Neural_Net_PDE *nn, int n, int m,
34 char *outfile);
35 double Neural_Net_residual(double *weights, int nweights,
36 void *params);
37 double Neural_Net_error_vs_exact(struct Neural_Net_PDE *nn, int m, int n);
38
39 #endif /�* H_NEURAL_NET_PDE_H */

384 Chapter 28. Neural networks for solving PDEs

tion 𝐹 in (28.1a). See the description of the �le demo-square.c for an example.

Line 8: Here is the user-supplied function 𝜙(𝑥 , 𝑦)which is positive in the domainΩ, zero
on the boundary of the domain, 𝜕Ω, and negative outside Ω.

Lines 9 and 10: The domain Ω is enclosed in a minimal bounding box (𝑎, 𝑏) × (𝑐, 𝑑). The
values of 𝑎 and 𝑏 are stored in the array bb_xrange, and the values of 𝑐 and 𝑑 in
the array bb_yrange.

Line 11: 𝑞 is the number of units in the hidden layer.

Line 12: 𝜈 is the number of training points.

Line 13: Pointer to a 𝜈 × 2 array, whose 𝑖th row contains the coordinates (𝑥𝑖 , 𝑦𝑖) of the𝑖th training point.

Line 14: Pointer to a function that returns the exact solution to the problem. This is used
to test the program’s correctness. When no exact solution is available, we set this
pointer to NULL.

Line 17: As seen in Section 28.1, our neural network is characterized by 4𝑞 parameters
(weights) 𝑢𝑖 , 𝑣𝑖 , 𝑤1𝑖 , 𝑤2𝑖 , 𝑖 = 1, … , 𝑞, where 𝑞 is the number units in the hidden
layer. The value of weights is set to 4𝑞 in the function Neural_Net_init(). It
is not intended to be set by the user.

Line 18: weights points to an array of length 4𝑞 which holds the 4𝑞 parameters 𝑢, 𝑣,𝑤1, and 𝑤2, in that order. Thus, for 𝑖 = 0, 1, … , 𝑞 − 1, we have 𝑢𝑖 = weights[i], 𝑣𝑖
= weights[q+i], 𝑤1𝑖 = weights[2*q+i]. 𝑤2𝑖 = weights[3*q+i].

Line 19: The array sigma will hold the values of 𝜎 (𝑥), 𝜎′(𝑥), 𝜎′′(𝑥) at varying values of𝑥 , just as in the case of the ODEs.

Lines 20 and 21: The calculation of the residual error 𝐸 calls for the values of 𝜙(𝑥 , 𝑦)
and its �rst and second order derivatives 𝜙𝑥 , 𝜙𝑦 , 𝜙𝑥𝑥 , 𝜙𝑥𝑦 , 𝜙𝑦𝑦 , evaluated at vari-
ous trial points (𝑥 , 𝑦). We could store each trial point’s calculated values in a one-
dimensional array of length six, as in �𝜙, 𝜙𝑥 , 𝜙𝑦 , 𝜙𝑥𝑥 , 𝜙𝑥𝑦 , 𝜙𝑦𝑦�, but we don’t, since
that association of the various of derivatives with the array indices is not quite nat-
ural and can obscure the intent of the code. Instead, we store those values in a 3 × 3
array phi according to the more intuitive association𝜙 → phi[0][0]𝜙𝑥 → phi[1][0]𝜙𝑦 → phi[0][1]𝜙𝑥𝑥 → phi[2][0]𝜙𝑥𝑦 → phi[1][1]𝜙𝑦𝑦 → phi[0][2]

(28.6)

Only six of the array’s nine members are used but that’s small price to pay for
transparency.
The 3 × 3 array N plays a similar role for storing the values 𝑁 (𝑥 , 𝑦) of the neural
network’s output and and its �rst and second order derivatives.

Lines 24 to end: The function declared here are the public functions exported by our
module. The are described in the next section.

