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Chapter 11

Solution to Exercise 11.1. We have seen that after the change of
variable u = v+ # where 7 is as in (11.11), the IBVP (11.10) changes
to (11.12) which is quite similar to the problem solved in 10.5. The heat
source term was osinwt in that exercise, while in the current case it
is —wa(l - %)cos wt. The eigenvalues and eigenfunctions remain as

before:

_nn _ 2 (12 o T
Tn = 7 /\n—’Yn—(g) , Xn(x)—sm'ynx—smg, n=12....

We expand the solution u, the heat source term, and the initial con-
dition f into series of eigenfunction as in (10.19). Since the initial con-
dition is zero in this case, the coefficients F, are all zero. We calculate
the coefficients Q (f):

l
Qu(t) = %/ —w(f(l - %)coswtsin'ynxdx
0

20w coswt [* x\ .
——#/0 (1—Z)sm'ynxdx.

We perform the integration according to Kronecker’s algorithm

/(1 — %)sinvnxdx = (1 — %) [—% cos'ynx} — (—%) [—% sin'ynx},

n

and evaluate the result at ¢ and 0 and subtract, to arrive at

¢ X\ . 1 1
/0 (1 - z)sm’ynxdx T

and conclude that

20w cos wt

Qn(t) = T = —J, coswt,

20w . el
where we have let [, = —— for convenience. Then, the initial value

problem (10.21) takes the form
U, (t) +kA,Uy,(t) = —Jycoswt, U, (0)=0, n=12,...,

which may be solved in a number of ways. Here we do it through

Laplace transform®, whence 8 Alternatively, duplicate the method il-
| lustrated in the solution of Example 10.5
—JnS on page 143.
L{Uy(t)} = -
{0} (s +kAy) (s + w?)
In kAn kAps w? . .
= — — . artial fractions
w2 +k2A2 [s+kA,  s24+w?  s24w? (p )

We conclude that

In

Up(t) = — 1
" w? +k2)\2

[k)\ne_“”t — kA, coswt — wsin wt] ,
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and therefore

[ee]
v(x,t) = Z wz—ﬁ{nk”x% [—k/\ne*k)‘”t + kAy cos wt + w sin wt | sin 7y, x

n=1

and
u(x, t) = (T(l - %) sin wt

[e9)
Jn kAt . .
E ————— kA nt— kA t— t ,
+ Pl 2t kz)\% ne n COS W wsinwt| sin y,Xx

_ 20w

which is equivalent to (11.13) since J, = =7*.

The exponential term in the square brackets is the transient; it dies
out as t grows. The remaining terms correspond to steady-state oscil-
lations at angular frequency w.
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Solution to Exercise 11.4. The first step toward obtaining the so-
lution is to eliminate the nonhomogeneous boundary condition through
a change of variable. The boundary conditions here correspond to the
general formulation (11.15b) and (11.15¢) with

=1 ay=0, «a(t)=0, B1=0, Ba=1 B(t) =csinwt.
Substituting these into (11.17) we obtain:
co(t) =0, c1(t) = osinwt. (14.46)

Appealing to a “black-box” formula such as (11.17), however, is overkill;
that can be error-prone, and is not recommended. It is in fact quite
straightforward to do the calculation from scratch for the specific prob-
lem at hand rather than to appeal to a general formula such as (11.17).

To illustrate that, introduce v(x, t) through u(x, t) = v(x,t) +1(x,t),
where 7 is any function that satisfies the IBVP’s boundary conditions.
As u and # satisfy identical boundary conditions, v will satisfy homo-
geneous boundary conditions, and we may apply the previous chap-
ter’s techniques to calculate v.

There is quite a bit of flexibility in selecting 7. Following the idea
offered in Section 11.2, we take

n(x,t) = co(t) +c1(t)x, (14-47)

where ¢y and c; are to be determined by requiring # to satisfy the
IBVP’s boundary conditions, that is

7(0,t) =0, nx({,t) =osinwt. (14-48)
Substituting the form (14.47) into (14.48), we get
co(t) =0, c1(t) = osinwt.

This is the same as (14.46) but we have obtained it without an appeal
to an obscure formula.
In any case, we conclude that 17(x,t) = cx sinwt, and therefore

u(x,t) =ov(x,t) + oxsinwt.

