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Solution to Exercise 8.5. We need to determine c so that ( f , g) =
0. We have

( f , g) =
Z π

0
f (x)g(x) dx

=
Z π

0
(x + c) sin x dx =

Z π

0
x sin x dx + c

Z π

0
sin x dx.

We evaluate the x sin x integral with Kronecker’s method:8 8 Or by integration by parts, if you prefer.

Z
x sin x dx = (x)


− cos x

�
− (1)


− sin x

�
= −x cos x + sin x,

and therefore
Z π

0
x sin x dx =


−x cos x + sin x

�����
π

0
= π.

The evaluation of the sin x integral is straightforward:

Z π

0
sin x dx = − cos x

����
π

0
= − cos π + cos 0 = 2.

We conclude that ( f , g) = π + 2c and the orthogonality implies that
c = −π

2 .
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Solution to Exercise 8.6. The three orthogonality conditions pro-
vide a set of three equations which we solve for the unknowns a, b,
and c. Here are the details.

( f , g) =
Z 1

0
f (x)g(x) dx =

Z 1

0
(1)(x + a) dx

=
Z 1

0
(x + a) dx =

�1
2

x2 + ax
�����

1

0
=

1
2
+ a = 0, (∗)

(g, h) =
Z 1

0
g(x)h(x) dx =

Z 1

0
(x + a)(x2 + bx + c) dx

=
Z 1

0

�
x3 + (a + b)x2 + (ab + c)x + ac

�
dx

=
�1

4
x4 +

1
3
(a + b)x3 +

1
2
(ab + c)x2 + acx

�����
1

0

=
1
4
+

1
3
(a + b) +

1
2
(ab + c) + ac = 0,

(h, f ) =
Z 1

0
h(x) f (x) dx =

Z 1

0
(x2 + bx + c)(1) dx (∗∗)

=
�1

3
x3 +

1
2

bx2 + cx
�����

1

0

=
1
3
+

1
2

b + c = 0. (∗∗∗)

From (∗) we get a = − 1
2 . Then (∗∗) reduces to 1

12 + b
12 = 0, whence

b = −1. Then (∗∗∗) reduces to − 1
6 + c = 0, whence c = 1

6 . We
conclude that the following functions are mutually orthogonal:

f (x) = 1, g(x) = x − 1
2

, h(x) = x2 − x +
1
6

.
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Solution to Exercise 8.7. With the help of the trigonometric iden-
tity (8.33e) we calculate

Φm,n =
Z π

0
cos mx cos nx dx

=
1
2

Z π

0

h
cos


(m − n)x

�
+ cos


(m + n)x

�i
dx

=
1
2

�
1

m − n
sin


(m − n)x

�
+

1
m + n

sin

(m + n)x

�� ����
π

0

=
1
2

�
1

m − n
sin


(m − n)π

�
+

1
m + n

sin

(m + n)π

��
.

Since the sine of an integer multiple of π is zero, the expression above
evaluates to zero.

Exception: The calculation above is invalid if m = n due to the m − n in
the denominator. If m = n, we have

Φn,n =
Z π

0
cos2 nx dx

=
1
2

Z π

0
(1 + cos 2nx) dx

=
1
2

�
x +

1
2n

sin 2nx
� ����

π

0

=
1
2

�
π +

1
2n

sin 2nπ

�
.

Since sin 2nπ = 0, we conclude that

Φn,n =
π

2
.

Exception: The calculation above is invalid if n = 0 due to the n in the
denominator. If n = 0 we get

Φ0,0 =
Z π

0
cos2 0 dx =

Z π

0
1 dx = x

����
π

0
= π.

In summary, we we shown that

Φm,n =





π m = n = 0,
π
2 m = n ̸= 0,

0 otherwise.
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Solution to Exercise 8.8. Following a procedure similar to that
employed in Section 8.4, we fork the analysis of the eigenvalue prob-
lem into three branches.

