Chapter 7

Gengetopt

7.1 » Command-line options

Most programs presented in this book are expected to be invoked with command-line
options. For instance, the program image-analysis of Chapter 16 is invoked as

./image-analysis rel_err infile outfile

The program reads the image file infile, performs a wavelet analysis on the image, trun-
cates as much of the insignificant image details as possible while keeping the relative
truncation error under the specified re1_err, and then writes out the now reduced image
into the file out file.

Our image-analysis receives and parses the command-line options according to the
scheme described in Section 4.7. Parsing three or so command-like options is straight-
forward, so that’s what we do for most of the programs in this book. But when a pro-
gram calls for much greater number of command-line options, writing code to analyze
the command-line becomes a tedious and somewhat uninviting task. In such cases it’s
preferable to delegate that job to a generic command-line parser utility such as the open
source Unix utility, GNU gengetopt. We make use of that utility in Chapter 29 where
we write programs that apply the neural network methodology to solve various bound-
ary value problems of partial differential equations. Those programs accept quite a few
command-line options, such as

./demo-square -n 8 -t 15 -T 6 -s 3 -M "outfile.m" -v

The purpose of this chapter is to explain how to apply gengetopt to manage such command-
line options with ease.

7.2 = An overview of gengetopt

To apply gengetopt, we write a configuration file, let’s call it config.ggo,”® that contains a
description, in a special syntax (not in C) which we are going to describe, of the intended
meanings of a program’s command-line options. Then we feed the configuration file to
gengetopt, as in:

gengetopt ... < config.ggo

15The name of the configuration file can be anything, although it’s common to give it a .ggo extension.

43

44

Chapter 7. Gengetopt

O PN AR W N e

Listing 7.1: The —-help option (or -h for short) reveals a brief description of the available options.
$./gengetopt—-demo —-help

Usage:
./gengetopt-demo options...

Options:
-h, --help Print help and exit
-V, —--version Print version and exit
-r, ——rows=int number of rows in matrix
-c, ——-cols=int number of columns in matrix (default="7")
-e, —-rel-error=float relative error (default='0.12")
-0, —-outfile=filename file name for the program’s output (no default)
-v, ——-verbose produce verbose output (default=o0ff)
where the . .. are zero or more options (more on that later) that affect gengetopt’s behav-

ior.

If all goes well, gengetopt writes two C files, cmdline.[ch], which you compile and
link with the rest of your program. Courtesy of those files, you now have access to the
command-line options from within your program. We will see the details of how that
works in the following sections.

Gengetopt is a relatively large program and in this chapter we are not going to cover
every aspect of its functionality. Rather, we focus on those aspects of gengetopt that are
immediately applicable to the kinds of programs that we write in this book. If you need
functionality that goes beyond what is found here, you should consult gengetopt’s full
documentation at

https://www.gnu.org/software/gengetopt/gengetopt.html

In the rest of this chapter we will work with a short program, gengetopt-demo.c, that
illustrates gengetopt’s functionality. The program does nothing particular—it just reads
its mostly meaningless command-line options and prints them out. That’s all. Here’s how
we execute the demo program gengetopt-demo:

$./gengetopt-demo --rows=12 --cols=10 --rel-error=0.05 --outfile="/tmp/zz.m"

You said: rows=12, cols=10, rel_err=0.05, outfille=/tmp/zz.m

The first line is what you type, and the second line is what the program prints.

If we forget what command-line options are available, or what they mean, we may
request help by invoking the program with the --help option. Then the program prints
the list of available options along with a brief description of each. See Listing 7.1 for what
that looks like. The --rows=int online 10 in that listing tells us that the --rows command-
line option takes an int (that is, an integer) argument. Similarly, the -rel-error=float
and —-outfile=filename command-line options call for a floating point number and a
file name (that is, a string) as arguments, respectively.

