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Solution to Exercise 8.9. Following a procedure similar to that
employed in Section 8.4, we fork the analysis of the eigenvalue prob-
lem into three branches.

Case 1: λ < 0. To enforce the negativity of λ, take λ = −γ2, where
γ > 0. Then the differential equation takes the form y′′(x)−γ2y(x) =
0 whose general solution is

y(x) = a cosh γx + b sinh γx,

and therefore

y′(x) = aγ sinh γx + bγ cosh γx.

Applying the left boundary condition leads to bγ = 0. But γ > 0 by
assumption. Therefore b = 0 and we arrive at

y(x) = a cosh γx, y′(x) = aγ sinh γx.

The boundary condition at x = ℓ implies that aγ sinh γℓ = 0. We
don’t want to take a = 0 because then we will have a trivial solution.
Since γ > 0 by assumption, we are led to sinh γℓ = 0, and therefore
γℓ = 0 (see the marginal note on page 108) which is impossible
since neither γ nor ℓ is zero. So we abandon the λ < 0 case.

Case 2: λ = 0. Then the differential equation takes the form y′′(x) = 0
whose general solution is y(x) = ax + b, and therefore y′(x) = a.
The left boundary condition implies that a = 0, leaving us with
y(x) = b, and therefore y′(x) = 0. This satisfies the boundary
condition at x = ℓ, and therefore λ = 0 is an eigenvalue. Call
this λ0. The corresponding eigenfunction is any (nonzero) constant
function. We take y0(x) = 1. In summary, we have found the
following eigenvalue/eigenfunction pair:

λ0 = 0, y0(x) = 1.

Case 3: λ > 0. To enforce the positivity of λ, take λ = γ2, where γ >

0. Then the differential equation takes the form y′′(x) + γ2y(x) = 0
whose general solution is

y(x) = a cos γx + b sin γx,

and therefore
y′(x) = −aγ sin γx + bγ cos γx.

Applying the left boundary condition leads to bγ = 0. Since γ > 0
by assumption, we let b = 0 and arrive at

y(x) = a cos γx, y′(x) = −aγ sin γx.
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Applying the boundary condition at x = ℓ we get −aγ sin γℓ = 0.
Since a and γ are nonzero, we are left with sin γℓ = 0 and therefore
γℓ is an integer multiple of π. We let

γn =
nπ

ℓ
, n = 1, 2, . . . .

Then the eigenvalues and eigenfunctions are

λn = γ2
n =

�nπ

ℓ

�2
, yn(x) = cos γnx = cos

nπx
ℓ

, n = 1, 2, . . . .

Note: The eigenvalue and eigenfunction pair λ0 and y0(x) found in
Case 2 can be subsumed in the result of Case 3 by letting the index n
begin at n = 0. Thus, the complete set of the eigenvalues and eigen-
functions in this problem are given by

λn = γ2
n =

�nπ

ℓ

�2
, yn(x) = cos γnx = cos

nπx
ℓ

, n = 0, 1, 2, . . . .

To evaluate the inner products (ym, yn) of the eigenfunctions, we
follow the method introduced in Section 8.5. Specifically, our mth and
nth eigenvalues and eigenfunctions are solutions of

y′′m + λmym = 0, y′m(0) = 0, y′m(ℓ) = 0,

y′′n + λnyn = 0, y′n(0) = 0, y′n(ℓ) = 0.

A calculation identical to that in Section 8.5.2 leads to


y′m(x)yn(x)− y′n(x)ym(x)

����
ℓ

0
+(λm − λn)

Z ℓ

0
ym(x)yn(x) dx = 0.

The evaluation
���
ℓ

0
yields zero because y′m and y′n are zero at x = 0 and

x = ℓ. That leaves us with

(λm − λn)
Z ℓ

0
ym(x)yn(x) dx = 0.

