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Solution to Exercise 1.3. We solve the differential equations

dx
dt

= 2,
du
dt

= −u, x(0) = h, u(0) = f (h)

and obtain
x = 2t + h, u = f (h)e−t.

From the first equation we get h = x − 2t. We substitute that in the
second equation and arrive at u(x, t) = f

�
x − 2t

�
e−t.
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Solution to Exercise 1.4. We solve the differential equations

dx
dt

= x,
du
dt

= 1, x(0) = h, u(0) = f (h)

and obtain
x = het, u = f (h) + t.

From the first equation we get h = xe−t. We substitute that in the
second equation and arrive at u(x, t) = f

�
xe−t�+ t.



solutions to selected exercises 185

Solution to Exercise 1.5. We solve the differential equations

dx
dt

= x,
du
dt

= −2u, x(0) = h, u(0) = f (h)

and obtain
x = het, u = f (h)e−2t.

From the first equation we get h = xe−t. We substitute that in the
second equation and arrive at u(x, t) = f

�
xe−t�e−2t.



188 partial differential equations

Solution to Exercise 1.8. We solve the differential equations

dx
dt

= 2t,
du
dt

= 2t, x(0) = h, u(0) = f (h)

and obtain
x = t2 + h, u = f (h) + t2.

From the first equation we get h = x − t2. We substitute that in the
second equation and arrive at u(x, t) = f (x − t2) + t2.



solutions to selected exercises 189

Solution to Exercise 1.9. We solve the system of ODEs

dx
dt

= −6t2,
du
dt

= −tu, x(0) = h, u(0) = f (h).

The first ODE yields x = −2t3 + h, which we solve for h:

h = x + 2t3.

In the second ODE we separate the variables as du
u = −t dt then in-

tegrate to get ln u = − 1
2 t2 + C. Applying the initial condition yields

ln f (x) = C and therefore ln u = − 1
2 t2 + ln f (x), which simplifies to

u = f (h)e−t2/2.

We conclude that
u(x, t) = f (x + 2t3)e−t2/2.
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Solution to Exercise 1.10. We solve the system of ODEs

dx
dt

= −12t2,
du
dt

= −xu, x(0) = h, u(0) = f (h).

The first ODE yields x = −4t3 + h, which we solve for h:

h = x + 4t3.

We substitute the x calculated above into the second ODE

du
dt

= −(−4t3 + h)u

separate the variables

du
u

= (4t3 − h) dt,

and integrate:
ln u = t4 − ht + C.

Applying the initial condition yields ln f (x) = C and therefore ln u =

t4 − ht + ln f (x), which simplifies to

u = f (h)et4−ht.

Plug in the previously calculated h to obtain

u(x, t) = f (x + 4t3)et4−(x+4t3)t = f (x + 4t3)e−3t4−xt,

that is
u(x, t) = f (x + 4t3)e−t(x+3t3).
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Solution to Exercise 1.13. We put the PDE in a form that matches (1.1a)
by dividing it by u and rearranging the terms:

ut −
t + u

u
ux = 0.

This corresponds to c(x, t, u) = − t+u
u = −1 − t

u , q(x, t, u) = 0, and
f (x) = 1

1+x . The system of ODEs (1.3) takes the form

dx
dt

= −1 − t
u

, (14.16a)

du
dt

= 0, (14.16b)

x(0) = h, (14.16c)

u(0) =
1

1 + h
. (14.16d)

The ODE (14.16b) implies that u is a constant, let’s say c1. The initial
condition (14.16d) says that c1 = 1

1+h .
The ODE (14.16a) now takes the form

dx
dt

= −1 − (1 + h)t,

which upon integration yields

x = −t − 1 + h
2

t2 + c2,

where c2 is another arbitrary constant. The initial condition (14.16c)
implies that c2 = h, and therefore

x = −t − 1 + h
2

t2 + h.

