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1. The geodesic curvature

Consider a parametric surface 𝑀 parametrized as 𝒙(𝑢, 𝑣), and an arbitrary (smooth)

curve 𝐶 on 𝑀 expressed as a unit speed curve through 𝜶(𝑠) = 𝒙(𝑢(𝑠), 𝑣(𝑠)). We write

𝒕(𝑠) = 𝜶 ′(𝑠) for the unit tangent the curve at the point 𝑝 = 𝜶(𝑠), and and 𝑵 for the unit

normal to the surface at 𝑝.

Let 𝒖 = 𝑵 × 𝒕. Then 𝒖 is orthogonal to 𝑵 and therefore it lies within the tangent plane

𝑇𝑝 . The triplet {𝒕, 𝒖,𝑵 } forms a right-handed orthonormal basis for vectors in 3D. Let us

express the vector 𝒕′ in that basis:

𝒕
′
= 𝜅𝑔𝒖 + 𝜂𝑵 .

There is no 𝒕 component since the derivative of the unit vector 𝒕 is perpendicular to 𝒕. The

coefficient 𝜅𝑔 is called 𝐶’s geodesic curvature at 𝑝. It measure the deviation of the curve

𝐶 from a geodesic at the point 𝑝.

Considering that 𝜅𝑔 is the component of 𝒕′ along 𝒖, we have 𝜅𝑔 = 𝒖⋅𝒕′. Also considering

that 𝒖 = 𝑵 × 𝒕, we see that

𝜅𝑔 = (𝑵 × 𝒕) ⋅ 𝒕
′
= [𝑵 , 𝒕, 𝒕

′
] = [𝒕, 𝒕

′
,𝑵 ] = (𝒕 × 𝒕

′
) ⋅ 𝑵 , (1)

where [⋅, ⋅, ⋅] is the usual triple-scalar-product of vectors.

Let us observe that 𝒙𝑢 × 𝒙𝑣 is orthogonal to the surface, and therefore 𝑵 =
𝒙𝑢×𝒙𝑣
‖𝒙𝑢×𝒙𝑣‖

. We

have
1

‖𝒙𝑢 × 𝒙𝑣‖
2
= (𝒙𝑢 × 𝒙𝑣) ⋅ (𝒙𝑢 × 𝒙𝑣) = (𝒙𝑢 ⋅ 𝒙𝑢)(𝒙𝑣 ⋅ 𝒙𝑣) − (𝒙𝑢 ⋅ 𝒙𝑣)

2
= 𝐸𝐺 − 𝐹

2
,

where 𝐸, 𝐹 and 𝐺 are the metric coefficients. We conclude that

𝑵 =
1

√
𝐸𝐺 − 𝐹 2

(𝒙𝑢 × 𝒙𝑣). (2)

We now proceed to evaluate 𝒕 × 𝒕′. We have

𝒕 = 𝜶
′
= 𝒙𝑢𝑢

′
+ 𝒙𝑣𝑣

′
, (3)

where a prime indicate the derivative with respect to the arclength 𝑠. We also have

𝒕
′
= (𝒙𝑢𝑢𝑢

′
+ 𝒙𝑢𝑣𝑣

′
)𝑢

′
+ 𝒙𝑢𝑢

′′
+ (𝒙𝑣𝑢𝑢

′
+ 𝒙𝑣𝑣𝑣

′
)𝑣

′
+ 𝒙𝑣𝑣

′′

= 𝒙𝑢𝑢𝑢
′2
+ 2𝒙𝑢𝑣𝑢

′
𝑣
′
+ 𝒙𝑣𝑣𝑣

′2
+ 𝒙𝑢𝑢

′′
+ 𝒙𝑣𝑣

′′
.
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1
Here and elsewhere we make use of Lagrange’s identity

(𝒂 × 𝒃) ⋅ (𝒄 × 𝒅) = (𝒂 ⋅ 𝒄)(𝒃 ⋅ 𝒅) − (𝒂 ⋅ 𝒅)(𝒃 ⋅ 𝒄).
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Then we compute