The single-letter options in the leftmost column in the listing above provide short al-
ternative to their corresponding long versions. They make it possible to enter the previous
longish command in a shorter but equivalent form, as:

$./gengetopt-demo -r 12 -c 10 -e 0.05 -o "/tmp/zz.m"
You said: rows=12, cols=10, rel_err=0.05, outfille=/tmp/zz.m

Command line options that are preceded by two dashes, such as --rows, are called long
options. Command line options that are preceded by a single dash, such as -r, are called

7.3. The configuration file 45

short options. Note that we put an equal sign between a long option and its argument,
while the argument of a short option is given without an equal sign. In fact, the space
between a short option and its argument is optional. Thus, -r 12 is equivalent to -r12.
On a related issue, a long option may be shortened provided that it remains uniquely
identifiable. For instance, --rel-error=0.05 may be abbreviated to --re=0.05.

Let us play around a bit more with our program:

$./gengetopt-demo
./gengetopt-demo: ’'--rows’ (’/-r’) option required

Okay, then let’s supply the --rows option:

$./gengetopt-demo -r 4
You said: rows=4, cols=7, rel_err=0.12

Where did the co1s=7 and rel_err=0.12 values come from? They are defaults defined in
config.ggo. The default values are used when you don’t specify cols or rel_err on the
command-line. There is no default value associated with rows, that’s why the program
refuses to run without it. We may override the default values, as in:

$./gengetopt-demo -r 4 -c 100 --rel=0.005
You said: rows=4, cols=100, rel_err=0.005

(Observe that we may mix long and short options in a single command.) As another
experiment, let’s supply the outfile option:

$./gengetopt-demo -r 4 --outfile="junk"
You said: rows=4, cols=7, rel_err=0.12, outfille=junk

Comparing this result with the previous experiments, we see that the out fi1e option has
no default value and that’s why it has not shown up until now. In a sense, the outfile
option is like the rows option in that neither has a default value. As the same time, the
two options are quite different in that omitting the outfile option is permitted, while
omitting the rows option is not. As you may expect, and as we shall see in Section 7.3,
these differences stem from the way those options are coded in the config.ggo file.
Let us do a final experiment:
$./gengetopt-demo -r 10 -c 20 -o "junk" -v
—-—— This is a demo of the gengetopt utility
--- Invoke the program as "./gengetopt-demo —--help" for a help message.
rows=10
cols=20
rel_err=0.12

outfille=junk
—-—— That’s all!

The longish output is due to the flag -v (which may be given as the long option ——verbose).
Unlike the other command-line options that we have seen so far, this option takes no
arguments; the program changes its behavior merely as a result of its presence or ab-
sence. As we will see in Section 7.5, our gengetopt-demo.c is set up so that it outputs more
information—is more verbose—when that flag is present.

7.3 = The configuration file

The experiments in the previous section must have given you a general idea of how the the
command-line options affect the behavior of the program gengetopt-demo. That behavior
is dictated by the contents of the configuration file config.ggo which is shown in its entirety
in Listing 7.2. Let us go through it line by line.

46

Chapter 7. Gengetopt

O PN AR W N e

Listing 7.2: The configuration file config.ggo.

package "Gengetopt Demo"
version "1.0"
usage "\n\t./gengetopt-demo options...

description "Options:"

option "rows" r "number of rows in matrix"
int typestr="int" required

option "cols" ¢ "number of columns in matrix"
int typestr="int" optional default="7"

option "rel-error" e "relative error"
double typestr="float" optional default="0.12"

option "outfile" o "file name for the program’s output (no default)"
string typestr="filename" optional

option "verbose" v "produce verbose output"
flag off

Lines 1 and 2: We have no use for package and version, but their presence is required
by gengetopt, so there they are.

Lines 3 and 5: These are responsible for what we see on lines 3 through 6 in Listing 7.1.

Lines 7-8: Here we introduce the long option rows and the associated short option r.
Line 7 provides a brief description of the purpose of those options. That description
shows up on line 10 in Listing 7.1.

The int on line Line 8 indicates that the option row takes an integer for argument.
If you omit that argument, or if supply a non-integer, the program will refuse to
run.

The typestr="int" has only a cosmetic effect; it manifests itself as —~—row=int on
on line 10 in Listing 7.1. Without the typestr="int", that line would have come
out as --row=INT which is perhaps a bit gaudy. You may specify anything else that
you prefer over typestr="int". Try, for instance, typestr="4#".

