Solution to Exercise 8.9. Following a procedure similar to that employed in Section 8.4, we fork the analysis of the eigenvalue problem into three branches.

Case 1: $\lambda < 0$. To enforce the negativity of λ , take $\lambda = -\gamma^2$, where

 $\gamma > 0$. Then the differential equation takes the form $y''(x) - \gamma^2 y(x) = 0$ whose general solution is

$$y(x) = a \cosh \gamma x + b \sinh \gamma x,$$

and therefore

$$y'(x) = a\gamma \sinh \gamma x + b\gamma \cosh \gamma x.$$

Applying the left boundary condition leads to $b\gamma = 0$. But $\gamma > 0$ by assumption. Therefore b = 0 and we arrive at

$$y(x) = a \cosh \gamma x, \quad y'(x) = a \gamma \sinh \gamma x.$$

The boundary condition at $x = \ell$ implies that $a\gamma \sinh \gamma \ell = 0$. We don't want to take a = 0 because then we will have a trivial solution. Since $\gamma > 0$ by assumption, we are led to $\sinh \gamma \ell = 0$, and therefore $\gamma \ell = 0$ (see the marginal note on page 108) which is impossible since neither γ nor ℓ is zero. So we abandon the $\lambda < 0$ case.

Case 2: $\lambda = 0$. Then the differential equation takes the form y''(x) = 0whose general solution is y(x) = ax + b, and therefore y'(x) = a. The left boundary condition implies that a = 0, leaving us with y(x) = b, and therefore y'(x) = 0. This satisfies the boundary condition at $x = \ell$, and therefore $\lambda = 0$ is an eigenvalue. Call this λ_0 . The corresponding eigenfunction is any (nonzero) constant function. We take $y_0(x) = 1$. In summary, we have found the following eigenvalue/eigenfunction pair:

$$\lambda_0 = 0$$
, $y_0(x) = 1$.

Case 3: $\lambda > 0$. To enforce the positivity of λ , take $\lambda = \gamma^2$, where $\gamma > 0$. Then the differential equation takes the form $y''(x) + \gamma^2 y(x) = 0$ whose general solution is

$$y(x) = a\cos\gamma x + b\sin\gamma x,$$

and therefore

$$y'(x) = -a\gamma\sin\gamma x + b\gamma\cos\gamma x.$$

Applying the left boundary condition leads to $b\gamma = 0$. Since $\gamma > 0$ by assumption, we let b = 0 and arrive at

$$y(x) = a \cos \gamma x, \quad y'(x) = -a\gamma \sin \gamma x.$$

Applying the boundary condition at $x = \ell$ we get $-a\gamma \sin \gamma \ell = 0$. Since *a* and γ are nonzero, we are left with $\sin \gamma \ell = 0$ and therefore $\gamma \ell$ is an integer multiple of π . We let

$$\gamma_n=\frac{n\pi}{\ell}, \quad n=1,2,\ldots.$$

Then the eigenvalues and eigenfunctions are

$$\lambda_n = \gamma_n^2 = \left(\frac{n\pi}{\ell}\right)^2, \quad y_n(x) = \cos \gamma_n x = \cos \frac{n\pi x}{\ell}, \qquad n = 1, 2, \dots$$

Note: The eigenvalue and eigenfunction pair λ_0 and $y_0(x)$ found in Case 2 can be subsumed in the result of Case 3 by letting the index *n* begin at n = 0. Thus, the complete set of the eigenvalues and eigenfunctions in this problem are given by

$$\lambda_n = \gamma_n^2 = \left(\frac{n\pi}{\ell}\right)^2, \quad y_n(x) = \cos \gamma_n x = \cos \frac{n\pi x}{\ell}, \qquad n = 0, 1, 2, \dots$$

To evaluate the inner products (y_m, y_n) of the eigenfunctions, we follow the method introduced in Section 8.5. Specifically, our *m*th and *n*th eigenvalues and eigenfunctions are solutions of

$$y_m'' + \lambda_m y_m = 0,$$
 $y_m'(0) = 0,$ $y_m'(\ell) = 0,$
 $y_n'' + \lambda_n y_n = 0,$ $y_n'(0) = 0,$ $y_n'(\ell) = 0.$

A calculation identical to that in Section 8.5.2 leads to

$$(y'_m(x)y_n(x) - y'_n(x)y_m(x))\Big|_0^\ell + (\lambda_m - \lambda_n)\int_0^\ell y_m(x)y_n(x)\,dx = 0$$

The evaluation $\Big|_{0}^{\ell}$ yields zero because y'_{m} and y'_{n} are zero at x = 0 and $x = \ell$. That leaves us with

$$(\lambda_m - \lambda_n) \int_0^\ell y_m(x) y_n(x) \, dx = 0.$$

If $m \neq n$, then $\lambda_m - \lambda_n \neq 0$, and therefore

$$\int_0^\ell y_m(x)y_n(x)\,dx=0,$$

which confirms the case $m \neq n$ of this exercise's assertion. We handle the case m = n through direct integration:

$$(y_n, y_n) = \int_0^\ell |y_n(x)|^2 dx = \int_0^\ell \cos^2 \gamma_n x \, dx$$

= $\frac{1}{2} \int_0^\ell [1 + \cos 2\gamma_n x] \, dx = \frac{1}{2} \left[x + \frac{1}{2\gamma_n} \sin 2\gamma_n x \right]_0^\ell.$