28.4. The implementation 385

Listing 28.4: An outline of the �le neural-nets-pde.c. Flesh out the parts marked with ▶ .
1 ▶ supply the necessary header files
2 ▶ static void sigmoid(double x, double *sigma) ...
3 ▶ void Neural_Net_init(struct Neural_Net_PDE *nn)
4 ▶ void Neural_Net_end(struct Neural_Net_PDE *nn) ...
5 ▶ void Neural_Net_eval(struct Neural_Net_PDE *nn,
6 double x, double y) ...
7 ▶ static double residual_at_x_y(struct Neural_Net_PDE *nn,
8 double x, double y) ...
9 ▶ double Neural_Net_residual(double *weights,
10 int nweights, void *params) ...
11 ▶ double Neural_Net_error_vs_exact(struct Neural_Net_PDE *nn,
12 int m, int n) ...

28.4 The implementation
Listing 28.4 presents an outline of the implementation �le neural-nets-pde.c. It contains a
few private functions (marked static) and several public functionwhich appear in neural-
nets-pde.h in Listing 28.3. I will describe the purposes of the various functions in the
following subsections.

28.4.1 The function sigmoid()

The function sigmoid() is identical to the function of the same name from Chapter 27. It
receives a value 𝑥 and evaluates the sigmoidal function 𝜎 (𝑥) (equation (27.1) on page 364)
and its derivatives 𝜎′(𝑥) and 𝜎′′(𝑥), and stores them in sigma[0], sigma[1], sigma[2],
respectively.

28.4.2 The function Neural_Net_init()

The function Neural_Net_init() is almost identical to the function of the same name
in Chapter 27. The only di�erence is that it sets the value of nn→nweights to 4𝑞 instead
of 3𝑞 since the current neural network has 4𝑞 parameters. The weights array is initialized
to random values in the range (−0.5, 0.5), as before.

28.4.3 The function Neural_Net_end()

This is also identical to the function of the same name in Chapter 27.

28.4.4 The function Neural_Net_eval()

This function evaluate the output 𝑁 (𝑥 , 𝑦) of the neural network corresponding to the
input (𝑥 , 𝑦), and its �rst and second order derivatives, according to (28.2) and (28.3), and
places them in the array N attached to the structure nn according to𝑁 → N[0][0]𝑁𝑥 → N[1][0]𝑁𝑦 → N[0][1]𝑁𝑥𝑥 → N[2][0]𝑁𝑥𝑦 → N[1][1]𝑁𝑦𝑦 → N[0][2]

386 Chapter 28. Neural networks for solving PDEs

28.4.5 The function residual_at_x_y()

This function calculates and returns the residual 𝑅(𝑥) at a given 𝑥 , according to (28.4).
The values of 𝜙 and its derivatives may be obtained by calling Neural_Net_phi(). The
values of 𝑁 and its derivatives may be obtained by calling Neural_Net_eval(). The
function 𝐹 is available as nn→ODE.

28.4.6 The function Neural_Net_residual()

This function evaluates the residual error 𝐸 according to (28.5). It is di�erent from the
function of the same name in Chapter 27 only in minor (and self-evident) details. As
before, the function’s prototype exactly matches that which is required of objective func-
tions in the Nelder Mead module. Speci�cally, since we wish to minimize 𝐸 as a function
of the 3𝑞 parameters 𝑢, 𝑣, 𝑤1, and 𝑤2 which de�ne the neural network, the �rst argument
of Neural_Net_residual() is an array of length 4𝑞 that holds the values of 𝑢, 𝑣, 𝑤1,
and 𝑤2.