If m ̸= n, then λm − λn ̸= 0, and therefore

Z ℓ

0
ym(x)yn(x) dx = 0,

which confirms the case m ̸= n of this exercise’s assertion. We handle
the case m = n through direct integration:

(yn, yn) =
Z ℓ

0

��yn(x)
��2 dx =

Z ℓ

0
cos2 γnx dx

=
1
2

Z ℓ

0
[1 + cos 2γnx] dx =

1
2

�
x +

1
2γn

sin 2γnx
�ℓ

0
.
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The last step of the calculation above is valid only for n > 0 because
γ0 = 0. So if n > 0, we have

sin 2γnx
���
x=ℓ

= sin 2γnℓ = sin nπ = 0,

and thus we arrive at

(yn, yn) =
1
2
ℓ, if n > 0,

and if n = 0, we have γ0 = 0 and therefore y0(x) = cos 0 = 1. Thus:

(y0, y0) =
Z ℓ

0
12 dx = x

����
ℓ

0
= ℓ.

In summary, we have shown that

Z ℓ

0
ym(x)yn(x) dx =





ℓ if m = n = 0,
1
2 ℓ if m = n ̸= 0,

0 otherwise .
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Solution to Exercise 8.10. According to equations (8.13), (8.14),
(8.15), (8.20), and (8.21), The Fourier sine series of a function f defined
on the interval 0 < x < ℓ is

f (x) =
∞

∑
n=1

bnyn(x),

where

γn =
nπ

ℓ
, λn = γ2

n, yn(x) = sin
nπx
ℓ

, bn =
2
ℓ
( f , yn).

In the current exercise we have ℓ = π, and therefore γn = n and

bn =
2
π

Z π

0
(1) sin nx dx =

2
π

�
− 1

n
cos nx

�����
π

0
=

2
nπ

[− cos nπ + 1] =
2

nπ
[1 − (−1)n] .

We conclude that

f (x) =
2
π

∞

∑
n=1

1 − (−1)n

n
sin nx =

4
π

∞

∑
n=1

n odd

1
n

sin nx =
4
π

∞

∑
n=1

1
2n − 1

sin(2n− 1)x.

Here are the first few terms:

f (x) =
4
π

�
sin x +

1
3

sin 3x +
1
5

sin 5x + · · ·
�

.
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Solution to Exercise 8.12. We have ℓ = 1 and therefore according
to (8.23) γn = nπ, and according to (8.26) we have

bn = 2( f , yn) = 2
Z 1

0

1
4

x(1 − x)2 sin γnx dx

=
Z 1

0

1
2
(x − 2x2 + x3) sin γnx dx.

We begin with evaluating9 the indefinite integral: 9 Here we apply Kronecker’s method
(see Appendix 8.10) to evaluate the in-
tegral but you may do it with any other
integration method that you are comfort-
able with.

Z 1
2
(x − 2x2 + x3) sin γnx dx

=
1
2


x − 2x2 + x3��− 1
γn

cos γnx
�
− 1

2

1 − 4x + 3x2��− 1

γ2
n

sin γnx
�

+
1
2

−4 + 6x

�� 1
γ3

n
cos γnx

�
− (3)

� 1
γ4

n
sin γnx

�
.

Evaluating the result at x = 0 yields − 2
γ3

n
, and at x = 1 yields 1

γ3
n

cos γn −
3

γ4
n

sin γn, and therefore

bn =
1

γ3
n

cos γn −
3

γ4
n

sin γn +
2

γ3
n

.

Considering that γn = nπ, we have sin γn = 0 and cos γn = (−1)n,
and therefore

bn =
1

γ3
n

h
2 + (−1)n

i
=

1
π3 · 2 + (−1)n

n3 .

We conclude that

f (x) =
1

π3

∞

∑
n=1

2 + (−1)n

n3 sin nπx.

The expression 2+ (−1)n alternates between 1 and 3. Here are the first
five terms:

f (x) =
1

π3

h
sin πx+

3
23 sin 2πx+

1
33 sin 3πx+

3
43 sin 4πx+

1
53 sin 5πx+ · · ·

i


