
Math 225, Fall 2025 Exam #2 Name:

please write name legibly

• Please make an effort to write neatly, and insert a few words where necessary to get
your ideas across. It’s difficult to understand (and evaluate) mathematics in the ab-
sence of guiding words.
I will award up to 2 bonus points if I find your work well-documented and easy to
read and understand.

• No books, notes, calculators or other electronic devices on this exam.

• Use the reverse sides of the pages or the extra blank sheets at the end if you need
them.

• There are four problems, each worth 10 points.

The method of undetermined coefficients. Consider the second order, linear,
constant coefficients, nonhomogeneous equation

ay′′ + by′ + cy = eαx
[

Pn(x) cos βx + Qn(x) sin βx
]
, (1)

where Pn and Qn are polynomials of up to nth degree. Then the differential equa-
tion has a particular solution of the form

yp(x) = xseαx
[
(A0 + A1x + · · ·+ Anxn) cos βx + (B0 + B1x + · · ·+ Bnxn) sin βx

]
, (2)

where A0 through An and B0 through Bn are constants to be determined.

As to the exponent s, let r1 and r2 be the roots of the characteristic equation, and
z ≡ α + iβ. If z equals neither of the roots r1 and r2, then s = 0. If z equals only
one of the roots, then s = 1. If z equals both roots, then s = 2.

Variation of parameters
If the linearly independent functions y1(x) and y2(x) are solutions of the homoge-
neous differential equation a(x)y′′ + b(x)y′ + c(x)y = 0, then a particular solution
of the nonhomogeneous equation a(x)y′′ + b(x)y′ + c(x)y = f (x), may be obtained
through yp(x) = v1(x)y1(x) + v2(x)y2(x), where

v′1(x) =
−y2(x) f (x)

a(x)W(y1, y2)
, v′2(x) =

y1(x) f (x)
a(x)W(y1, y2)

,

and where W(y1, y2) is the Wronskian of y1 and y2.

Cheers!



1. Determine the form of the particular solution yp(x) in each of the following equations.
No need find the undermined coefficients. Each of the four questions is worth 2.5
points.

(a) y′′ + 5y′ + 6y = xex

(b) y′′ + 5y′ + 6y = (1 + x2)e−3x

(c) y′′ + 6y′ + 9y = (1 + x2)e−3x

(d) y′′ + 6y′ + 10y = e−3x sin x

Solution: (a) The characteristic equation r2 + 5r + 6 = 0 has roots r = −2 and r = −3.
The right-hand side matches the general template with α = 1, β = 0, and n = 1. We let
z = α + iβ = 1. Since z matches neither of the characteristic equation’s roots, we have
s = 0 and therefore a particular solution has the form

yp(x) = x0(A0 + A1x)ex = (A0 + A1x)ex.

(b) The characteristic equation r2 + 5r + 6 = 0 has roots r = −2 and r = −3. The
right-hand side matches the general template with α = −3, β = 0, and n = 2. We let
z = α + iβ = −3. Since z matches only one of the characteristic equation’s roots, we
have s = 1 and therefore a particular solution has the form

yp(x) = x1(A0 + A1x + A2x2)e−3x = (A0x + A1x2 + A2x3)e−3x.

(c) The characteristic equation r2 + 6r + 9 = 0 has the repeated root r = −3. The
right-hand side matches the general template with α = −3, β = 0, and n = 2. We let
z = α + iβ = −3. Since z matches both of the characteristic equation’s roots, we have
s = 2 and therefore a particular solution has the form

yp(x) = x2(A0 + A1x + A2x2)e−3x = (A0x2 + A1x3 + A2x4)e−3x.

(d) The characteristic equation r2 + 6r + 10 = 0 has roots r = −3 ± i. The right-hand
side matches the general template with α = −3, β = 1, and n = 0. We let z = α + iβ =
−3 + i. Since z matches only one of the characteristic equation’s roots, we have s = 1
and therefore a particular solution has the form

yp(x) = x1e−3x[A0 cos x + B0 sin x
]
= xe−3x[A0 cos x + B0 sin x

]
.



2. The functions y1(x) = x and y2(x) = x3 are solutions of the homogeneous differential
equation x2y′′ − 3xy′ + 3y = 0. Apply the method of variation of parameters to find the
general solution of the nonhomogeneous differential equation x2y′′− 3xy′+ 3y = x2 + 3.

Solution: [Like Sec 3.8, #14, 15]

We apply the variation of parameters formula given on the cover sheet to find a par-
ticular solution yp(x) of the nonhomogeneous equation. We begin with calculating the
Wronskian of y1 and y2:

W = det
(

y1 y2
y′1 y′2

)
= det

(
x x3

1 3x2

)
= 3x3 − x3 = 2x3.

Then, considering that a(x) = x2 and f (x) = x2 + 3, we have

v′1(x) =
−(x3)(x2 + 3)
(x2)(2x3)

= −1
2
− 3

2x2 = −1
2
− 3

2
x−2,

v′2(x) =
(x)(x2 + 3)
(x2)(2x3)

=
1

2x2 +
3

2x4 =
1
2

x−2 +
3
2

x−4.