28.4.7 The function Neural_Net_error_vs_exact()

The purpose of this function is to evaluate the now trained neural network on an (𝑚+1)×(𝑛+1) grid superimposed on the domainΩ and calculate and return the largest discrepancymax0≤𝑖≤𝑚0≤𝑗≤𝑛 ���𝜙(𝑥𝑖 , 𝑦𝑗)𝑁 (𝑥𝑖 , 𝑦𝑗) − 𝑢exact(𝑥𝑖 , 𝑦𝑖)���
between the solution produced by our neural network and an exact or target solution𝑢exact supplied by the user. This is useful in testing the accuracy and performance of the
implementation, and naturally it is applicable onlywhen such a target solution is available.

The grid is formed by dividing the domain’s bounding box into 𝑚 equal subintervals
in the 𝑥 direction and 𝑛 equal subintervals in the 𝑦 direction. Since Ω is generally a strict
subset of the bounding box, some of the grid points may fall outside Ω. The maximiza-
tion noted above is performed only on those grid points that fall within Ω. A grid point
is inside Ω if the 𝜙 function is positive at that point. The complete implementation of
Neural_Net_error_vs_exact() is given in Listing 28.5.

28.5 The file demo-square.c
The �le demo-square.c provides a demonstration of this module. The unknown is a func-
tion 𝑢(𝑥 , 𝑦) on the square Ω = (0, 1) × (0, 1), and the boundary value problem is100𝜕2𝑢𝜕𝑥2 + 𝜕2𝑢𝜕𝑥2 = 𝑓 (𝑥 , 𝑦) (𝑥 , 𝑦) ∈ Ω, (28.7a)𝑢 = 0 in 𝜕Ω, (28.7b)

where 𝑓 (𝑥) is selected as 𝑓 (𝑥 , 𝑦) = 32(𝑥2 + 𝑦2 − 𝑥 − 𝑦) (28.7c)

so that the exact solution of the problem is𝑢(𝑥) = 16𝑥(1 − 𝑥)𝑦(1 − 𝑦). (28.8)
100The PDE (28.7a) is called Poisson’s equation, and the equations (28.7a) and (28.7b) together constitute Pois-

son’s boundary value problem on the two-dimensional domain Ω.

28.5. The file demo-square.c 387

Listing 28.5: The function Neural_Net_error_vs_exact() in the �le neural-nets-pde.c
1 double Neural_Net_error_vs_exact(struct Neural_Net_PDE *nn,
2 int m, int n)
3 {
4 if (nn→exact_sol == NULL) {
5 fprintf(stderr,
6 "unable to cacluate the error since "
7 "no exact solution is provided\n");
8 exit(EXIT_FAILURE);
9 }
10
11 double max_err = 0.0;
12 double a = nn→bb_xrange[0];
13 double b = nn→bb_xrange[1];
14 double c = nn→bb_yrange[0];
15 double d = nn→bb_yrange[1];
16
17 for (int i = 0; i ≤ m; i++) {
18 double x = a + (b-a)/m*i;
19 for (int j = 0; j ≤ n; j++) {
20 double y = c + (d-c)/n*j;
21 nn→phi_func(nn, x, y);
22 if (nn→phi[0][0] < 0)
23 continue;
24 Neural_Net_eval(nn, x, y);
25 double z = nn→N[0][0] * nn→phi[0][0];
26 double err = fabs(z - nn→exact_sol(x, y));
27 if (err > max_err)
28 max_err = err;
29 }
30 }
31
32 return max_err;
33 }

Listing 28.6: A sketch of the �le demo-square.c. Flesh out the parts marked with ▶ .
1 ▶ the necessary headers here
2 ▶ static double exact_sol(double x, double y) ...
3 ▶ static double my_pde(double x, double u, double u_x, double u_y,
4 double u_xx, double u_xy, double u_yy) ...
5 ▶ static void my_phi(struct Neural_Net_PDE *nn,
6 double x, double y) ...
7 ▶ static void show_usage(char *progname) ...
8 ▶ int main(int argc, char **argv) ...

