Math 225, Fall 2025

Quiz #4

Name:

Find the general solution of the nonhomogeneous differential equation $y'' - y = 4xe^{-x}$.

Solution: [Like exercise 20 of section 3.7]

The general solution is the sum of homogeneous and particular solutions, as in $y(x) = y_h(x) + y_p(x)$. We begin by solving the homogeneous equation y'' - y = 0. The characteristic equation $r^2 - 1 = 0$ factorizes as (r+1)(r-1) = 0 and yields the roots

$$r_1 = -1$$
, $r_2 = 1$,

whence

$$y_h(x) = c_1 e^{-x} + c_2 e^x$$
. [2 pts]

As to $y_p(x)$, we observe that the DE's right-hand side is a special case of the template

$$e^{\alpha x} \Big[P_n(x) \cos \beta x + Q_n(x) \sin \beta x \Big],$$

where

$$\alpha = -1$$
, $\beta = 0$, $n = 1$.

Therefore, we look for a particular solution of the form

$$y_p(x) = x^s e^{-x} (A_0 + A_1 x).$$
 [2 pts]

To determine the exponent s, we form the (generally complex) number $z = \alpha + i\beta = -1$. Since z equals r_1 but not r_2 , we conclude that s = 1, [2pts] and the candidate for $y_p(x)$ reduces to

$$y_p(x) = xe^{-x}(A_0 + A_1x),$$

that is

$$y_p(x) = e^{-x}(A_0x + A_1x^2).$$

We calculate the first derivative of $y_p(x)$ through the usual product formula and we get

$$y_p'(x) = -e^{-x}(A_0x + A_1x^2) + e^{-x}(A_0 + 2A_1x)$$

= $e^{-x} [A_0 + (2A_1 - A_0)x - A_1x^2],$

then we differentiate once more:

$$y_p''(x) = -e^{-x} \left[A_0 + (2A_1 - A_0)x - A_1 x^2 \right] + e^{-x} \left[(2A_1 - A_0) - 2A_1 x \right]$$
$$= e^{-x} \left[(2A_1 - 2A_0) + (A_0 - 4A_1)x + A_1 x^2 \right].$$

Substituting these into the DE we get

$$e^{-x} \left[(2A_1 - 2A_0) + (A_0 - 4A_1)x + A_1x^2 \right] - e^{-x} (A_0x + A_1x^2) = 4xe^{-x}.$$

We divide through by the common factor e^{-x} and then group the remaining terms:

$$(2A_1 - 2A_0) - 4A_1x = 4x$$
. [3 pts]

It follows that

$$\begin{cases} 2A_1 - 2A_0 = 0, \\ -4A_1 = 4. \end{cases}$$

and consequently A=B=-1. We conclude that

$$y_p(x) = -x(x+1)e^{-x},$$

and therefore the general solution is

$$y(x) = c_1 e^{-x} + c_2 e^x - x(x+1)e^{-x}$$
. [1 pt]