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Solution to Exercise 10.7. We substitute the series (10.23a) into
the PDE (10.22a) and obtain

∞

∑
n=0

U′′
n (t)Xn(x) = c2

∞

∑
n=0

Un(t)X′′
n (x) + q(x, t).

Recalling (10.18a), we replace X′′
n (x) by −λnXn(x) and then rearrange

the equation into

∞

∑
n=0

�
U′′

n (t) + c2λnUn(t)
�
Xn(x) = q(x, t).

Comparing with (10.23b) we conclude that

U′′
n (t) + c2λnUn(t) = Qn(t),

which agrees with the ODE in (10.24).
To enforce the initial conditions (10.22d) and (10.22e), we note that

ut(x, t) =
∞

∑
n=0

U′
n(t)Xn(x),

and then we substitute t = 0 into this and also in (10.23a), and arrive
at

∞

∑
n=0

Un(0)Xn(x) = f (x),

∞

∑
n=0

U′
n(0)Xn(x) = g(x).

Comparing these with (10.23c) and (10.23d) we conclude that

Un(0) = Fn, U′
n(0) = Gn,

which confirm the initial conditions in (10.24).
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Solution to Exercise 10.10. This is identical to Example 10.6 with
the only difference that the coefficients Fn are zero and the coefficients
Gn are

Gn =
2
ℓ

Z ℓ

0
g(x) sin γnx dx.

The initial value problems (10.36) changes to

U′′
n (t) + c2γ2

nUn(t) = 0,

Un(0) = 0,

U′
n(0) = Gn,

n = 1, 2, . . ., whose solution is

Un(t) =
1

cγn
Gn sin γnct.

We conclude that

u(x, t) =
∞

∑
n=1

1
cγn

Gn sin γnx sin γnct,

where Gn are given above, and γn = (2n − 1) π
2ℓ .
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Solution to Exercise 10.11. The equation of motion is

utt = c2uxx + σ sin ωt 0 < x < ℓ, t > 0,

u(0, t) = 0 t > 0,

u(ℓ, t) = 0 t > 0,

u(x, 0) = 0 0 < x < ℓ,

ut(x, 0) = 0 0 < x < ℓ.

This is a special case of the IBVP (10.24) with f = 0, g = 0, and
q(x, t) = σ sin ωt. The eigenfunctions are obtained from the eigenvalue
problem

X′′(x) + λX(x) = 0, X(0) = 0, X(ℓ) = 0,

whence

γn =
nπ

ℓ
, λn = γ2

n =
�nπ

ℓ

�2
, Xn(x) = sin γnx = sin

nπx
ℓ

.

In the expansions (10.23), the coefficients Fn and Gn are zero. We
calculate the coefficients Qn:

Qn(t) =
2
ℓ

Z ℓ

0
σ sin ωt sin γnx dx

=
2σ

γnℓ

�
− cos γnx

�����
ℓ

0
sin ωt

=
2σ

γnℓ

�
1 − cos γnℓ

�
sin ωt.

But γnℓ = nπ and therefore cos γnℓ = cos nπ = (−1)n. We conclude
that

Qn(t) =
2σ

�
1 − (−1)n�

nπ
sin ωt.

For convenience, we let

Jn =
2σ

�
1 − (−1)n�

nπ
,

and express Qn as
Qn(t) = Jn sin ωt.

Then the initial value problem (10.24) takes the form

U′′
n (t) + U2γ2

ncn(t) = Jn sin ωt, (14.45a)

Un(0) = 0, (14.45b)

U′
n(0) = 0, (14.45c)

which may be solved in a number of ways; see suggestions in Exam-
ple 10.6. Here we chose to solve through the Laplace transform since
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that is a little quicker. Applying the transform, and accounting for the
null initial conditions, we get

L
�

Un(t)
	
=

ω Jn

(s2 + c2γ2
n)(s2 + ω2)

=
Jn

c2γ2
n − ω2

�
ω

s2 + ω2 − ω

s2 + c2γ2
n

�
(partial fractions),

whence
Un(t) =

Jn

c2γ2
n − ω2

�
sin ωt − ω

cγn
sin cγnt

�
.

We conclude that

u(x, t) =
∞

∑
n=1

Jn

c2γ2
n − ω2

�
sin ωt − ω

cγn
sin cγnt

�
sin γnx.

Observe that the solution is invalid if ω = cγn for any integer n
since that results in a division by zero. In those exceptional cases, the
imposed frequency ω matches one of the string’s natural frequencies
and causes resonance. For an instructive extra exercise, solve the initial
value problem (14.45) with n = 1 and ω = cγ1 to see what happens.
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Solution to Exercise 10.12. Mutiplying the ODE (10.32a) by the
integrating factor ekλnt, we get

�
ekλntUn(t)

�′
= Jnekλnt sin ωt.

We integrate both sides16 and arrive at 16 We apply the integration formulaR
eat sin bt dt = eat

a2+b2

�
a sin bt − b cos bt

�

which is usually presented as an inte-
gration by parts exercise in most calculus
textbooks.

ekλntUn(t) =
Jnekλnt

ω2 + k2λ2
n

�
kλn sin ωt − ω cos ωt

�
+ C,

where C is the integration constant. We evaluate this at t = 0 and
apply the initial condition Un(0) = 0,

0 = − ω Jn

ω2 + k2λ2
n
+ C,

and solve for C:
C =

ω Jn

ω2 + k2λ2
n

.

Thus we arrive at

ekλntUn(t) =
Jnekλnt

ω2 + k2λ2
n

�
kλn sin ωt − ω cos ωt

�
+

ω Jn

ω2 + k2λ2
n

,

that is,

Un(t) =
ω Jn

ω2 + k2λ2
n

�
e−kλnt − cos ωt +

kλn

ω
sin ωt

�
,

which is identical to what was obtained in Example 10.5.


