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Solution to Exercise 10.7. We substitute the series (10.23a) into
the PDE (10.22a) and obtain

[0 9)

io U(X0(x) = € 1 Un(DXF(5) +q(.1).

Recalling (10.18a), we replace X)/(x) by —A, X, (x) and then rearrange
the equation into

[e9)

;J[U,’{(t) + AU (1) Xn(x) = q(x, t).

Comparing with (10.23b) we conclude that
Uyl (1) + Al (t) = Qu(t),
which agrees with the ODE in (10.24).

To enforce the initial conditions (10.22d) and (10.22¢), we note that

[e9)

u(x, t) = Y Uy (t) Xn(x),

n=0

and then we substitute ¢t = 0 into this and also in (10.23a), and arrive
at
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Comparing these with (10.23c) and (10.23d) we conclude that
U,(0) =F,, U,(0) =G,

which confirm the initial conditions in (10.24).
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Solution to Exercise 10.10. This is identical to Example 10.6 with

the only difference that the coefficients F, are zero and the coefficients
Gy, are

2 [t )
Gy = Z/o g(x) sin y,x dx.

The initial value problems (10.36) changes to

Uy, () + oiUn(t) =0,
U,(0) =0,
Uy, (0) = Gy,

n=1,2,..., whose solution is

un(t) =

Gy, sin yyct.

n

We conclude that

oo

u(x, t) =Y

n=1-1"1

Gy, sin v x sin yyct,

where G, are given above, and v, = (2n — 1) 77
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Solution to Exercise 10.11. The equation of motion is

Uy = iy + osinwt O<x<¥ t>0,
u(0,£) =0 t>0,

u(l,t) =0 t>0,

u(x,0) =0 0<x </,
ui(x,0) =0 0<x <l

This is a special case of the IBVP (10.24) with f = 0, ¢ = 0, and
g(x,t) = osinwt. The eigenfunctions are obtained from the eigenvalue
problem

X"(x) +AX(x) =0, X(0)=0, X(¢)=0,

whence

_ h _ .2 _ (nt 2 . . n7X
M= An—'Yn—(€>, Xn(x)—squnx—sm—g.

In the expansions (10.23), the coefficients F, and G, are zero. We
calculate the coefficients Qy;:

2 rt
Qu(t) = Z/ 0 sin wt sin v, x dx
Jo
_ 2 (— Ccos x) Zsinwt
,Y”‘e ,Yn 0

20

= P (1 — Cos 'yn€> sin wt.
n

n

But v,¢{ = nm and therefore cos y,{ = cosnm = (—1)". We conclude

that

20(1—(=1)")
Qu(t) = —— —— sinwt.
For convenience, we let
2(7(1 — (—1)”)
Jon=—""—"7-""",
nri

and express Qy, as
Qu(t) = Jysinwt.

Then the initial value problem (10.24) takes the form

U/ (t) 4+ Uo2%cy(t) = Jpsinwt, (14.452)
Ux(0) =0, (14.45b)
u,(0) =0, (14.45¢)

which may be solved in a number of ways; see suggestions in Exam-
ple 10.6. Here we chose to solve through the Laplace transform since
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that is a little quicker. Applying the transform, and accounting for the
null initial conditions, we get

W]n
t =
2 (1)} (s2 4 292)(s2 + w?)
_ Jn w w . .
=2\ TR Eray (partial fractions),
whence ] w
t) = 5———— (sinwt — —si t).
U, (t) T (smw o sin ¢y, )

We conclude that

u(x, t) = i Jn (sinwt d sin ¢y t> sin y,x
, L) = 5 5 5 - n nX.
=2y - w? CYn

Observe that the solution is invalid if w = c7y, for any integer n
since that results in a division by zero. In those exceptional cases, the
imposed frequency w matches one of the string’s natural frequencies
and causes resonance. For an instructive extra exercise, solve the initial
value problem (14.45) with n =1 and w = ¢y to see what happens.
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Solution to Exercise 10.12. Mutiplying the ODE (10.32a) by the

kAt

integrating factor e*'»*, we get

!/
(ekA"tlln (t)) = J,etsin wt.

We integrate both sides’® and arrive at “We apply the integration formula
at oz _ e : _
| St fe' sm. btdt = s (a sin bt bcos.bt)
ek/\ntun(t) _ n (k)\n sinwt — w coswt) +C, wh1'ch is usually prgser}ted as an inte-
w? + k? )L% gration by parts exercise in most calculus
textbooks.

where C is the integration constant. We evaluate this at + = 0 and
apply the initial condition U, (0) = 0,

_ W
0= Ry +C,

and solve for C:

_ W

w? + k272"
Thus we arrive at
kAnt
kAnt o Juet . wn
ML (t) = m (k/\n sin wt — wcoswt) + m,
that is,
— wijn —kAnt _ kﬂ :
U, (t) = EwE [e cos wt + " sinwt|,

which is identical to what was obtained in Example 10.5.