This is a special case of the boundary value problem (28.1) with𝐹�𝑥 , 𝑢, 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑥𝑥 , 𝑢𝑥𝑦 , 𝑢𝑦𝑦� = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 − 𝑓 (𝑥 , 𝑦). (28.9)

Listing 28.6 provides an outline of the �le demo-square.c. Here are a few comments on
that listing.

Line 2: This function evaluates and returns exact solution of the boundary value prob-
lem, given in (28.8). The name of the function is immaterial; it may be named any-
thing. If you don’t have access to an exact solution, then you don’t need to de�ne
this function at all.

388 Chapter 28. Neural networks for solving PDEs

Listing 28.7: A fragment from the function main() in demo-square.c, illustrating how random
training points are selected in Ω.

1 make_matrix(nn.training_points, nu, 2);
2 int i = 0;
3 while (i < nu) {
4 double r = (double)rand() / RAND_MAX;
5 double s = (double)rand() / RAND_MAX;
6 double x = (1-r)*nn.bb_xrange[0] + r*nn.bb_xrange[1];
7 double y = (1-s)*nn.bb_yrange[0] + s*nn.bb_yrange[1];
8 nn.phi_func(&nn, x, y);
9 if (nn.phi[0][0] > 0) {
10 nn.training_points[i][0] = x;
11 nn.training_points[i][1] = y;
12 i++;
13 }
14 }

Line 3: The function my_pde() implements the function 𝐹 of equation (28.1a) for the
PDE at hand. The 𝐹 of interest in the current code is that in (28.9).

Line 5: A good choice of 𝜙 for this demo is 𝜙(𝑥 , 𝑦) = 𝑥(1 − 𝑥)𝑦(1 − 𝑦). The function
my_phi() (the name is immaterial) calculates 𝜙 and its �rst and second derivatives
at the given (𝑥 , 𝑦), and stores them in the two-dimensional array nn→phi according
to the scheme illustrated in (28.6).

Line 7: The function show_usage() is identical to the function of the same name in
Chapter 27.

Line 8: The function main() is di�erent from the one in Chapter 27’s Listings 27.4 and 27.5
only in minor ways. A notable di�erence is in the construction of training points.
In the previous chapter we picked a uniformly distributed set of 𝜈 points along the
ODE’s domain, which was the interval (𝑎, 𝑏). Although we could construct the anal-
ogous uniformly distributed training points by imposing a 𝜇 × 𝜇 grid on the domainΩ, where 𝜇 ≈ √𝜈 , we choose instead, for the sake of variety, to pick the training
points randomly within the PDE’s domain Ω. Listing 28.7 shows one way of doing
that. The method is not speci�c to rectangular domains. It applies to any domainΩ that can �t within a �nite bounding box.

In line 1 of that listing we allocate memory for a 𝜈 × 2 array to store up to 𝜈 training
points (𝑥𝑖 , 𝑦𝑖). Then within the while-loop we produce random numbers 𝑟 and 𝑠 in
the interval [0, 1], and then pick a point (𝑥 , 𝑦) within Ω’s bounding box via

𝑥 = (1 − 𝑟)𝑎 + 𝑟𝑏, 𝑦 = (1 − 𝑠)𝑐 + 𝑠𝑑 . �bounding box = (𝑎, 𝑏) × (𝑐, 𝑑)�
If 𝜙(𝑥 , 𝑦) > 0, then the point lies within Ω. We store the point in the 𝑖th slot of
the array of training points, and then increment the index 𝑖. Otherwise we discard
the point. We repeat this until the the desired number, 𝜈 , of training points are
produced.

