Partial Fractions Done Right

The Case of Simple Real Roots

The partial partial fractions form for a simple real root $a$ is: \[ \frac{p(x)}{(x-a)\phi(x)} = \frac{A}{x-a} + \frac{q(x)}{\phi(x)}. \]

Multiplying through by $x-a$ \[ \frac{p(x)}{\phi(x)} = A + \frac{(x-a)q(x)}{\phi(x)} \] then substituting $x=a$ we get \[ A = \frac{p(a)}{\phi(a)}. \]

A good way to view this result is to imagine that we "hide" the $(x-a)$ in the original fraction's denominator and evaluate what remains at $x=a$: \[ A = \frac{p(x)}{\bbox[#ffdddd]{\color{#999999}{(x-a)}}\phi(x)} \bigg|_{x=a} = \frac{p(a)}{\phi(a)}. \]

Compute $A$ in the partial partial fractions expansion \[ \frac{4x^2 + 2x + 1}{(x-1)(x-2)^2(x^2+x+1)} = \frac{A}{x-1} + \frac{q(x)}{(x-2)^2(x^2+x+1)} . \]
We have: \[ A = \frac{4x^2 + 2x + 1}{\bbox[#ffdddd]{\color{#999999}{(x-1)}}(x-2)^2(x^2+x+1)} \bigg|_{x=1} = \frac{7}{3}, \] therefore \[ \frac{4x^2 + 2x + 1}{(x-1)(x-2)^2(x^2+x+1)} = \frac{7}{3(x-1)} + \frac{q(x)}{(x-2)^2(x^2+x+1)} . \]
Compute the full partial fractions expansion \[ \frac{2x^2+x+1}{(x-1)(x-2)(x-3)} = \frac{A_1}{x-1} + \frac{A_2}{x-2} + \frac{A_3}{x-3}. \]

We have: \begin{align*} A_1 &= \frac{2x^2+x+1}{\bbox[#ffdddd]{\color{#999999}{(x-1)}}(x-2)(x-3)} \bigg|_{x=1} = 2, \\ A_2 &= \frac{2x^2+x+1}{(x-1)\bbox[#ffdddd]{\color{#999999}{(x-2)}}(x-3)} \bigg|_{x=2} = -11, \\ A_3 &= \frac{2x^2+x+1}{(x-1)(x-2)\bbox[#ffdddd]{\color{#999999}{(x-3)}}} \bigg|_{x=3} = 11, \end{align*} therefore: \[ \frac{2x^2+x+1}{(x-1)(x-2)(x-3)} = \frac{2}{x-1} - \frac{11}{x-2} + \frac{11}{x-3}. \]

Test Yourself

  1. Show that: \[ \frac{3x^2+2x+1}{(x-1)(x-2)^2(1+x+x^2)} = \frac{2}{x-1} + \frac{q(x)}{(x-2)^2(1+x+x^2)}. \]
  2. Show that: \[ \frac{1}{x^2-1} = \frac{1}{2(x-1)} - \frac{1}{2(x+1)}. \]
  3. Show that: \[ \frac{x+1}{x^2+5x+6} = -\frac{1}{x+2} + \frac{2}{x+3}. \]
  4. Assume $a$, $b$, $c$ are distinct. Show that: \[ \frac{1}{(x-a)(x-b)(x-c)} = \frac{1}{(b-a)(c-a)(x-a)} + \frac{1}{(c-b)(a-b)(x-b)} + \frac{1}{(a-c)(b-c)(x-c)}. \]
  5. Assume $a \ne b$. Show that: \[ \frac{r x + s}{(x+a)(x+b)} = \frac{\frac{s-ra}{b-a}}{x+a} + \frac{\frac{s-rb}{a-b}}{x+b}. \]
 

Author: Rouben Rostamian