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Chapter 4

Chapter 5

Solution to Exercise 5.1. The solution of (5.14) is given by d’Alembert’s
formula (5.17). Since g = 0 in this case, it reduces to

u(x, t) =
1
2
�

f (x + ct) + f (x − ct)
�

To sketch the solution, we begin with sketching the graph of the
initial displacement f , in

x

f (x)

0

1

The graphs of f (x + ct) and f (x − ct) are obtained by translating
the graph of f (x) to the left and to the right by the amounts ct. The
graph of u(x, t) is obtained through the pointwise addition of those
two graphs and then scaling the vertical dimension by 1/2, as shown
here:

x

f (x + ct)

−ct 0

1

x

f (x − ct)

0 ct

1

x

f (x + ct) + f (x − ct)

−ct 0 ct

1
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x

u(x, t) = 1
2
�

f (x + ct) + f (x − ct)
�

−ct 0 ct

1

The graph of u(x, t) obtained above shows a snapshot of the solution
at an arbitrary time t ≥ 0. We are asked to sketch the solution at times
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t = 0, t = 1, and t = 2. That’s a matter of reproducing that graph for
those values of t. We get

x

u(x, 0)

0

1

x

u(x, 1)

−c 0 c

1

x

u(x, 2)

−2c 0 2c

1

Remark: We see that that construction of the solution u(x, t) and plot-
ting its graphs involves no computation at all. That’s the preferred
way of doing it. If, however, you feel compelled to write down some
equations, this may interest you.

We are given

f (x) =





0 x < 0,

1 x ≥ 0.

Therefore

f (x + ct) =





0 x + ct < 0

1 x + ct ≥ 0
, f (x − ct) =





0 x − ct < 0

1 x − ct ≥ 0
,

which is better expressed as

f (x + ct) =





0 x < −ct

1 x ≥ −ct
, f (x − ct) =





0 x < ct

1 x ≥ ct
.

These conditional statements distinguish among three disjoint subin-
tervals of the x axis:

x < −ct, −ct < x < ct, x > ct.

When x < −ct, both conditional statements yield zero, and therefore
the expression evaluates to zero. When −ct < x < ct, the first condi-
tional statement yields 1 while the second conditional statement yields
zero, and therefore the expression evaluates to 1. When x > ct, both
conditional statements yield 1 and therefore the expression evaluates
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to 2. We conclude that

f (x + ct) + f (x − ct) =





0 x < −ct,

1 −ct < x < ct,

2 x > ct,

and therefore

u(x, t) =
1
2
�

f (x + ct) + f (x − ct)
�
=





0 x < −ct,

1/2 −ct < x < ct,

1 x > ct,

which agrees with what we obtained earlier just by looking at the
graphs.
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Solution to Exercise 5.2. The solution of (5.14) is given by d’Alembert’s
formula (5.17). Since f = 0 in this case, it reduces to

u(x, t) =
1
2c

Z x+ct

x−ct
g(ξ) dξ.

As in the example solved in Section 5.8, we define

G(x) =
Z x

0
g(ξ) dξ,

and express d’Alembert’s solution as

u(x, t) =
1
2c

�
G(x + ct)− G(x − ct)

�
.

Considering that g(x) = 0 on x ≤ 0, we get G(x) =
R x

0 0 dx = 0
on x ≤ 0, and considering that g(x) = 1 on x > 0, we get G(x) =R x

0 1 dx = x on x > 0. Thus, altogether we have

G(x) =





0 x ≤ 0,

x x > 0.

We evaluate the expression within the square brackets as follows:

G(x+ ct)−G(x− ct) =





0 if x + ct < 0

x + ct if x + ct ≥ 0
+





0 if x − ct < 0

x − ct if x − ct ≥ 0
,

or equivalently

G(x + ct)− G(x − ct) =





0 if x < −ct

x + ct if x ≥ −ct
+





0 if x < ct

x − ct if x ≥ ct
.

These conditional statements distinguish among three disjoint subin-
tervals of the x axis:

x < −ct, −ct < x < ct, x > ct.

When x < −ct, both conditional statements yield zero, and therefore
the expression evaluates to zero. When −ct < x < ct, the first condi-
tional statement yields x + ct while the second conditional statement
yields zero, and therefore the expression evaluates to x + ct. When
x > ct, the first conditional statement yields x + ct and the second
conditional statement yields x − ct, and therefore the expression eval-
uates to 2ct. We conclude that

G(x + ct)− G(x − ct) =





0 if x < −ct,

x + ct if − ct < x < ct,

2ct if x > ct,
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and therefore the solution is

u(x, t) =
1
2c

�
G(x + ct)− G(x − ct)

�
=





0 if x < −ct,
1
2c (x + ct) if − ct < x < ct,

t if x > ct.

