## Math 225, Fall 2025

## Quiz #3

Name:

Find the general solution of each of the following differential equations:

(a) [3 pts] 
$$2y'' + 3y' + y = 0$$

(b) [3 pts] 
$$y'' + 6y' + 10y = 0$$

(c) [4 pts] 
$$y'' + 4y' + 4y = 0$$
,  $y(0) = 1$ ,  $y'(0) = 0$ 

Solution: [Like the exercises of sections 3.4 and 3.5]

(a) The roots of the characteristic equation  $2r^2 + 3r + 1 = 0$  are

$$r = \frac{-3 \pm \sqrt{3^2 - 4 \times 2}}{4} = \frac{-3 \pm 1}{4},$$

and so we have two real roots,  $r_1 = -\frac{1}{2}$ ,  $r_2 = -1$ . We conclude that the general solution is

$$y(x) = c_1 e^{-\frac{1}{2}x} + c_2 e^{-x}.$$

(b) The roots of the characteristic equation  $r^2 + 6r + 10 = 0$  are

$$r = \frac{-6 \pm \sqrt{6^2 - 4 \times 10}}{2} = \frac{-6 \pm \sqrt{-4}}{2} = \frac{-6 \pm 2i}{2} = -3 \pm i.$$

We conclude that the general solution is

$$y(x) = e^{-3x} \left[ c_1 \cos x + c_2 \sin x \right].$$

(c) The characteristic equation  $r^2 + 4r + 4 = 0$  factors as  $(r+2)^2 = 0$ , and so we have one real root r = -2. We conclude that the general solution is

$$y(x) = c_1 e^{-2x} + c_2 x e^{-2x}$$
.

Evaluating this at x = 0 and applying the initial condition y(0) = 1. results in  $c_1 = 1$ . To apply the second initial condition, we calculate the derivative

$$y'(x) = -2c_1e^{-2x} + c_2[e^{-2x} - 2xe^{-2x}].$$

Evaluating this at x = 0 and applying the initial condition y'(0) = 0, we get

$$0 = -2c_1 + c_2.$$

Since  $c_1 = 1$ , it follows that  $c_2 = 2$ , and therefore the solution of the initial value problem is

$$y(x) = e^{-2x} + 2xe^{-2x},$$

which optionally may be factored as  $y(x) = (1 + 2x)e^{-2x}$ .