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Solution to Exercise 8.5. We need to determine c so that (f,g) =
0. We have

(F.9) = [ fg(x) dx

s 7T
:/ (x—l—c)sinxdx:/ xsinxdx—i—c/ sin x dx.
0 0 0

We evaluate the x sin x integral with Kronecker’s method:3
/xsinxdx = (x)(—cosx) — (1)(—sinx) = —xcosx + sinx,

and therefore

T
= TT.

7T
/ xsinxdx = (—xcos x + sin x)
0 0

The evaluation of the sin x integral is straightforward:

T

= —cos+cos0=2.

7T
/ sinxdx = —cosx
0 0

We conclude that (f,g) = 71+ 2c and the orthogonality implies that

- _TT
c = 5.

8 Or by integration by parts, if you prefer.
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Solution to Exercise 8.6. The three orthogonality conditions pro-
vide a set of three equations which we solve for the unknowns a4, b,
and c. Here are the details.

(8) = [ @)= [ 1) +a)dx

1 1, b
_/0 (x—i—a)dx—(ix +ax) —E—f—u—O, (%)

0

(g,h):/Olg(x)h(x)dx:/Ol(x—i—a)(xz—f—bx—i—c)dx

1
= (x3+ (a+b)x2+(ab+c)x+ac) dx
0

1

S (a+ b))+ %(ab +c)x% + ucx)

1
3

|
VS
N

0

1 1 1
—z—i—g(a—i—b)—i—i(ab—i—c)—l—ac—o,
1 1
(hf) = [ hf(x)dx = [ 2+ bx+)(1)dx (+%)
0 0
_(1s 1 5
= (3x +2bx +Cx) .
Z%—F%b—FC:O. (%)
From (*) we get a = —+. Then (%) reduces to 4 + & = 0, whence
b = —1. Then (xxx*) reduces to —% +c¢ = 0, whence ¢ = %. We

conclude that the following functions are mutually orthogonal:

Flx) =1, g(x)=x— 1, mm:ﬂ—x+é
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Solution to Exercise 8.7. With the help of the trigonometric iden-
tity (8.33e) we calculate

7T
Dy = / COS mx cos nx dx
Jo

= %/0” {cos((m —n)x) + cos((m + n)x)} dx

T

_1 [ ! sin((m — n)x) + sin((m+n)x)]

2|m—n m+n

0

sin((m —n)m) + - }i- " sin((m + n)rc)} .

1
2| m—n
Since the sine of an integer multiple of 7t is zero, the expression above

evaluates to zero.

Exception: The calculation above is invalid if m = n due to the m —n in
the denominator. If m = n, we have

7T
Dy :/0 cos® nx dx

1 T
= E/ (14 cos2nx)dx
0

T

—1 x—i—i in2nx
=2 o

0

—1 7'(—}—i in2n7t
2 T '

Since sin2n7t = 0, we conclude that

¢i’l,}’l - E
Exception: The calculation above is invalid if n = 0 due to the n in the
denominator. If n = 0 we get

T

T T
CDO,O:/ cosZde:/ ldx=x| =m.
0 0

0
In summary, we we shown that
7 m=n=020,

m=mn%#0,

otherwise.

cI>m,n =
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Solution to Exercise 8.8. Following a procedure similar to that
employed in Section 8.4, we fork the analysis of the eigenvalue prob-
lem into three branches.

Case 1: A < 0. To enforce the negativity of A, take A = —9?, where
9 > 0. Then the differential equation takes the form " (x) — 7%y(x) =
0 whose general solution is

y(x) = acoshyx + bsinh yx.

Applying the left boundary condition leads to a = 0, leaving us
with

y(x) = bsinhyx, (14.30)
and therefore y'(x) = b7y cosh yx. The boundary condition at x = ¢
implies that by coshy¢ = 0. We don’t want to take b = 0 because
then (14.30) would reduce to the trivial solution, and since y > 0 by
assumption and the cosh function is never zero (see the marginal
note on page 108), we reach a dead end and abandon the A < 0
case.

Case 2: A = 0. Then the differential equation takes the form y”’(x) = 0
whose general solution is y(x) = ax + b. Applying the left bound-
ary condition implies that b = 0, and therefore y(x) = ax. Then
the boundary condition at x = ¢ implies that a/ = 0. We are forced
to take a = 0 and thus arrive at the trivial solution again. So we
abandon the A = 0 case.

Case 3: A > 0. To enforce the positivity of A, take A = 72, where vy >
0. Then the differential equation takes the form y”(x) + y?y(x) = 0
whose general solution is

y(x) = acosyx + bsinyx.

Applying the left boundary condition leads to a = 0, leaving us
with
y(x) = bsinyx, (14.31)
and therefore y'(x) = b7y cosyx. The boundary condition at x =
¢ implies that bycosyf = 0. Since b cannot be zero—otherwise
we will have a trivial solution—and since ¢y > 0, we are left with
cos y¥ = 0 which is possible only if ¢ is an odd multiple of 77/2,
asin (2n —1)Z. Thus, we arrive at infinitely many choices for -:
_(@n-1nm B
'yn—T, n=12..., (14.32)

and since A = 92, we have infinitely many choices for A:

2n — 1)\ >
An:<(2€)) , n=12.... (14-33)
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Finally, (14.31) yields an eigenfunction y,(x) corresponding to each
eigenvalue Ay:

(2n —1)7tx

Yn(x) = siny,x = sin 7 , n=1,2.... (14.34)
To evaluate the inner products (y,y») of the eigenfunctions, we
follow the method introduced in Section 8.5. Specifically, our mth and

nth eigenvalues and eigenfunctions are solutions of

Yo + Amym =0, Ym(0)
Yo + Anyn =0, ¥ (0)

0, Ym(£) =0,
0, 0

A calculation identical to that in Section 8.5.2 leads to

y4 l
(W ()Y () = Y3y () ym (%)) \0+(Am — An) /0 Yo (X)yu (x) dx = 0.

14
The evaluation ‘O yields zero because y,; and v, are zero at x = 0 and

y,, and y), are zero at x = (. That leaves us with

14
(=) [ v (x)yu(x) dix = 0.

If m # n, then Ay, — A, # 0, and therefore

[ o dx =0,

which confirms the case m # n of this exercise’s assertion. We handle
the case m = n through direct integration:

/ 4
(Yn, Yn) :/0 |yn(x)|2dx:/0 sin? y,x dx

—1/6[1—c052 x]alx—1 X — L sin2 xé
2 T 2 29n T 0

In view of (14.32) we have

=sin2y,l =sin(2n — 1) =0,

sin 27y, x
x={

and thus we arrive at

1
(Yn, yn) = §€~



