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Solution to Exercise 13.2. The boundary value problem is

Upr + %uﬁ- rl—zugg =0 in Q,

u(r,0) =0 0<r<a,
u(r,m) =0 0<r<a,
u(a,0) = f(0) 0<o<m.

We look for solutions of the form u(r,0) = R(r)'¥(0) and arrive at the
familiar eigenvalue problem

¥(0) + A¥(0) =0, ¥(0)=0, ¥(m)=0

whose solution is given by

Yh=n, A= 'y% =n?, ¥, (0) = siny,0 = sinné.

Then for R(r) we have the Euler equation
2Rl (r) + R}, (r) — n*Ry(r) = 0,
whose general solution is

Ry(r) = Apr + %
We set B, = 0 to avoid blowup at the origin. Thus we have con-
structed a series of functions u,(r,0) = A,r"sinn6 that satisfy the
PDE and the boundary conditions on the domain’s straight edges. To
meet the boundary condition on the curved edge, we form the solution
candidate .
u(r,0) = Y Aursinnf.
n=1

Enforcing the boundary condition leads to
f(0) =) Ana"sinnb,
n=1

which is the usual Fourier sine series for f, and therefore
mA 2 " 0) sinnb do
a"An = — /0 £(0)sinnbde,

whence we obtain

2

A, =
amt

/Onf(e) sin 6 d6,

and arrive at the solution

2
arm

u(r,0) = 2 Aur"sinnf, where A, =

n=1

/Onf(e) sin 6 d6.
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Solution to Exercise 13.3. The boundary value problem is

urr+%ur+:—2u99:0 in ),

u(rO):O a<r<b,
u(r,m) = a<r<a,
u(a,0) = 0<o<m
u(b ,6)—sm9 0<b<m.

We look for solutions of the form u(r,0) = R(r)¥(6) and arrive at the
familiar eigenvalue problem

¥(0) + A¥(0) =0, ¥(0)=0, ¥(71)=0

whose solution is given by

2

T =1, An:'y%:n, Y, (0) = siny,0 = sinn#.

Then for R(r) we have the Euler equation
r2Rl(r) + R}, (r) — n*Ry(r) = 0,
whose general solution is

B
Ry(r) = Apr + 171’1
Thus, we form the solution candidate

[e9)

u(r,0) =Y (Anr" + %) sin no.

n=1

Applying the boundary conditions specified on the curved edges, we
get

i (An B ) sinnf,

&%)
sinf =) (A b+ b ) sinnf.
n=1
These are the Fourier sine series expansions of the functions 0 and
sin §. We conclude that

1 ifn=1
Apa® + B—Z =0 foralln, and A;b"+ BZ = ! .
a b 0 otherwise

Specifically, when n = 1 we have

By

D =1.

B
Ala—l—;l:O, Ab+ -2
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We solve this linear system of two equations for A; and B; and obtain

b a’b
M= Bi=-p—
When n > 1 we have
B B
Ana+7":0, Anb—l—?":O,

which implies A, = B, = 0. We conclude that the infinite series of the
solution actually consists of a single term:

br a’b
b2 —a%2  r(b? —a?)

u(r,0) = sin 6,

which may be rearranged into the more presentable form

ab rooa\ .
u(r,G) = m(a — ;) sin 6.

o
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Solution to Exercise 13.4. We need to solve the BVP

urr—i—%ur—k%ugg—i—lzo in Q,

u(r,0) =0 0<r<a,
u(r,m) =0 0<r<a,
u(a,8) =0 0<6<mm.

We look for solutions of the form u(r,8) = R(r)¥(6) of the homoge-

neous PDE and arrive at the familiar eigenvalue problem
Y’(0) + A¥(0) =0, ¥(0)=0,

whose solution is given by

YTm=n, A= 'y% =n?, Y, (0) = siny,0 = sinnd.

Then we expand the unknown solution u(r, 8) and the give heat source
q(r,0) = 1 into series of the eigenfunction ¥, (0).

u(r,0) = iRn(r)‘{’n(G),
1= i QnTn(g)
n=1

The coefficients Q,, are readily found through the usual formula

T

2 2 7 2
/‘Yn(e)de):f/ sinnfdf = — — cosnf
0 7T Jo nrt 0

Qn:%
= %[1 —cosnn} = %{1 - (—1)”].

We now substitute the solution candidate into the PDE:

" [RIO(0) + TRV (0) + R ()¥1(0)| + T Qu¥a(0) =0

)3

n=1
Considering that ¥,(0) = —A,'¥,(0)
rearrange the result into

= —n?¥,(0), we simplify and

=) n2
y [R/n’(r) + %R;(r) — 7 Ra(r)+ Qn:| Yu(0) =0,

n=1
and we conclude that

1 n?
Rij(r) + ~ R (r) = ~3 Ra(r) + Qu =0,

which is better expressed as
n=12,....

2RI (r) 4+ rR.(r) — n?Ry(r) = —r*Qy,
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These are nonhomogeneous versions of Euler’s equation. The general
solution of the corresponding homogeneous equation for each n is given
in (13.11). To avoid the singularity at the origin, we take B, = 0. All
there remains is to find a particular solution of the nonhomogeneous
equation and add to the solution of the homogeneous equation.
Considering the special structure of the equation, it makes sense to
look for a particular solution of the form Cr?. Plugging that guess into

the ODE we obtain 4Cr? — n?Cr? = —Q,r?, whence C = an24- We

conclude that

Ru(r) = Apr™ + " _"41’2.

That is good for all positive integers n except for n = 2. So we take

a closer look at the n = 2 case, where we have
PRy (r) + rRy(r) — 4Ry (r) = —Qar”.
Luckily, Q» = 0, so that equation reduces to
2Ry (r) + rR(r) — 4R, (r) = 0,

whose general solution is Ry(r) = Apr? + By/r?. We set B, = 0 to
avoid the singularity, and therefore

Ry (1’ ) = A21’2.
We thus arrive at the solution candidate

Q1
12 -4

u(r,0) = {Aﬂ’ + 1’2} sinf + Apr? sin 26

+) [Anr” + an_n 4r2} sinnf. (14.63)
n=>3

This satisfies the PDE and the boundary conditions on the lamina’s
straight edges. The boundary condition on the curved edge implies
that

Ara+ & az} sin @+ Aya® sin 20 + i {Ana” + Qn az} sinnf = 0.
12—-4 = n?—4
It follows that
1 Qnaz
A — _ A — A = - = 4 PR
1 3Q1ﬂ 7 2 0/ n an(nz _ 4)/ n 3/ 7

Substituting this into (14.63) and simplifying, we arrive at

u(r,0) = ﬁr(l— 2) sin6+¥ i 1= (" [(r)z - (Z)n] sinn6.

3ma =onn2—4) [\a

The adjacent diagram shows the temperature distribution in the lam-
ina. Red is hot, blue is cold.
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