We substitute this expression into the original IBVP and we arrive at
the following IBVP for v:

v = kvyy — CwX cos wt O<x<¥ t>0, (14.49a)
v(0,t) =0 t>0, (14.49b)
(¢, 1) =0 t>0, (14-49¢)

v(x,0) =0 0<x</d. (14-49d)
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Following the usual procedure, we look for separable solutions v(x, t) =
X(x)T(t) of the corresponding homogeneous problem

Ut = kvyy O<x<¥d, t>0,
v(0,t) =0 t>0,
ux(£,£) =0 t>0,

which leads to the eigenvalue problem
X"(x)+AX(x) =0, X(0)=0, X(¢)=0,

This is identical to the problem analyzed in Example (10.1) on page 135,
where we saw that the eigenvalues A, and eigenfunctions X, are given
through

¢
2/

2n—1)m ;
TYn = %, /\n = ’Y%ll Xn(x) = SmynXx, ||X”1H2 =

Returning to the IBVP (14.49), we expand v(x, t) and the heat source

n=12,....

term —owx cos wt into series of eigenfunctions:

v(x,f) = Z V() X (x), (14.50a)
n=1

—0wx cos wt = i Qn () Xn(x). (14.50Db)
n=1

From the general formula of the coefficients of the sine series applied
to (14.50b) we get

20w cos wt

2t ¢
Qu(t) = Z./o —oxcoswt Xy (x)dx = #/0 x Xy (x) dx.
We evaluate the integral of xX;,(x) through Kronecker’s algorithm:
/xXn(x) dx = /xsin’ynxdx
1 1 .
= (x)(—% cos 'ynx) —(1) (—7—% sm’ynx)

1
= ?(sin YnX — YnX COS YpX),
n

and therefore
l

¢ 1
/ XXy (x) dx = — (sin ynx — Ynx COS Ynx)
J0 Vi 0

1 .
= ?(sm Yl — yn cos v, l).
n

Since v, = %, we have 7,0 = (2n —1)%, that is, 7,/ is an odd

multiple of 71/2, we have

siny, = —(—=1)", cosy,l =0.
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We conclude that

¢ 1
xX,(x)dx = ——(=1)",
) xXa(x) e = (1)
and therefore
20w cos wt 20w
Q)’l(t) - T(—l)n - H(—l)n cos wt.

Letting
20w
Jn =5 (=1)",
"=y

we write Q, () in the compact form

Qu(t) = Jycoswt.

Having obtained Q,(t), we substitute the series (14.50) into the
PDE (14.49a):

[e9)

Z Vz; () Xn(x) =k Z Vn(t)X;z/(x) + Z Qn(t)Xu(x).
n=1 n=1 n=1

We eliminate X/ (x) in favor of X,,(x) courtesy of X" (x) + A, X(x) =0,
and combine the two sums on the right-hand side, and arrive at

[e0]

il[v,;(t) +kAnvn(t)} Xn(x) = Y Qu() X (x).

n=1

We conclude that V;, (t) 4+ kA, V;, () = Qu(t), that is
V)(t) +kAyViu(t) = Jucoswt, n=1,2,...,

which is a linear first order ODE. The ODE’s initial condition is
obtained by applying the IBVP’s initial condition (14.49d) to the se-
ries (14.50a) whereby we get

[e9)

0=) Vu(0)Xp(x),
n=1
which implies that V},(0) = 0 for all n. Thus, Vj,(t) are the solutions of
the initial value problem

VI(t) + kAnViu(t) = Jpcoswt, V,(0)=0, n=12,.... (14.51)

This may be solved through (i) Laplace transform, or (ii) splitting the
solution into the sum of the homogeneous and particular solutions,
or (iii) integrating factors. Here we provide solutions via methods (i)
and (ii).
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Solving (14.51) through the Laplace transform.
We apply the Laplace transform to the ODE in (14.51)

s
S {Va(t)} = Val0) + k2 {Val0)} = 5225,
Considering that V;,(0) = 0, this leads to™®
_ Jus
LV} = o)
 w?+k2A2 s+ kA, w?+s2 |’

and therefore, by taking the inverse Laplace transform, we arrive at

Jn

V() = — I
" w? +k2A2

{—k/\ne_k’\"t + kA, cos wt 4+ w sin wt} .

Solving (14.51) through basic ODEs.