28.6. The file demo-square-with-hole.c 389

28.6 The file demo-square-with-hole.c
This �le applies our neural network solver to the Poisson’s problem𝜕2𝑢𝜕𝑥2 + 𝜕2𝑢𝜕𝑥2 = 𝑓 (𝑥 , 𝑦) (𝑥 , 𝑦) ∈ Ω, (28.10)𝑢 = 0 in 𝜕Ω, (28.11)

on the domain Ω obtained by removing the disk 𝑥2 + 𝑦2 ≤ 1/4 from the square (−1, 1) ×(−1, 1).
We construct a (𝑢, 𝑓) pair by �rst picking a solution 𝑢 which satis�es the boundary

conditions, 𝑢(𝑥 , 𝑦) = (2 + 𝑥)(1 − 𝑥2)(1 − 𝑦2)(𝑥2 + 𝑦2 − 1/4), (28.12)

and then calculating 𝑓 by substituting (28.12) in (28.10). We get

𝑓 (𝑥 , 𝑦) = 2 𝑥5 + 4 𝑥4 + �64 𝑦2 − 49� 𝑥32 + �96 𝑦2 − 66� 𝑥22+ �12 𝑦4 − 51 𝑦2 + 20� 𝑥2 + 4 𝑦4 − 33 𝑦2 + 10. (28.13)

We feed (28.12) to the neural net solver and then compare the solution it produces against
the exact solution (28.12).

For the cuto� function 𝜙 we pick the natural choice:𝜙(𝑥 , 𝑦) = (1 − 𝑥2)(1 − 𝑦2)(𝑥2 + 𝑦2 − 1/4).
The �rst and second order derivatives of 𝜙 can be readily calculated𝜙𝑥 = −2 𝑥 �−𝑦2 + 1� �𝑥2 + 𝑦2 − 1/4� + 2 �−𝑥2 + 1� �−𝑦2 + 1� 𝑥 ,𝜙𝑦 = −2 �−𝑥2 + 1� 𝑦 �𝑥2 + 𝑦2 − 1/4� + 2 �−𝑥2 + 1� �−𝑦2 + 1� 𝑦,𝜙𝑥𝑥 = −2 �−𝑦2 + 1� �𝑥2 + 𝑦2 − 1/4� − 8 𝑥2 �−𝑦2 + 1� + 2 �−𝑥2 + 1� �−𝑦2 + 1� ,𝜙𝑥𝑦 = 4 𝑥𝑦 �𝑥2 + 𝑦2 − 1/4� − 4 𝑥 �−𝑦2 + 1� 𝑦 − 4 �−𝑥2 + 1� 𝑦𝑥 ,𝜙𝑦𝑦 = −2 �−𝑥2 + 1� �𝑥2 + 𝑦2 − 1/4� − 8 �−𝑥2 + 1� 𝑦2 + 2 �−𝑥2 + 1� �−𝑦2 + 1� .

Translating these expressions and (28.13) and keying them in can be tiresome and
error-prone. To simplify the process, I calculated those expressions in M����, and had it
translate the results to C. I transferred the results to the �le demo-square-with-hole.c and
constructed the functions my_pde() and my_phi() around them. Listing 28.8 shows the
�nished product. The code of that listing is available at the book’s website.

28.7 The file demo-L-shaped.c
This �le applies our neural network solver to the Poisson’s problem𝜕2𝑢𝜕𝑥2 + 𝜕2𝑢𝜕𝑥2 = 𝑓 (𝑥 , 𝑦) (𝑥 , 𝑦) ∈ Ω, (28.14)𝑢 = 0 in 𝜕Ω, (28.15)

on the L-shaped domain Ω obtained by removing the lower-lower left quarter from the
square (−1, 1) × (−1, 1).