The diagram below shows the graphs of u(x, t) at time t = 0, 1, 2. We
have taken c = 1 for the purpose of plotting.

x

u(x, t)

−3 −2 −1 0 1 2 3

1

2

t = 0

t = 1

t = 2
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Solution to Exercise 5.4. We wish the initial displacement f (x)
to result in a right-traveling wave u(x, t) = f (x − ct). In that case
ut(x, t) = −c f ′(x − ct), and therefore ut(x, 0) = −c f ′(x). We conclude
that to get the solution u(x, t) = f (x − ct), we need to provide the
initial velocity

g(x) = ut(x, 0) = −c f ′(x).
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Solution to Exercise 5.5. The red curve in the figure below de-
picts a snapshot of the chain at generic time. The vertical x axis points
up and the origin is at the chain’s lowest point. We write u(x, t) for the
horizontal displacement of the chain’s point at coordinate x at time t.

T

0

x

weight = ρgx

T
ρgx

θ

x

∆x

T(x + ∆x, t)

T(x, t)

H(x + ∆x, t)

H(x, t)
∆x

The magnitude of the tension, T, in the chain varies with x. To see
that, consider a section of length x at the chain’s free end, as shown
in the diagram above. The weight of that segment is ρgx, where g
is the gravitational acceleration constant. The downward pull of the
weight is resisted by the vertical component of the tensile force within
the chain at the location x. The magnitude of that component is also
ρgx, making resultant of the vertical forces acting on the segment is
zero. Thus, the chain does not experience acceleration in the vertical
direction.

The horizontal component of the tensile force is nonzero, and it
is what makes the loosely hanging chain sway back and forth once
it is set into motion. The diagram shows the angle θ that the chain
makes relative to the vertical. Observe that tan θ is the slope of the
chain’s curve relative to the (vertical) x axis, and therefore tan θ(x, t) =
−ux(x, t). The minus sign is because the direction of the x axis is
reversed.

Furthermore, it is evident from the diagram that the ratio of the
horizontal to vertical components of the tension is tan θ, and there-
fore the magnitude of the horizontal component, let’s call it H(x, t), is
ρgx tan θ, that is, H(x, t) = −ρgxux(x, t).

Applying Newton’s law of motion to a small segment of length ∆x
of the chain at the location x we get

(ρ∆x)utt(x, t) = H(x, t)− H(x + ∆x, t)

= −ρgxux(x, t) + ρg(x + ∆x)ux(x + ∆x, t).

The density ρ cancels from both sides, and we are left with

utt(x, t) = g
(x + ∆x)ux(x + ∆x, t)− xux(x, t)

∆x
.
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We let ∆x → 0 and arrive at the equation of motion

utt = g


xux
�

x.

Remark 14.2. Going beyond the scope of this problem, we may look
for separable solutions4 of the PDE derived above. Setting u(x, t) = 4 You will learn about separation of vari-

ables in Chapter 9.X(x)T(t) we get
xX′(x)

�′
+ λ2X(x) = 0

whose general solution is expressed in terms of Bessel functions J0 and
Y0 as

X(x) = c1 J0(2λ
√

x) + c2Y0(2λ
√

x).

Since Y0 blows up at x = 0, we let c2 = 0. The boundary condition
u(L, t) = 0 implies that X(L) = 0, and therefore

J0(2λ
√

L) = 0.

Let’s write bn, n = 1, 2, . . ., for the zeros of the Bessel function J0. Then
we have infinitely many choices for λ, given by

λn =
bn

2
√

L
,

and the modal function

Xn(x) = J0

�
bn

r
x
L

�
.

Here are the graphs of Xn for n = 1, . . . , 4.
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Solution to Exercise 5.7. Appealing again to d’Alembert’s solu-
tion with f (x) = 0, g(x) = 1/(1 + x2) we have

u(x, t) =
1
2
�

f (x + ct) + f (x − ct)
�
+

1
2c

Z x+ct

x−ct
g(ξ) dξ

=
1
2c

Z x+ct

x−ct

1
1 + ξ2 dξ

=
1
2c

h
arctan(x + ct)− arctan(x − ct)

i
.

Here are the graphs of u plotted at times t = 0, 3, 6, 9, 12 in red, green,
blue, orange, purple. We have limt→∞ u(x, t) = π

2c at any x.

x

u(x, t)
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Solution to Exercise 5.8. According to d’Alembert, we have

u(x, t) =
1
2
�

f (x + ct) + f (x − ct)
�
+

1
2c

Z x+ct

x−ct
g(ξ) dξ

=
1
2c

Z x+ct

x−ct
cos ξ dξ

=
1
2c

sin ξ
���
x+ct

x−ct

=
1
2c

�
sin(x + ct)− sin(x − ct)

�

=
1
2c

�
(sin x cos ct + cos x sin ct)− (sin x cos ct − cos x sin ct)

�

=
1
c

sin ct cos x.

Therefore, the solution u(x, t) at any time t is A cos(x) where the am-
plitude is A = 1

c sin t.