Finally, the required on line 8 indicates that specifying the rows option on the
command-line is mandatory. In the previous section we saw that in the absence of
that option the program refuses to run.

Lines 10-11: Here we introduce the long option cols and the associated short option c.
This block is quite similar to that of the preceding rows option, so here we address
the differences only.

The optional default="7"online 11 indicates that providing a cols option on the
command-line is optional. If that option is omitted, cols takes on the default value
of 7.

Lines 13-14: This is very much like the previous blocks, The only new feature is that
the argument is of the type double rather than int.

Lines 16—17: Here we introduce the long option outfile and the associated short op-
tion o. The string on line 17 indicates that the argument of that option will be

7.4. From config.ggo to cmdline.[ch] 47

Listing 7.3: A Makefile for gengetopt-demo.

OFILES = cmdline.o gengetopt-demo.o
CFLAGS = -Wall -pedantic -std=c99 -02
TARGET = gengetopt-demo

$ (TARGET) : $ (OFILES)
$(CC) $(OFILES) -o $@

gengetopt-demo.o: gengetopt-demo.c cmdline.h

O 00 N N U R W N

—_
S

cmdline.c cmdline.h: config.ggo
gengetopt < config.ggo

_ e e
[T Ty

clean:
/bin/rm -f $(OFILES) $(TARGET) cmdline. [ch]

—_
'S

interpreted as as C string, or to be precise, as a pointer to a C string. The optional
indicates that providing this command-line option is not mandatory, but in its ab-
sence, the value of out file will be NULL since no default value is specified.

The typestr="filename" has only a cosmetic effect; it manifests itself as the
--outfile=filename on line 13 of Listing 7.1. Without the typestr="filename",
that line would have been printed as --out file=sTRING which is somewhat less
expressive.

19-20: The command-line option --verbose (or its short version, -v) is a flag. The value
of this option is captured as 0 or 1 within the program gengetopt-demo.c. The oft
on line 20 indicates that the flag will be off (will have the value 0) by default. Giving
the --verbose option on the command-line turns the flag on.

Aside: If we change line 20 to f1ag on, then the flag will be on (will have the value 1)
by default. Giving the --verbose option on the command-line will turn the flag off.

7.4 = From config.ggo to cmdline.[ch]

The configuration file config.ggo which we examined in the previous section is certainly
not a C program. The gengetopt utility reads that configuration file and writes the C files
cmdline.[ch]. In a Unix system you effect that by entering

$ gengetopt < config.ggo

on the command line. That is quite workable in the case of a brief demo program such as
the one under consideration. Realistic programs, however, tend to be significantly more
complex and are hardly ever compiled without a corresponding Makefile. Let us, therefore,
see how a Makefile can be constructed in our case. You will need to consult Chapter 6 if
you need help with make.

Listing 7.3 shows a suggested Makefile. Let us examine its details.

[

Lines 1-3: Here we declare the program’s object files, cmdline.o and gengetopt-demo.o,
the compiler options, crFracs, and the name of the desired executable, gengetopt-
demo.

Lines 5-6: The executable is produced through linking the object files.

48 Chapter 7. Gengetopt

Listing 7.4: An outline of the file gengetopt-demo.c, showing its basic structure.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "cmdline.h"

4

5 int main(int argc, char xxargv)

[

7 struct gengetopt_args_info args_info;

8

9 if (cmdline_parser (argc, argv, &args_info) # 0) {
10 fprintf (stderr, "Command line parser failed (why)?\n");
11 return EXIT_FAILURE;

12 }

13

14 int rows = args_info.rows_arg;

15 int cols = args_info.cols_arg;

16 double rel_err = args_info.rel_error_arg;

17 char xoutfile = args_info.outfile_arg;

18 int verbose = args_info.verbose_given;

19

20 ... make use of the values of rows, cols, etc. ——-
21

22 cmdline_parser_free (&args_info);

23

24 return EXIT_SUCCESS;

25 }

Line 8: The object file gengetopt-demo.o depends directly on gengetopt-demo.c, and in-
directly on cmdline.h since, as we will see in the next section, gengetopt-demo.c
#includes the file cmdline.h.

