SOLUTIONS TO SELECTED EXERCISES

Solution to Exercise 1.3. We solve the differential equations

%:2, %‘:_u, x(0)=h, u(0) = f(h)

and obtain
x=2t+h, u=f(h)e "

From the first equation we get 1 = x — 2t. We substitute that in the
second equation and arrive at u(x, ) = f(x —2t)e ™.
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Solution to Exercise 1.4. We solve the differential equations

dx du
E — x/ E - ]-/ x(o) - h/ u(o) - f(h)
and obtain
x=he!, u=f(h)+t

From the first equation we get I = xe~!. We substitute that in the
second equation and arrive at u(x, ) = f(xe™!) + .
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Solution to Exercise 1.5. We solve the differential equations

% =, %{ =—2u, x(0)=h, u(0)=f(h)

and obtain
x=hef, u=f(h)e*.

From the first equation we get i = xe~!. We substitute that in the
second equation and arrive at u(x, t) = f(xe !)e .
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Solution to Exercise 1.8. We solve the differential equations

% — 2t du _ 2t, x(0)=h, u(0)=f(h)

and obtain
x=t24+h, u=f(h)+t2

From the first equation we get h = x — t2. We substitute that in the
second equation and arrive at u(x,t) = f(x — t2) + 2.



Solution to Exercise 1.9. We solve the system of ODEs

dx 5 du

=60, = —tu, x(0)=h, u(0) = f(h).

The first ODE yields x = —2¢% + h, which we solve for h:

SOLUTIONS TO SELECTED EXERCISES

h=x+2.
In the second ODE we separate the variables as % = —tdt then in-
tegrate to get Inu = —1t> + C. Applying the initial condition yields

In f(x) = C and therefore Inu = — 12 4 In f(x), which simplifies to

u= f(h)e*tz/Z.

We conclude that
u(x, t) = f(x+ 2t3)e*t2/z.
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Solution to Exercise 1.10. We solve the system of ODEs

dx 2
& 1,
dt

The first ODE yields x = —4t> + h, which we solve for h:
h=x+4f.

We substitute the x calculated above into the second ODE

du

27— (=448
T (—4t° +h)u

separate the variables

du 5
=@ =,

and integrate:
Inu = t*—ht+C.

Applying the initial condition yields In f(x) = C and therefore Inu =
t* — ht + In f(x), which simplifies to

u= f(h)e" M,
Plug in the previously calculated / to obtain
”(xr t) = f(x + 4t3)6t4_(x+4t3)t — f(x + 4t3)e—3t4—xt’

that is
u(x,t) = fx+4f3)e 30,
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Solution to Exercise 1.13. We put the PDE in a form that matches (1.1a)
by dividing it by u and rearranging the terms:

t+u

Us — uy = 0.
This corresponds to c(x, t,u) = =% = —1— L g(x,t,u) = 0, and

f(x) = 135 The system of ODEs (1.3) takes the form

dx t
E =-1- a, (14.16a)
du
I 0, (14.16b)
x(0) =h, (14.16¢)
1
u(0) = Toh (14.16d)

The ODE (14.16b) implies that u is a constant, let’s say c;. The initial
condition (14.16d) says that c; = 1-1Th
The ODE (14.16a) now takes the form

dx
— =—-1-(1+h)t
dt A+ht,
which upon integration yields
1+h
X =—t— iil—f—Cz,

where ¢y is another arbitrary constant. The initial condition (14.16¢)
implies that cp = h, and therefore

1
x:4¢74%ﬁg+h

Following Section 1.2’s road map, we solve this for

h_2x+2ﬁ+ﬂ

2=
which we then the substitute into f () to arrive at the solution u(x, t).
We get

2x + 2t + 12 1
uton = (ZF2EEE) - 2
2—t 14 2x + 2t +t
212
which simplifies to
2—+#2

)= ———.
u(x,t) 24 2x + 2t
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Chapter 2

Solution to Exercise 2.1. The volume of a slice of thickness dx of
Figure 2.1’s tube is A dx, therefore the mass of smoke generated there
is Aq(x, t) dx per unit time. Therefore the mass of the smoke generated
per unit time within the entire control volume is

b
/ q(x, t)Adx.
a

We conclude that the mass of smoke generated within the control vol-
ume between the times f; and t, is

ty b
/ / q(x,t)Adxdt,
t a

and the equation of balance of mass becomes

b b
/p(x,tz)Adx—/ p(x, t1)Adx
t

= 2¢(a,t)Adt—/tch(b,t)Adt—l—/tz /bq(x,t)Adxdt.
t a

51 ty

We divide through by the common factor A and rearrange the terms
into

/ b [0, t2) = p(x,t1) | dx + /: o(b,t) = p(a, )] dt
- /t.tz /L;hq(x,t) dxdt = 0.

This is the counterpart of the equation (2.1) under the current scenario.
If p(x, t) and ¢(x, t) are sufficiently differentiable, then we may ap-
ply the Fundamental Theorem of Calculus as before and arrive at

ty b a a
/fl /a [atp(x't) + a(p(x, ) — q(x,t)] dxdt = 0.

Then with an argument by contradiction as before, we conclude that

d d
gp(x,t) + ggb(x, t) —q(x,t) =0.

This agrees with (2.3).