390 Chapter 28. Neural networks for solving PDEs

Listing 28.8: The functions my_pde() and my_phi in the �le demo-square-with-hole.c.
1 static double my_pde(double x, double y, double u,
2 double u_x, double u_y,
3 double u_xx, double u_xy, double u_yy)
4 {
5 double t1 = x * x;
6 double t2 = t1 * t1;
7 double t6 = y * y;
8 double t16 = t6 * t6;
9 double f = 0.2e1 * t2 * x + 0.4e1 * t2
10 + (0.64e2 * t6 - 0.49e2) * t1 * x / 0.2e1
11 + (0.96e2 * t6 - 0.66e2) * t1 / 0.2e1
12 + (0.12e2 * t16 - 0.51e2 * t6 + 0.20e2) * x / 0.2e1
13 + 0.4e1 * t16 - 0.33e2 * t6 + 0.10e2;
14 return u_xx + u_yy - f;
15 }
16
17 static void my_phi(struct Neural_Net_PDE *nn, double x, double y)
18 {
19 double t1 = x * x;
20 double t2 = -t1 + 0.1e1;
21 double t4 = y * y;
22 double t5 = -t4 + 0.1e1;
23 double t6 = t1 + t4 - 0.1e1 / 0.4e1;
24 double t7 = t5 * t6;
25 double t9 = x * t5;
26 double t11 = t2 * t5;
27 double t15 = t2 * y;
28 double t23 = 0.2e1 * t11;
29
30 nn→phi[0][0] = t2 * t7;
31 nn→phi[1][0] = 0.2e1 * (t11 * x - t9 * t6);
32 nn→phi[0][1] = 0.2e1 * (t11 * y - t15 * t6);
33 nn→phi[2][0] = -0.8e1 * t1 * t5 + t23 - 0.2e1 * t7;
34 nn→phi[1][1] = 0.4e1 * (x * y * t6 - t15 * x - t9 * y);
35 nn→phi[0][2] = -0.8e1 * t2 * t4 - 0.2e1 * t2 * t6 + t23;
36 }

Constructing a cuto� function 𝜙 which is positive insideΩ and negative outside can be
challenging. Here I will describe the details of a construction that leads to such a function.

Let us begin by constructing a continuous function 𝑞 ∶ 𝑅2 → 𝑅 which is negative
in the third quadrant and positive elsewhere. It is best to construct such a function in in
polar coordinates, 𝑟 , 𝜃 , and then translate the result to the Cartesian coordinates.

We let the angular coordinate 𝜃 go from −𝜋 to 𝜋 . Thus, the third quadrant corresponds
to 𝜃 ∈ (−𝜋 , 𝜋/2). Let 𝑓 ∶ (−𝜋 , 𝜋) → 𝑅 be a continuous function which is negative on(−𝜋 , −𝜋/2) and positive on (−𝜋/2, 𝜋). Such a function is not di�cult to �nd. For instance,
the function 𝑓 (𝜃) = 1 + sin 𝜃 + cos 𝜃 has that property. It follows that the function �̃�(𝑟 , 𝜃) =𝑟𝑓 (𝜃), with 0 ≤ 𝑟 < ∞ and −𝜋 ≤ 𝜃 < 𝜋 is negative in the third quadrant and positive
elsewhere. An elementary calculation shows that upon changing from polar to Cartesian,
the function �̃�(𝑟 , 𝜃) transforms to 𝑞(𝑥 , 𝑦) = 𝑥 + 𝑦 + �𝑥2 + 𝑦2. The graph of 𝑞 is shown in
the left diagram in Figure 28.3.

To enforce the zero boundary conditions on the domainΩ, it su�ces tomultiply 𝑞(𝑥 , 𝑦)
by (1−𝑥2)(1−𝑦2)which is positive in the domain’s bounding box and negative elsewhere.

28.7. The file demo-L-shaped.c 391

Figure 28.3: On the left is the graph of the function 𝑞(𝑥 , 𝑦), which is negative in the
third quadrant and positive elsewhere. On the right is the graph of 𝜙(𝑥 , 𝑦),
de�ned on the square (−1, 1) × (−1, 1). It is positive on the L-shaped domainΩ, zero on its boundary, and negative in the rest of the square.

Thus we arrive at the following representation of the desired cuto� function:

𝜙(𝑥 , 𝑦) = (1 − 𝑥2)(1 − 𝑦2)�𝑥 + 𝑦 +�𝑥2 + 𝑦2�. (28.16)

The graph of 𝜙 is shown in the right diagram in Figure 28.3. It is positive on the L-shaped
domain Ω, zero on its boundary, and negative in the rest of Ω’s bounding box.

