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Solution to Exercise 13.7. This is very similar to the problem solved
in Sections 13.3 and 13.4. The only difference is the boundary condi-
tion f , which was given in (13.32), is now changed to

f (θ) =





1 if 0 ≤ θ < π
2 ,

0 otherwise.

We begin with calculating f ’s Fourier coefficients according to (13.30):
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1
π

Z π/2

0
cos nθ dθ =
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f (θ) sin nθ dθ =
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and therefore

f (θ) =
1
4
+
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sin nθ.

The solution candidate u(r, θ) is the same as that in (13.34):

u(r, θ) = A0 +
∞

∑
n=1

Anrn cos nθ +
∞

∑
n=1

Bnrn sin nθ.

We evaluate this at r = a, equate the result to f ’s coefficients, and
arrive at

A0 =
1
4

, Anan =
1
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2
, Bnan =

1
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We conclude that

u(r, θ) =
1
4
+

1
π
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∑
n=1
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Solution to Exercise 13.8. This is very similar to the problem solved
in Sections 13.3 and 13.4. The solution in expressed in the series (13.29a),
that is

u(r, θ) = a0(r) +
∞

∑
n=1

an(r) cos nθ +
∞

∑
n=1

bn(r) sin nθ,

where the coefficients are the solutions of the ODEs (13.31). The outer
boundary condition is the same as f in (13.32) whose Fourier coeffi-
cients are calculated in (13.33). We thus have

f (θ) =
1
2
+

1
π

∞

∑
n=1

1 − (−1)n

n
sin nθ. (14.64)

As before, the solutions of the ODEs (13.31) are

a0(r) = A0 + Ã0 ln r, an(r) = Anrn + Ãnr−n, bn(r) = Bnrn + B̃nr−n,

but unlike in the previous case, we don’t discard Ã and B̃ since the
origin is not a part of the domain Ω. We thus arrive at the solution
candidate

u(r, θ) = A0 + Ã0 ln r +
∞

∑
n=1

(Anrn + Ãnr−n) cos nθ

+
∞

∑
n=1

(Bnrn + B̃nr−n) sin nθ. (14.65)

We evaluate this at r = a and equate the result to zero:

A0 + Ã0 ln a +
∞

∑
n=1

(Anan + Ãna−n) cos nθ

+
∞

∑
n=1

(Bnan + B̃na−n) sin nθ = 0,

and conclude that

A0 + Ã0 ln a = 0, (14.66a)

Anan + Ãna−n = 0, (14.66b)

Bnan + B̃na−n. (14.66c)

We also evaluate (14.65) at r = b and equate the result to (14.64):

A0 + Ã0 ln b +
∞

∑
n=1

(Anbn + Ãnb−n) cos nθ

+
∞

∑
n=1

(Bnbn + B̃nb−n) sin nθ =
1
2
+

1
π

∞

∑
n=1

1 − (−1)n

n
sin nθ
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and conclude that

A0 + Ã0 ln b =
1
2

, (14.66d)

Anbn + Ãnb−n = 0, (14.66e)

Bnbn + B̃nb−n = Qn, (14.66f)

where we have set Qn = 1−(−1)n

nπ . We solve the six equations (14.66)
for the six unknowns A0, Ã0, An, Ãn, Bn, B̃n, and obtain

A0 = − ln a
2 ln(b/a)

, Ã0 =
1

2 ln(b/a)
, An = 0, Ãn = 0,

Bn =
bn

b2n − a2n Qn, B̃n = − a2nbn

b2n − a2n Qn,

We conclude that

a0(r) =
ln(r/a)

2 ln(b/a)
, an(r) = 0,

bn(r) =
�

(r/b)n

1 − (a/b)2n − (b/r)n

(b/a)2n − 1

�
Qn,

and therefore

u(r, θ) =
ln(r/a)

2 ln(b/a)
+

1
π

∞

∑
n=1

1 − (−1)n

n

�
(r/b)n

1 − (a/b)2n − (b/r)n

(b/a)2n − 1

�
sin nθ.

The adjacent diagram shows the temperature distribution in the annu-
lus with a = 1, b = 2. Red is hot, blue is cold.