SOLUTIONS TO SELECTED EXERCISES

Solution to Exercise 2.2. The volume of a slice of thickness dx of
Figure 2.1’s tube is A dx, therefore the mass of radioactive smoke con-
tained in it is p(x, t) A dx, and consequently, the mass of the radioactive
smoke in the entire control volume is

b
/ o(x, t)Adx,
a
and therefore the rate of loss of that mass due to radioactivity is

P by b
—/ o(x, t)Adx :/ —p(x,t)Adx:/ Bp(x,t)Adx,
dt a a at a

and thus, the loss of the radioactive mass during the time interval #;
to ty is

tr rb
/ Bo(x, ) Adx.
t1 Ja
Then the equation of balance of mass becomes
b b
/ p(x,tz)Adx—/ o(x,t1)Adx
a a

:/t:24>(a,t)Adt—/t.ltng(b,t)Adt—/tltz/abﬁp(x,t)Adxdt.

We divide through by the common factor A and rearrange the terms
into

[ Toteta o] ax+ [ o)~ gtan)] a

ty /b
+/3/ / p(x, t)dxdt = 0.
t1 Ja

If p(x,t) and ¢(x, t) are sufficiently differentiable, then we may ap-
ply the Fundamental Theorem of Calculus as before and arrive at

/:/ab [;tp(x' t) + %47(9@ t) + ,Bp(x,t)} dxdt =0,

from which it follows that

200t + 2l 1) = —Bolx. ).
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Solution to Exercise 2.3. Following the technique introduced in
Section 1.2, we solve the system of ODEs

dx

T (14.172)
dp _
3 = e (14.17b)

The general solution of (14.17a) is x = ct + A, and therefore the char-
acteristics are parallel lines corresponding to velocity c. Some of these
lines intersect the x axis and some the t axis, separating the first quad-
rant into regions 1 and 2, exactly as depicted in Figure 2.3. The novelty
in the current problem is that the value of p is not constant along the
characteristics—it varies along the characteristics according to equa-
tion (14.17b) whose general solution is p = Be P*. We proceed to
determine the unknowns A and B. These take different forms in the
regions regions 1 and 2 of Figure 2.3 on page 20.

In region 1 the characteristics meet the x axis where the density p
is known to be f(x). Let’s look at the characteristic that meets the
x axis at x = h. This corresponds to the initial conditions x(0) = h
and p(0) = f(h) of the initial value problem (14.17) which yields the
solution

x=ct+h, p=f(h)e .

Eliminating h between these to leads to

p=flx—ctle P,

which is the solution of the IBVP in the region 1.

In region 2 the characteristics meet the ¢ axis where the density p
is known to be 7(t). Let’s look at the characteristic that meets the
t axis at t = 7. This corresponds to the initial conditions x(7) = 0
and p(7) = 5(7) of the initial value problem (14.17) which yields the
solution

x=c(t—1), p=rn(r)e Pt-7.

Eliminating T between these to leads to
X x
=n(t— 7) —Bz,
p=n(t-2):
which is the solution of the IBVP in the region 2. We conclude that

(x,1) flx— ct)e Pt in region 1, that is, x > ct,
x,t) = .
P 7 (t - %)e’ﬁé in region 2, that is, x < ct.
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Solution to Exercise 2.4. We mimic every step of the derivation
of the equation of conservation of mass (2.3) but remain alert that the
cross-sectional area is not a constant.

At any time ¢, the total mass of smoke within the tube is

/bp(x,t)A(x) dx.

The change of that mass content between times ¢; and f; is

b b
[ ptrA@ dx - [ o) A) dx.

That change is due to smoke flowing in and out of the sections at 2 and
b. According to the definition of flux, smoke enters the cross-section
at x = a at the rate of ¢(a,t)A(a) per unit time, and leaves the cross
section at x = b at the rate of ¢(b,t)A(b) per unit time. Therefore
during the time period t; < t < t;, the net gain of smoke through
crossing the tube’s boundaries is

t t
/2<p(a,t)A(a)dt—/2¢>(b,t)A(b)dt.
t t
We conclude that
b

./;p(x’tZ)A(X)dx_'/“ o(x,t1)A(x) dx
= /tzfp(a,t)A(a) dt — /tch(b,t)A(b) dt,

fy fy

which we rearrange that into

/ub A(x) [p(x, t) — p(x, tl)} dx + /: [A(b)<p(b, 1) — A(a)g(a, t)} dt = 0.

Now, assuming that all functions are sufficiently differentiable, and
in view of the Fundamental Theorem of Calculus, we have

A o t2) =t )] = [ A o0

A0~ A@p(at) = [ 2 (Ao )

whereby the previous equation takes the form

//tz atp x, t) dtdx+/ / x)4)(x,t)) dxdt = 0.

We interchange the order of the integrals on the right and then com-
bine the terms into

/tltz/a|: atp 4+ aax(A(xW(x,t))] dxdt = 0.
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The expression within the square brackets is zero for the same reason
as before, and therefore

A(x)%p(x, )+ % (Ax)p(x1) =o.

We differentiate the product term

Ax)2

gp(x,t) + A'(x)¢p(x,t) + A(x)%tp(x,t) =0,

where A’(x) is the derivative of A(x), and conclude that

) d ~ Al(x)
EP(X, t) + ggb(X, t) = —mﬁb(xzt)-

Note that this reduces to (2.3) if A(x) is constant.