𝒕 × 𝒕
′
= (𝒙𝑢𝑢

′
+ 𝒙𝑣𝑣

′
) × (𝒙𝑢𝑢𝑢

′2
+ 2𝒙𝑢𝑣𝑢

′
𝑣
′
+ 𝒙𝑣𝑣𝑣

′2
+ 𝒙𝑢𝑢

′′
+ 𝒙𝑣𝑣

′′
)

= (𝒙𝑢 × 𝒙𝑢𝑢)𝑢
′3
+ 2(𝒙𝑢 × 𝒙𝑢𝑣)𝑢

′2
𝑣
′
+ (𝒙𝑢 × 𝒙𝑣𝑣)𝑢

′
𝑣
′2

+ (𝒙𝑣 × 𝒙𝑢𝑢)𝑢
′2
𝑣
′
+ 2(𝒙𝑣 × 𝒙𝑢𝑣)𝑢

′
𝑣
′2
+ (𝒙𝑣 × 𝒙𝑣𝑣)𝑣

′3

+ (𝒙𝑢 × 𝒙𝑣)(𝑢
′
𝑣
′′
− 𝑢

′′
𝑣
′
),

and the dot-multiply the result by 𝑵 . In view of (1) we conclude that

𝜅𝑔 = (𝒙𝑢 × 𝒙𝑢𝑢) ⋅ 𝑵𝑢
′3
+ 2(𝒙𝑢 × 𝒙𝑢𝑣) ⋅ 𝑵𝑢

′2
𝑣
′
+ (𝒙𝑢 × 𝒙𝑣𝑣) ⋅ 𝑵𝑢

′
𝑣
′2

+ (𝒙𝑣 × 𝒙𝑢𝑢) ⋅ 𝑵𝑢
′2
𝑣
′
+ 2(𝒙𝑣 × 𝒙𝑢𝑣) ⋅ 𝑵𝑢

′
𝑣
′2
+ (𝒙𝑣 × 𝒙𝑣𝑣) ⋅ 𝑵 𝑣

′3

+ (𝒙𝑢 × 𝒙𝑣) ⋅ 𝑵 (𝑢
′
𝑣
′′
− 𝑢

′′
𝑣
′
), (4)

Now we examine the individual terms. We have:

(𝒙𝑢 × 𝒙𝑢𝑢) ⋅ 𝑵 =
1

√
𝐸𝐺 − 𝐹 2

(𝒙𝑢 × 𝒙𝑢𝑢) ⋅ (𝒙𝑢 × 𝒙𝑣)

=
1

√
𝐸𝐺 − 𝐹 2(

(𝒙𝑢 ⋅ 𝒙𝑢)(𝒙𝑢𝑢 ⋅ 𝒙𝑣) − (𝒙𝑢 ⋅ 𝒙𝑣)(𝒙𝑢𝑢 ⋅ 𝒙𝑢))

=
1

√
𝐸𝐺 − 𝐹 2 (

(𝒙𝑢𝑢 ⋅ 𝒙𝑣)𝐸 − (𝒙𝑢𝑢 ⋅ 𝒙𝑢)𝐹)

To further simplify this, let us recall that

𝒙𝑢𝑢 = Γ
1
11𝒙𝑢 + Γ

2
11𝒙𝑣 + 𝑒𝑵 ,

and therefore

𝒙𝑢𝑢 ⋅ 𝒙𝑢 = (Γ
1
11𝒙𝑢 + Γ

2
11𝒙𝑣 + 𝑒𝑵 ) ⋅ 𝒙𝑢 = Γ

1
11𝐸 + Γ

2
11𝐹 ,

𝒙𝑢𝑢 ⋅ 𝒙𝑣 = (Γ
1
11𝒙𝑢 + Γ

2
11𝒙𝑣 + 𝑒𝑵 ) ⋅ 𝒙𝑣 = Γ

1
11𝐹 + Γ

2
11𝐺.