Case 1: λ < 0. To enforce the negativity of λ, take λ = −γ2, where
γ > 0. Then the differential equation takes the form y′′(x)−γ2y(x) =
0 whose general solution is

y(x) = a cosh γx + b sinh γx.

Applying the left boundary condition leads to a = 0, leaving us
with

y(x) = b sinh γx, (14.30)

and therefore y′(x) = bγ cosh γx. The boundary condition at x = ℓ

implies that bγ cosh γℓ = 0. We don’t want to take b = 0 because
then (14.30) would reduce to the trivial solution, and since γ > 0 by
assumption and the cosh function is never zero (see the marginal
note on page 108), we reach a dead end and abandon the λ < 0
case.

Case 2: λ = 0. Then the differential equation takes the form y′′(x) = 0
whose general solution is y(x) = ax + b. Applying the left bound-
ary condition implies that b = 0, and therefore y(x) = ax. Then
the boundary condition at x = ℓ implies that aℓ = 0. We are forced
to take a = 0 and thus arrive at the trivial solution again. So we
abandon the λ = 0 case.

Case 3: λ > 0. To enforce the positivity of λ, take λ = γ2, where γ >

0. Then the differential equation takes the form y′′(x) + γ2y(x) = 0
whose general solution is

y(x) = a cos γx + b sin γx.

Applying the left boundary condition leads to a = 0, leaving us
with

y(x) = b sin γx, (14.31)

and therefore y′(x) = bγ cos γx. The boundary condition at x =

ℓ implies that bγ cos γℓ = 0. Since b cannot be zero—otherwise
we will have a trivial solution—and since γ > 0, we are left with
cos γℓ = 0 which is possible only if γℓ is an odd multiple of π/2,
as in (2n − 1)π

2 . Thus, we arrive at infinitely many choices for γ:

γn =
(2n − 1)π

2ℓ
, n = 1, 2 . . . , (14.32)

and since λ = γ2, we have infinitely many choices for λ:

λn =

�
(2n − 1)π

2ℓ

�2

, n = 1, 2 . . . . (14.33)
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Finally, (14.31) yields an eigenfunction yn(x) corresponding to each
eigenvalue λn:

yn(x) = sin γnx = sin
(2n − 1)πx

2ℓ
, n = 1, 2 . . . . (14.34)

To evaluate the inner products (ym, yn) of the eigenfunctions, we
follow the method introduced in Section 8.5. Specifically, our mth and
nth eigenvalues and eigenfunctions are solutions of

y′′m + λmym = 0, ym(0) = 0, y′m(ℓ) = 0,

y′′n + λnyn = 0, yn(0) = 0, y′n(ℓ) = 0.

A calculation identical to that in Section 8.5.2 leads to


y′m(x)yn(x)− y′n(x)ym(x)

����
ℓ

0
+(λm − λn)

Z ℓ

0
ym(x)yn(x) dx = 0.

The evaluation
���
ℓ

0
yields zero because ym and yn are zero at x = 0 and

y′m and y′n are zero at x = ℓ. That leaves us with

(λm − λn)
Z ℓ

0
ym(x)yn(x) dx = 0.

If m ̸= n, then λm − λn ̸= 0, and therefore

Z ℓ

0
ym(x)yn(x) dx = 0,

which confirms the case m ̸= n of this exercise’s assertion. We handle
the case m = n through direct integration:

(yn, yn) =
Z ℓ

0

��yn(x)
��2 dx =

Z ℓ

0
sin2 γnx dx

=
1
2

Z ℓ

0
[1 − cos 2γnx] dx =

1
2

�
x − 1

2γn
sin 2γnx

�ℓ

0
.

In view of (14.32) we have

sin 2γnx
���
x=ℓ

= sin 2γnℓ = sin(2n − 1)π = 0,

and thus we arrive at
(yn, yn) =

1
2
ℓ.