Remark 28.1. It is worth nothing that function 𝜙 constructed here takes on both positive
and negative values outside the bounding box. For instance, the points (3, 4) and (2, 0) lie
outside of the bounding box, and we have 𝜙(3, 4) = 1440 > 0 while 𝜙(2, 0) = −12 < 0. That
said, values taken by 𝜙 outside the bounding box are immaterial to us since we evaluate𝜙 inside the bounding box only, where positive and negative value of 𝜙(𝑥 , 𝑦) indicate that(𝑥 , 𝑦) is inside or outside Ω, respectively.

In Section ?? we will learn how to construct a continuous cuto� function 𝜙 which is
positive in Ω and negative everywhere outside Ω. Although that results in a signi�cantly
more complex our current 𝜙, the method described there may be applied to construct cut-
o� functions for quite complex geometries where an ad hoc approach that led us to (28.16)
would not be practical.

Having constructed the cuto� function 𝜙, it’s easy to construct other functions which
take on zero values on the boundary of Ω. For instance, the function𝑢(𝑥 , 𝑦) = 𝑥𝜙(𝑥 , 𝑦) (28.17)

has that property. We plug this into (28.14) and calculate the corresponding 𝑓 . We feed
that 𝑓 to our neural network solver and then compare the solution it produces against the
exact solution (28.17).

The calculation of 𝑓 and �rst and second derivatives of 𝜙 is a messy a�air and is best
left to a symbolic calculation software. I had M���� do those calculations and translate
the results to C code. I transferred the M����’s output to the �le demo-L-shaped.c and
constructed the functions my_pde() and my_phi() around them. The result is available
for downloading from the book’s website.

392 Chapter 28. Neural networks for solving PDEs

28.8 Rvachev’s method for constructing cutoff functions
TO BE ADDED LATER.

28.9 Project Neural networks: PDEs

Part 28.1. Complete the implementation of the this chapter’s PDE solver, and test it with
demo-square-with-hole.c, demo-square.c, demo-L-shaped.c. Sample outputs are provided in
Listings 28.1 and 28.2. The graphs of the resulting solutions are shown in Figure 28.2.

Part 28.2. Write a program �le exercise-u3.c to solve the nonlinear boundary value
problem 𝜕2𝑢𝜕𝑥2 + 𝜕2𝑢𝜕𝑥2 − 𝑢3 = 𝑓 (𝑥 , 𝑦), (𝑥 , 𝑦) ∈ Ω, (28.18)𝑢 = 0 in 𝜕Ω, (28.19)

on the square Ω = (0.𝜋) × (0, 𝜋), with
𝑓 (𝑥 , 𝑦) = −2�𝑥 − 𝜋4 ��𝑦 − 𝜋3 � sin 𝑥 sin 𝑦 + 2�𝑦 − 𝜋3 � cos 𝑥 sin 𝑦

+ 2�𝑥 − 𝜋4 � sin 𝑥 cos 𝑦 − ��𝑥 − 𝜋4 ��𝑦 − 𝜋3 � sin 𝑥 sin 𝑦�3.
This corresponds to the exact solution 𝑢(𝑥 , 𝑦) = (𝑥−𝜋/4)(𝑦−𝜋/3) sin 𝑥 sin 𝑦. There are two
obvious choices for the cuto� function: 𝜙(𝑥 , 𝑦) = 𝑥𝑦(𝜋 −𝑥)(𝜋 −𝑦) and 𝜙(𝑥 , 𝑦) = sin 𝑥 sin 𝑦.
The algorithm seems to convergence faster with the �rst choice.

See if you can select the command-line arguments 𝑞 and 𝜈 so as to produce a solution
with an error below 0.05.