The last step of the calculation above is valid only for n > 0 because $\gamma_0 = 0$. So if n > 0, we have

$$\left.\sin 2\gamma_n x\right|_{x=\ell}=\sin 2\gamma_n \ell=\sin n\pi=0,$$

and thus we arrive at

$$(y_n,y_n)=\frac{1}{2}\ell, \quad \text{if } n>0,$$

and if n = 0, we have $\gamma_0 = 0$ and therefore $y_0(x) = \cos 0 = 1$. Thus:

$$(y_0, y_0) = \int_0^\ell 1^2 dx = x \Big|_0^\ell = \ell.$$

In summary, we have shown that

$$\int_0^\ell y_m(x)y_n(x)\,dx = \begin{cases} \ell & \text{if } m = n = 0, \\ \frac{1}{2}\ell & \text{if } m = n \neq 0, \\ 0 & \text{otherwise }. \end{cases}$$

Solution to Exercise 8.10. According to equations (8.13), (8.14), (8.15), (8.20), and (8.21), The Fourier sine series of a function f defined on the interval $0 < x < \ell$ is

$$f(x) = \sum_{n=1}^{\infty} b_n y_n(x),$$

where

$$\gamma_n = \frac{n\pi}{\ell}, \quad \lambda_n = \gamma_n^2, \quad y_n(x) = \sin \frac{n\pi x}{\ell}, \quad b_n = \frac{2}{\ell}(f, y_n).$$

In the current exercise we have $\ell = \pi$, and therefore $\gamma_n = n$ and

$$b_n = \frac{2}{\pi} \int_0^{\pi} (1) \sin nx \, dx = \frac{2}{\pi} \left(-\frac{1}{n} \cos nx \right) \Big|_0^{\pi} = \frac{2}{n\pi} \left[-\cos n\pi + 1 \right] = \frac{2}{n\pi} \left[1 - (-1)^n \right].$$

We conclude that

$$f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n} \sin nx = \frac{4}{\pi} \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{1}{n} \sin nx = \frac{4}{\pi} \sum_{\substack{n=1\\n=1}}^{\infty} \frac{1}{2n-1} \sin(2n-1)x.$$

Here are the first few terms:

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right].$$

Solution to Exercise 8.12. We have $\ell = 1$ and therefore according to (8.23) $\gamma_n = n\pi$, and according to (8.26) we have

$$b_n = 2(f, y_n) = 2 \int_0^1 \frac{1}{4} x(1-x)^2 \sin \gamma_n x \, dx$$
$$= \int_0^1 \frac{1}{2} (x - 2x^2 + x^3) \sin \gamma_n x \, dx$$

We begin with evaluating⁹ the indefinite integral:

$$\int \frac{1}{2} (x - 2x^2 + x^3) \sin \gamma_n x \, dx$$

= $\frac{1}{2} (x - 2x^2 + x^3) \left(-\frac{1}{\gamma_n} \cos \gamma_n x \right) - \frac{1}{2} (1 - 4x + 3x^2) \left(-\frac{1}{\gamma_n^2} \sin \gamma_n x \right)$
+ $\frac{1}{2} (-4 + 6x) \left(\frac{1}{\gamma_n^3} \cos \gamma_n x \right) - (3) \left(\frac{1}{\gamma_n^4} \sin \gamma_n x \right).$

Evaluating the result at x = 0 yields $-\frac{2}{\gamma_n^3}$, and at x = 1 yields $\frac{1}{\gamma_n^3} \cos \gamma_n - \frac{3}{\gamma_n^4} \sin \gamma_n$, and therefore

$$b_n = \frac{1}{\gamma_n^3} \cos \gamma_n - \frac{3}{\gamma_n^4} \sin \gamma_n + \frac{2}{\gamma_n^3}.$$

Considering that $\gamma_n = n\pi$, we have $\sin \gamma_n = 0$ and $\cos \gamma_n = (-1)^n$, and therefore

$$b_n = \frac{1}{\gamma_n^3} \Big[2 + (-1)^n \Big] = \frac{1}{\pi^3} \cdot \frac{2 + (-1)^n}{n^3}.$$

We conclude that

$$f(x) = \frac{1}{\pi^3} \sum_{n=1}^{\infty} \frac{2 + (-1)^n}{n^3} \sin n\pi x.$$

The expression $2 + (-1)^n$ alternates between 1 and 3. Here are the first five terms:

$$f(x) = \frac{1}{\pi^3} \left[\sin \pi x + \frac{3}{2^3} \sin 2\pi x + \frac{1}{3^3} \sin 3\pi x + \frac{3}{4^3} \sin 4\pi x + \frac{1}{5^3} \sin 5\pi x + \cdots \right]$$

⁹ Here we apply Kronecker's method (see Appendix 8.10) to evaluate the integral but you may do it with any other integration method that you are comfortable with.