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Solution to Exercise 8.9. Following a procedure similar to that
employed in Section 8.4, we fork the analysis of the eigenvalue prob-
lem into three branches.

Case 1: A < 0. To enforce the negativity of A, take A = —<?, where
4 > 0. Then the differential equation takes the form y” (x) — vy (x) =
0 whose general solution is

y(x) = acoshyx + bsinhyx,
and therefore

y'(x) = a7y sinh yx + b7y cosh yx.

Applying the left boundary condition leads to by = 0. But v > 0 by
assumption. Therefore b = 0 and we arrive at

y(x) =acoshyx, ' (x)=aysinhyx.

The boundary condition at x = ¢ implies that aysinhy¢ = 0. We
don’t want to take a = 0 because then we will have a trivial solution.
Since 7y > 0 by assumption, we are led to sinh y¢ = 0, and therefore
Y = 0 (see the marginal note on page 108) which is impossible
since neither 7 nor / is zero. So we abandon the A < 0 case.

Case 2: A = 0. Then the differential equation takes the form y”’(x) = 0
whose general solution is y(x) = ax + b, and therefore y'(x) = a.
The left boundary condition implies that 2 = 0, leaving us with
y(x) = b, and therefore y'(x) = 0. This satisfies the boundary
condition at x = ¢, and therefore A = 0 is an eigenvalue. Call
this Ag. The corresponding eigenfunction is any (nonzero) constant
function. We take yp(x) = 1. In summary, we have found the
following eigenvalue/eigenfunction pair:

)LO = O, yo(x) =1.

Case 3: A > 0. To enforce the positivity of A, take A = 72, where ¢ >
0. Then the differential equation takes the form y” (x) + y?y(x) =0
whose general solution is

y(x) = acosyx + bsinyx,

and therefore

y'(x) = —a7ysinyx + by cos yx.

Applying the left boundary condition leads to by = 0. Since v > 0
by assumption, we let b = 0 and arrive at

y(x) =acosyx, y'(x)= —aysinyx.
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Applying the boundary condition at x = ¢ we get —aysinyf = 0.
Since a and -y are nonzero, we are left with sin v/ = 0 and therefore
¢ is an integer multiple of 77. We let

Then the eigenvalues and eigenfunctions are

2
An:ﬁ: (%) , Yn(x) :cos'ynx:cosn—zx, n=12,....

Note: The eigenvalue and eigenfunction pair Ag and yo(x) found in
Case 2 can be subsumed in the result of Case 3 by letting the index n

begin at n = 0. Thus, the complete set of the eigenvalues and eigen-
functions in this problem are given by

2
An zfyfl = (%) , Yn(x) zcos'ynx:cosn—;fx, n=20,1,2,....

To evaluate the inner products (v, yn) of the eigenfunctions, we
follow the method introduced in Section 8.5. Specifically, our mth and
nth eigenvalues and eigenfunctions are solutions of

Y+ AmlYm =0, Y (0) =0, Y () =
Yy + Anyn =0, y,(0) =0,

A calculation identical to that in Section 8.5.2 leads to
/ / ¢ ¢
(0 ()Y () = Y (X)ym (x)) ‘0+(Am - /\n)/o Ym(x)yn(x) dx =0.

l
The evaluation ‘ yields zero because y;, and y), are zero at x = 0 and

0
x = (. That leaves us with
4
(Am — An) /O Yo ()Y () dx = 0.
If m # n, then Ay, — Ay # 0, and therefore

[ im0 dx =0,

which confirms the case m # n of this exercise’s assertion. We handle
the case m = n through direct integration:

14 l
(yn/]/n) :/0 |yn(X)|2dx=/0 COSZ’)’nxdx
l

1 /¢ 1
25/0 [1+cos2'ynx]dx—[x+

5 sin 2y, x

1
2n 0
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The last step of the calculation above is valid only for n > 0 because
Yo = 0. So if n > 0, we have

sin 27y, x

. = sin2y,¢ = sinnmt =0,
xX=

and thus we arrive at
1
(Yn,Yn) = EE, ifn >0,

and if n = 0, we have 7y = 0 and therefore yo(x) = cos0 = 1. Thus:

¢
=/

l
(o,v0) = [ 1dx = x
0 0

In summary, we have shown that

. ¢ ifm=n=0,
/O Ym(X)yn(x)dx = ¢ 10 ifm=n+#0,
0 otherwise .
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Solution to Exercise 8.10. According to equations (8.13), (8.14),
(8.15), (8.20), and (8.21), The Fourier sine series of a function f defined
on the interval 0 < x < £ is

f(x) = i by (),

where

nrt . niax
=" A= Yn(x)=sin—=, by=

7 7 (f, yn)-

SN

In the current exercise we have ¢/ = 7, and therefore 7, = n and

2 o 2/ 1 T2 2 "
by, = E/o (1)sinnxdx = E(—Ecosnx) T E[—cosnn—l—l] = E[l_(_l) ].
We conclude that

2.8 1—(-1)" . 421 . 4 & .

J—— _ — — = — 2 _1 .

f(x) nn;l - sinnx = — n;l _sinnx nrgzn_lsm( n—1)x
n odd

Here are the first few terms:

4 1 1
f(x):E Sinx+§sin3x+gsin5x+... .
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Solution to Exercise 8.12. We have / = 1 and therefore according
to (8.23) v» = nm, and according to (8.26) we have

1
by =2(f,yn) = 2/ %x(l — x)zsin'ynx dx
0
' 2, 3
= / =(x — 2x° + x°) sin y,x dx.
0 2
We begin with evaluating? the indefinite integral:

1
/ E(x —2x% + x3) siny,x dx

_1 942 3 _i _1 . 2 _i .

— 2(x 2x% + x )( - cos'ynx> 2(1 4x + 3x )( - sm'ynx)
1 1 1 .

+ E(—4+6x) (% cos 7nx> —(3) (7—% sm'ynx).

Evaluating the result at x = 0 yields — %, and at x = 1yields ,Yl—% Cos Yy —

%4 sin 7y, and therefore
n

b —icosy —isin'y —i—i
S

Considering that 7, = nm, we have siny, = 0 and cosy, = (—1)",

and therefore
} - i . 24 (=1)"

1
by = — |2+ (~1)"
’ 72[ =y

We conclude that

1 &2+ (-1)"
flx) = = rg % sin n7rx.
The expression 2+ (—1)" alternates between 1 and 3. Here are the first

five terms:

1 1 1
flx) = = {sin Tx + 3 Sin 271X + — sin 371x + 3 sin47tx + — sin5mwx + - - -

23 33 43 53

9Here we apply Kronecker’s method
(see Appendix 8.10) to evaluate the in-
tegral but you may do it with any other
integration method that you are comfort-
able with.