Following Section 1.2’s road map, we solve this for h

h =
2x + 2t + t2

2 − t2 ,

which we then the substitute into f (h) to arrive at the solution u(x, t).
We get

u(x, t) = f
�

2x + 2t + t2

2 − t2

�
=

1

1 +
2x + 2t + t2

2 − t2

,

which simplifies to

u(x, t) =
2 − t2

2 + 2x + 2t
.
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Chapter 2

Solution to Exercise 2.1. The volume of a slice of thickness dx of
Figure 2.1’s tube is A dx, therefore the mass of smoke generated there
is Aq(x, t) dx per unit time. Therefore the mass of the smoke generated
per unit time within the entire control volume is

Z b

a
q(x, t)A dx.

We conclude that the mass of smoke generated within the control vol-
ume between the times t1 and t2 is

Z t2

t1

Z b

a
q(x, t)A dx dt,

and the equation of balance of mass becomes

Z b

a
ρ(x, t2)A dx −

Z b

a
ρ(x, t1)A dx

=
Z t2

t1

ϕ(a, t)A dt −
Z t2

t1

ϕ(b, t)A dt +
Z t2

t1

Z b

a
q(x, t)A dx dt.

We divide through by the common factor A and rearrange the terms
into

Z b

a

h
ρ(x, t2)− ρ(x, t1)

i
dx +

Z t2

t1

h
ϕ(b, t)− ϕ(a, t)

i
dt

−
Z t2

t1

Z b

a
q(x, t) dx dt = 0.

This is the counterpart of the equation (2.1) under the current scenario.
If ρ(x, t) and ϕ(x, t) are sufficiently differentiable, then we may ap-

ply the Fundamental Theorem of Calculus as before and arrive at

Z t2

t1

Z b

a

�
∂

∂t
ρ(x, t) +

∂

∂x
ϕ(x, t)− q(x, t)

�
dx dt = 0.

Then with an argument by contradiction as before, we conclude that

∂

∂t
ρ(x, t) +

∂

∂x
ϕ(x, t)− q(x, t) = 0.

This agrees with (2.3).
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Solution to Exercise 2.2. The volume of a slice of thickness dx of
Figure 2.1’s tube is A dx, therefore the mass of radioactive smoke con-
tained in it is ρ(x, t)A dx, and consequently, the mass of the radioactive
smoke in the entire control volume is

Z b

a
ρ(x, t)A dx,

and therefore the rate of loss of that mass due to radioactivity is

d
dt

Z b

a
ρ(x, t)A dx =

Z b

a

∂

∂t
ρ(x, t)A dx =

Z b

a
βρ(x, t)A dx,

and thus, the loss of the radioactive mass during the time interval t1

to t2 is Z t2

t1

Z b

a
βρ(x, t)A dx.

Then the equation of balance of mass becomes

Z b

a
ρ(x, t2)A dx −

Z b

a
ρ(x, t1)A dx

=
Z t2

t1

ϕ(a, t)A dt −
Z t2

t1

ϕ(b, t)A dt −
Z t2

t1

Z b

a
βρ(x, t)A dx dt.

We divide through by the common factor A and rearrange the terms
into

Z b

a

h
ρ(x, t2)− ρ(x, t1)

i
dx +

Z t2

t1

h
ϕ(b, t)− ϕ(a, t)

i
dt

+ β
Z t2

t1

Z b

a
ρ(x, t) dx dt = 0.

If ρ(x, t) and ϕ(x, t) are sufficiently differentiable, then we may ap-
ply the Fundamental Theorem of Calculus as before and arrive at

Z t2

t1

Z b

a

�
∂

∂t
ρ(x, t) +

∂

∂x
ϕ(x, t) + βρ(x, t)

�
dx dt = 0,

from which it follows that

∂

∂t
ρ(x, t) +

∂

∂x
ϕ(x, t) = −βρ(x, t).
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Solution to Exercise 2.3. Following the technique introduced in
Section 1.2, we solve the system of ODEs

dx
dt

= c, (14.17a)

dρ

dt
= −βρ. (14.17b)

The general solution of (14.17a) is x = ct + A, and therefore the char-
acteristics are parallel lines corresponding to velocity c. Some of these
lines intersect the x axis and some the t axis, separating the first quad-
rant into regions 1 and 2, exactly as depicted in Figure 2.3. The novelty
in the current problem is that the value of ρ is not constant along the
characteristics—it varies along the characteristics according to equa-
tion (14.17b) whose general solution is ρ = Be−βt. We proceed to
determine the unknowns A and B. These take different forms in the
regions regions 1 and 2 of Figure 2.3 on page 20.