The homogeneous equation corresponding to (14.51) has the general

solution
v (1) = Cpe M,

where C, is an arbitrary constant. As to a particular solution, we look
for an expression of the form*°

V,Sp) (t) = Ay coswt + By sinwt,

and determine A, and B, by plugging that expression into the ODE.
We get

(—Aywsinwt 4+ Byw cos wt) + kA, (A, cos wt + By sinwt) = J,, cos wt,

whence

kAwAy 4+ wBy = I,
—wA,; +kA,B,;, = 0.

We solve for A, and B,, and arrive at

kA w

n
An= el Bn= e

We thus arrive at the general solution of the ODE

k/\n

m ]n sin wt.

Vu(t) = Cpe At Jn cos wt +

v
w? + k2AZ
We apply the initial condition V;,(0) = 0 and solve for Cy,:

kAn

C, = —7(02 +k2)L% Jn-

9 In pursuing option (i) of the three op-
tions noted above, the bulk of the ef-
fort is directed toward partial fraction
decomposition.

(partial fractions)

* In pursuing option (ii) of the three op-
tions noted above, the bulk of the ef-
fort is directed toward finding a partic-
ular solution. If you were to pursue op-
tion (iii), the bulk of your effort would
be directed toward integrating by parts.
One way or another, you pay a price.
There is no free lunch!
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Plugging this back into the expression for V,(t), we conclude that

kA w
nJn —e kAt + cos wt +

Vi(t) = ———
n(t) w? + k2A2 kA

sinwt|,
which agrees with the solution obtained earlier through the Laplace
transform.

Now we resume the solution of the original IBVP. In view of (14.50a),
we obtain
2 kA _ w o
v(x,t) = Z wz;k];)% {—e Kt 1 cos wt + m smwt} Xy (x),

n=1

and finally, since u(x,t) = v(x,t) +1(x,t), we arrive at

u(x,t) = oxsinwt

- kAw]n —kAut wo.
+n:1m —e +coswt+kAn sinwt| Xy(x),
where
20w . 2n—-1)m
o= 22201, Xa(x) =sinqux, =13 = ST

Y 20
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Chapter 12

Solution to Exercise 12.1. We have 7 = Tyx(a — x). We evaluate
1 along ()’s four edges:

on the left edge: 7(0,y) =0,
on the bottom edge: 7(x,0) =0,
on the right edge: n(a,y) =0,
on the top edge: n(a,b) =2x(a —x),

and see that it satisfies the same boundary conditions as the mem-
brane. Therefore v(x,y) = u(x,y) —n(x,y) is zero all around )’s
boundary.

The membrane’s displacement, u(x,y) satisfies the equation (12.3a)
with g = 0, that is, uyy + u,, = 0. Changing to the v variable we get

(0+1)xx + (©+1)yy = 0.

But 17y = —%y and 7,y = 0. Therefore

We conclude that v is the solution of the BVP (12.3) with q(x,y) = —}v.
The solution of that BVP for arbitrary forcing function g was obtained
in (12.9), that is:

Z 2 UmnXm n(]/)/

m=1n=

and where U,;,;, and Qyy, are given in (12.11) and (12.8). For the current
case’s specific forcing function we have

an:%/b /ﬂ —ily ) Xon () dx| Ya(y) dy
abz / Xon(x) dx /byYn(y)dy}

- [ a2 dxH/bysmTydﬂ.

We calculate

‘T ommux a mrrx
sin dx = ——— cos

_Ln {1 — cos mn} = % {1 - (—1)"[}/

and?5 5 We apply Kronecker’s method of inte-
gration by parts. See Appendix 8.10 on

page 119
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and thus arrive at

16[1 - (—1)m] (~1)"

mn —
mnr?

Then, from (12.11) we get

mn

m2m?2 | n?m? i m2 | n?
mnnz(—uz—+—br) mn( %y + 37

16[1- (0" ()" g [1- (1))

We conclude that

o o [1—(=1)"|(=1)"
v(x,y):gzz[ ( )}( )sinmnxsinngy,

2 2
m=1n=1 mn(’”—+’;—2) a

a2
and therefore the membrane’s shape is
2y [1 - (_1)m} (=" mrx . nmy

16 0 00
u(x,y) ===x(a—x)+— sin sin
b it mZ—:1nZ::1 mn(’:—; + Z—;) a b

The adjacent figure shown the membrane with the choicesofa =b =1
and m =n =>5.



