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Solution to Exercise 7.5. Differentiating (7.21) with respect to x
we get

1 ox 1
uy(x,t) = Eerf (\/@)\/Tkt,

where erf’ is the derivative of erf. But recalling the definition of erf

in (7.20), we have

—x2

erf’(x) = e,

and therefore
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erf’(\/%) NG

We conclude that

ux(x,t) = (%) (iefxz/(‘”‘t)) (\/jm) = 4171kt67%'
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Solution to Exercise 7.6. We let s = 1/t and look at the limit s —
~+o00:

1 22 1
G(xt) = ————e & = — \G
Vanrk/s 47tk o
The numerator and denominator both go to infinity as s — o0, so we
apply 'Hopital’s rule to resolve the indeterminacy:

lim G(x,t) = 1 li Vs

— 11m ——
0+ A7tk s—rtoo 2l
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= g, 2 = g dim
X<s
TTK s—+00 ZILkE o TTX> s—+o0 \ﬁe =

In the rightmost expression, the denominator goes to infinity as s —
400, and therefore the limit is zero.
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Solution to Exercise 7.10. According to (7.31) we have

1 (x—s)?

u(x,t) = \/m/_ooefwf(s)ds

1 o0
= — e
47kt /0

We combine the exponents in the two exponential terms, and simplify

(x=s)?
T e °ds.

the result through completing the square:

(x —s)? e (x —s)?+4kts  x* —2xs + 5% + 4kts
4kt 4kt 4kt
2 —2(x—2kt)s +x%  [s—(x— Zkf)]2 — (x — 2kt)? + 22
B 4kt B 4kt
2
_ [s — (x —2kt)]” + 4kt (x — kt) _ (S — (x — 2kt) )2 - (x—kb).
4kt 4kt

Thus, we have

[} s—(x—2kt) 2
u(x, t) = 41 p ekt_x/ e_( Vi) ds.
7kt 0

Our next task is evaluate the integral appearing above. We change
the variable of integration from s to r = # Then
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Solution to Exercise 7.15. Extend the initial condition f(x) as an
even function fex to the entire real line,

) flx)  ifx>0,
Jox = {f(—x) ifx <0,

and define

u(x, t) = / ¥ Gx— 5, 8) foxe(s) ds.

—00
According to (7.30), u(x,t) solves the heat equation with initial data
fext(x). Therefore u(x, t) satisfies both (7.32a) and (7.32b), since fext(x)
coincides with f(x) on x > 0. It remains to verify that u(x, t) satisfies
the boundary condition 1, (0, ) = 0, so let’s calculate

uy(x, t) = [ Gx(x —s,t) fext(s) ds (%)
and evaluate the result at x = 0:
10 (0,£) = /7 G (=5, 1) foxe(s) ds. (%)

Let’s observe that Gy is an odd function of s. We see that by calculating
Gy from its definition in (7.22):

D= Tt

Alternatively, we may appeal to the general fact that the derivative

1 x2 2x

il
and even function is an odd function. Either way, since Gy(—s,t) is
odd and fex(s) is even, the integrand in (xx*) is odd, and therefore
the integral evaluates to zero, which shows that u(x,t) satisfies the
boundary condition.

The solution u(x, t) defined in (x) may be expressed solely in terms
of the problem’s data, f, by splitting the integration into the intervals
—c0o<s<0and 0 < s < oo,

0 )
u(x, t) = / Glx — 5, £) fax(s) ds +/O G(x —5,1) fout(s) ds,

and noting that

/ G(x —s,t) fext(s) ds = / G(x —s,t)f(s)ds,
0 0
and
0 0
/ G(x —s,t) fext(s) ds = / G(x —s,t)f(—s)ds
I Changing the variable of integration
B Jo G(X+S, t)f(S) ds, from s — —s.

whereby we arrive at the solution

u(x, t) = /Ooo {G(x —s,t)+G(x —l—s,t)}f(s) ds.
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Solution to Exercise 7.16. Here are two different ways of solving
this problem.

Method 1: Straightforward but long
Section 7.6 shows how to solve the more general IBVP (7.32), and
arrives at the solution (7.34), which is

u(x, t) = ./Ow [G(x—s,t) = Glx+5,0)] f(5) ds.

That solution holds for any initial value f. In the current exercise f is
just a constant, and therefore the solution is

u(x, t) =up /:O {G(x —s,t) — G(x+s,t)} ds

Up /°° _(x=s)? _(x+s)?
[ — [e ikt — e 4kt } ds.
varkt Jo
The integral may be evaluated in terms of erf. In the case of the first
term in the square brackets, we make a changes of variables from s to

N __ _ds
r= m,and therefore dr = N Then
1 /'°° _(x=9)? 1 )
e~ W ds = — e " dr
v 4kt Jo \/n._@
1| 2 /0 2 2 © 5 1{ x }
== |— e dr+ — e "dr| == |1+ erf( —
2 [\/E v Vvt Jo ] 2 (‘/ )

In the same way we obtain

e o )
47kt Jo 2 4kt’ )

We conclude that

u(x,t) = ug erf(\/%).

Method 2: Clever and short
Section 7.3 shows how to solve the heat equation with the Heaviside
function as initial data and arrives at the solution (7.21), which is

u(x,t) = % [1+erf(\/%)} .

If the initial data is multiplied by a factor 2u, then the solution gets
mutiplied by that factor. Therefore, the solution corresponding to the

u(x,0) = {0 if x <0, ()

intial value

2uy ifx >0,
is

u(x,t) = ug {1 —l—erf(\/%)] .
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If we substract any constant from the intial data, then the solution
is reduced by that constant. If we subtract 1y from the initial data (x),
it changes to

- if 0
u(x,0) = o <D (%)
Uug if x>0,

and the corresponding solution changes to

u(x,t) = ug erf( (%)

Vi)
akt/
But the odd function (%) agrees with the exercise’s original initial
data on x > 0, and the fact that it’s odd, implies that u(0,t) = 0. We
conclude that the restriction of (xx*x*) to x > 0 is the exercise’s solution.