Lines 10-11: Here we are telling make that the files cmdline.[ch] are produced by feeding
config.ggo to gengetopt.

Lines 13-14: The command make clean executes the Unix command on line 14 to re-
move the object files, the target file, and the files cmdline.[ch], returning the current
directory/folder to its pristine state.

7.5 = The file gengetopt-demo.c

We have seen how gengetopt-demo behaves, and we have seen how that behavior is en-
coded in config.ggo. Now we examine the contents of gengetopt-demo.c to see how it
accesses its command-line arguments.

7.5.1 = An outline of gengetopt-demo.c

Before looking at the actual gengetopt-demo.c, let’s look at the outline shown in Listing 7.4
to get a sense of the program’s structure. This outline is common to all applications of
gengetopt.

Line 7 in that listing declares a args_info structure which is to hold the data extracted
from the command line.

Lines 9-12 initialize the gengetopt parser. In case of trouble (computer out of memory?)
we print a message and exit.

7.5. The file gengetopt-demo.c 49

Lines 14-18 assign names meaningful in the current context to the generic names
provided by gengetopt. For instance, what gengetopt calls args_info.rel_error_arg, we
call rel_err. Let us note that

1. The name rel_error_arg is constructed by gengetopt through modifying what we
called rel-error in config.ggo (see line 13 of Listing 7.2 on page 46) by changing
the hyphen to an underscore in order to make it into a legal identifier in C.

2. Gengetopt constructs the names for the arguments of the command-line options
by adding the _arg suffix, as in rel_error_arg. But our verbose command-line
option is a flags, that is, it takes no arguments, and therefore verbose_arg would
be meaningless. In line 18 we see that gengetopt signals the presence of the verbose
ﬂag through the name args_info.verbose_given.

Line 20 is where our program does its work. We will see an instance of what goes there
in the full listing of gengetopt-demo.c. Once that work is complete, we free the memory
allocated by gengetopt (line 22) and exit.

7.5.2 = The complete gengetopt-demo.c

The complete contents of gengetopt-demo.c are shown in Listing 7.5 This a strict superset
of the outline in Listing 7.4. The lines 20 through 37 are new and their meanings should
be self-evident. The code distinguishes between the cases where the verbose flag is given
versus when it is not. In the former case the program prints detailed information about
what it has read from its command-line. In the latter case only a brief summary is printed.

Equipped with config.ggo from Listing 7.2, Makefile from Listing 7.3, and gengetopt-
demo.c from Listing 7.5, you should be able to compile the program and run the tests that
were demonstrated in Section 7.2.

50

Chapter 7. Gengetopt

NI R B NS I N I

Listing 7.5: The complete gengetopt-demo.c.

#include <stdio.h>
#include <stdlib.h>
#include "cmdline.h"

int main(int argc, char xxargv)
{

struct gengetopt_args_info args_info;

if (cmdline_parser (argc, argv, &args_info) # 0) {
fprintf (stderr, "Command line parser failed (why)?\n");
return EXIT_FAILURE;

int rows = args_info.rows_arg;

int cols = args_info.cols_arg;

double rel_err = args_info.rel_error_arg;
char xoutfile = args_info.outfile_arg;
int verbose = args_info.verbose_given;

if (verbose) {

printf ("--— This is a demo of the gengetopt utility\n");
printf ("--- Invoke the program as \"%$s --help\""

" for a help message.\n", argv[0]);
printf ("\trows=%d\n", rows);
printf ("\tcols=%d\n", cols);
printf ("\trel_err=%g\n", rel_err);
if (outfile # NULL)
printf ("\toutfille=%s\n", outfile);
printf ("-—- That’s all!\n");
} else {
printf ("\tYou said: rows=%d, cols=%d, rel_err=%g",
rows, cols, rel_err);
if (outfile # NULL)
printf (", outfille=%s\n", outfile);
else
putchar (“\n’);

cmdline_parser_free (&args_info);

return EXIT_SUCCESS;