It follows that

v1(x) = −1
2

x +
3
2

x−1 = −1
2

x +
3

2x
,

v2(x) = −1
2

x−1 − 1
2

x−3 = − 1
2x

− 1
2x3 .

We conclude that

yp(x) = v1(x)y1(x) + v2(x)y2(x)

=
(
−1

2
x +

3
2x

)
x +

(
− 1

2x
− 1

2x3

)
x3 = −1

2
x2 +

3
2
− 1

2
x2 − 1

2
= 1 − x2,

and therefore
y(x) = c1x + c2x3 + 1 − x2.



3. (a) [5 pts] Evaluate L −1
{ 2s + 5

s2 + 4s + 4

}
(b) [5 pts] Evaluate L −1

{ 4s + 6
s2 + 2s + 5

}
Solutions:

(a) [Like exercises 7 and 14 of Section 5.3]

Considering that denominator factorizes as (s + 2)2, we split the given expression into
partial fractions as

2s + 5
(s + 2)2 =

A
s + 2

+
B

(s + 2)2 .

We clear the denominators by multiplying through by (s + 2)2 and arrive at

2s + 5 = A(s + 2) + B. (∗)

We substitute s = −2 into (∗) and obtain B = 1 .

To find A, we differentiate (∗) with respect to s which results in 2 = A, that is, A = 2 .
In conclusion, we have

2s + 5
s2 + 4s + 4

=
2

s + 2
+

1
(s + 2)2 . (∗∗)

The two fractions on the right-hand side of (∗∗) look like shifted (by −2) versions of
2
s

and
1
s2 whose inverse transforms are 2 and t, respectively. We conclude that

L −1
{ 2s + 5

s2 + 4s + 4

}
= e−2t(2 + t

)
.

(b) [Like exercises 6, 8, and 13 of Section 5.3]

Completing the square in the denominator and obtain

s2 + 2s + 5 = (s + 1)2 + 22,

and observe that this looks like the denominator of the transform of a sine or cosine
function sifted by −1. We adjust the numerator accordingly,

4s + 6 = 4(s + 1) + 2

and therefore
4s + 6

s2 + 2s + 5
=

4(s + 1)
(s + 1)2 + 22 +

2
(s + 1)2 + 22 .

Since
L {cos 2t} =

s
s2 + 22 , L {sin 2t} =

2
s2 + 22 ,

and since a shift by −1 in the transform domain amounts to multiplying by e−t in the
time domain, we conclude that

L −1
{ 4s + 6

s2 + 2s + 5

}
= L −1

{ 4(s + 1)
(s + 1)2 + 22 +

2
(s + 1)2 + 22

}
= e−t

[
4 cos 2t + sin 2t

]
.



4. Apply the Laplace transform to solve the initial value problem

y′′ + 3y′ + 2y = 2e−3t, y(0) = 0, y′(0) = 0.

Solution: [Like exercises 1–14 of Section 5.4]

Applying the Laplace transform to the DE we get[
s2L

{
y(t)

}
+ sy(0) + y′(0)

]
+ 3

[
sL

{
y(t)

}
+ y(0)

]
+ 2L

{
y(t)

}
=

2
s + 3

.

We substitute for the initial conditions and simplify

(s2 + 3s + 2)L
{

y(t)
}
=

2
s + 3

,

and since (s2 + 3s + 2) = (s + 1)(s + 2), we arrive at

L
{

y(t)
}
=

2
(s + 1)(s + 2)(s + 3)

.

In order to invert the Laplace transform, we split the result into partial fractions:

2
(s + 1)(s + 2)(s + 3)

=
A

s + 1
+

B
s + 2

+
C

s + 3
. (∗)

To find A, we multiply (∗) through by s + 1,

2
(s + 2)(s + 3)

= A + (s + 1) · B
s + 2

+ (s + 1) · C
s + 3

,

and set s = −1, and arrive at
2

(−1 + 2)(−1 + 3)
= A, and therefore A = 1 .

Similarly, to find B, we multiply (∗) through by s + 2,

2
(s + 1)(s + 3)

= (s + 2) · A
s + 1

+ B + (s + 2) · C
s + 3

,

and set s = −2, and arrive at
2

(−2 + 1)(−2 + 3)
= B, and therefore B = −2 .

To find C, we multiply (∗) through by s + 3,

2
(s + 1)(s + 2)

= (s + 3) · A
s + 1

+ (s + 3) · B
s + 2

+ C,

and set s = −3, and arrive at
2

(−3 + 1)(−3 + 2)
= C, and therefore C = 1 .

In conclusion, we have

L
{

y(t)
}
=

2
(s + 1)(s + 2)(s + 3)

=
1

s + 1
− 2

s + 2
+

1
s + 3

,

and therefore
y(t) = e−t − 2e−2t + e−3t.