In region 1 the characteristics meet the x axis where the density ρ

is known to be f (x). Let’s look at the characteristic that meets the
x axis at x = h. This corresponds to the initial conditions x(0) = h
and ρ(0) = f (h) of the initial value problem (14.17) which yields the
solution

x = ct + h, ρ = f (h)e−βt.

Eliminating h between these to leads to

ρ = f (x − ct)e−βt,

which is the solution of the IBVP in the region 1.
In region 2 the characteristics meet the t axis where the density ρ

is known to be η(t). Let’s look at the characteristic that meets the
t axis at t = τ. This corresponds to the initial conditions x(τ) = 0
and ρ(τ) = η(τ) of the initial value problem (14.17) which yields the
solution

x = c(t − τ), ρ = η(τ)e−β(t−τ).

Eliminating τ between these to leads to

ρ = η
�

t − x
c

�
e−β x

c ,

which is the solution of the IBVP in the region 2. We conclude that

ρ(x, t) =





f (x − ct)e−βt in region 1, that is, x > ct,

η
�

t − x
c

�
e−β x

c in region 2, that is, x < ct.
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Solution to Exercise 2.4. We mimic every step of the derivation
of the equation of conservation of mass (2.3) but remain alert that the
cross-sectional area is not a constant.

At any time t, the total mass of smoke within the tube is

Z b

a
ρ(x, t)A(x) dx.

The change of that mass content between times t1 and t2 is

Z b

a
ρ(x, t2)A(x) dx −

Z b

a
ρ(x, t1)A(x) dx.

That change is due to smoke flowing in and out of the sections at a and
b. According to the definition of flux, smoke enters the cross-section
at x = a at the rate of ϕ(a, t)A(a) per unit time, and leaves the cross
section at x = b at the rate of ϕ(b, t)A(b) per unit time. Therefore
during the time period t1 < t < t2, the net gain of smoke through
crossing the tube’s boundaries is

Z t2

t1

ϕ(a, t)A(a) dt −
Z t2

t1

ϕ(b, t)A(b) dt.

We conclude that

Z b

a
ρ(x, t2)A(x) dx −

Z b

a
ρ(x, t1)A(x) dx

=
Z t2

t1

ϕ(a, t)A(a) dt −
Z t2

t1

ϕ(b, t)A(b) dt,

which we rearrange that into

Z b

a
A(x)

h
ρ(x, t2)− ρ(x, t1)

i
dx+

Z t2

t1

h
A(b)ϕ(b, t)− A(a)ϕ(a, t)

i
dt = 0.

Now, assuming that all functions are sufficiently differentiable, and
in view of the Fundamental Theorem of Calculus, we have

A(x)
h
ρ(x, t2)− ρ(x, t1)

i
=

Z t2

t1

A(x)
∂

∂t
ρ(x, t) dt,

A(b)ϕ(b, t)− A(a)ϕ(a, t) =
Z b

a

∂

∂x

�
A(x)ϕ(x, t)

�
dx,

whereby the previous equation takes the form

Z b

a

Z t2

t1

A(x)
∂

∂t
ρ(x, t) dt dx +

Z t2

t1

Z b

a

∂

∂x

�
A(x)ϕ(x, t)

�
dx dt = 0.

We interchange the order of the integrals on the right and then com-
bine the terms into

Z t2

t1

Z b

a

�
A(x)

∂

∂t
ρ(x, t) +

∂

∂x

�
A(x)ϕ(x, t)

��
dx dt = 0.
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The expression within the square brackets is zero for the same reason
as before, and therefore

A(x)
∂

∂t
ρ(x, t) +

∂

∂x

�
A(x)ϕ(x, t)

�
= 0.

We differentiate the product term

A(x)
∂

∂t
ρ(x, t) + A′(x)ϕ(x, t) + A(x)

∂

∂x
ϕ(x, t) = 0,

where A′(x) is the derivative of A(x), and conclude that

∂

∂t
ρ(x, t) +

∂

∂x
ϕ(x, t) = − A′(x)

A(x)
ϕ(x, t).

Note that this reduces to (2.3) if A(x) is constant.