We see that

(𝒙𝑢𝑢 ⋅ 𝒙𝑣)𝐸 − (𝒙𝑢𝑢 ⋅ 𝒙𝑢)𝐹 = (Γ
1
11𝐹 + Γ

2
11𝐺)𝐸 − (Γ

1
11𝐸 + Γ

2
11𝐹)𝐹 = Γ

2
11(𝐸𝐺 − 𝐹

2
),

and therefore

(𝒙𝑢 × 𝒙𝑢𝑢) ⋅ 𝑵 = Γ
2
11

√
𝐸𝐺 − 𝐹 2. (5a)

Similarly, we calculate

(𝒙𝑢 × 𝒙𝑢𝑣) ⋅ 𝑵 = ⋯ , (5b)

(𝒙𝑢 × 𝒙𝑣𝑣) ⋅ 𝑵 = ⋯ , (5c)

(𝒙𝑣 × 𝒙𝑢𝑢) ⋅ 𝑵 = ⋯ , (5d)

(𝒙𝑢 × 𝒙𝑢𝑣) ⋅ 𝑵 = ⋯ , (5e)

(𝒙𝑣 × 𝒙𝑣𝑣) ⋅ 𝑵 = ⋯ , (5f)

(𝒙𝑢 × 𝒙𝑣) ⋅ 𝑵 = ⋯ , (5g)

and plug the results into (4) and observe that it reduces to

𝜅𝑔 = [
Γ
2
11𝑢

′3
+ (2Γ

2
12 − Γ

1
11)𝑢

′2
𝑣
′

+ (Γ
2
22 − 2Γ

1
12)𝑢

′
𝑣
′2
− Γ

1
22𝑣

′3
+ 𝑢

′
𝑣
′′
− 𝑢

′′
𝑣
′

]

√
𝐸𝐺 − 𝐹 2. (6)

This is a significant result as it expresses 𝜅𝑔 solely in terms of the metric coefficients 𝐸,

𝐹 , and 𝐺. It says that the geodesic curvature is an intrinsic property of the surface—it
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can be determined by taking measurements within the surface by the inhabitants of that

two-dimensional world.

Remark 1. The geodesic curvature of the parametric line 𝑣 ≡ constant is obtained by

setting 𝑣′ = 0 in the equation above:

𝜅𝑔
|
|
|𝑣≡const

= Γ
2
11𝑢

′3
√
𝐸𝐺 − 𝐹 2.

This simplifies somewhat in view of (3) together with the fact that 𝒕 is a unit vector and

𝑣′ = 0. We have

1 = 𝒕 ⋅ 𝒕 = (𝒙𝑢𝑢
′
) ⋅ (𝒙𝑢𝑢

′
) = (𝒙𝑢 ⋅ (𝒙𝑢)𝑢

′2
= 𝐸𝑢

′2
,

whence 𝑢′ = 1/
√
𝐸. We conclude that

𝜅𝑔
|
|
|𝑣≡const

= Γ
2
11

√
𝐸𝐺 − 𝐹 2

𝐸3/2
. (7a)

and similarly

𝜅𝑔
|
|
|𝑢≡const

= −Γ
1
22

√
𝐸𝐺 − 𝐹 2

𝐺3/2
. (7b)

Exercise 1. Show that if the the parametric curves aremutually orthogonal (that is 𝐹 = 0)

then (6) reduces to (there may be typos here, check!)

𝜅𝑔 = [
−
𝐸𝑣

𝐺
𝑢
′3
+ (2

𝐺𝑢

𝐺
−

𝐸𝑢

2𝐸
)𝑢

′2
𝑣
′
+ (

𝐺𝑣

𝐺
− 2

𝐸𝑣

2𝐸
)𝑢

′
𝑣
′2
+
𝐺𝑢

𝐸
𝑣
′3
+ 𝑢

′
𝑣
′′
− 𝑢

′′
𝑣
′

]

√
𝐸𝐺.

2. A second look at the geodesic curvature

Figure 1 depicts a surface parametrized as 𝒙(𝑢, 𝑣) and a closed curve 𝐶 that lies on the

surface. For the sake of simplifying this first exposition, we assume that:

∙ the part of the surface enclosed by 𝐶 is homeomorphic to the unit disk, that is, it

has no holes;

∙ the coordinate lines 𝑢 = const and 𝑣 = const are mutually orthogonal, that is,

𝐹 = 𝒙𝑢 ⋅ 𝒙𝑣 = 0;

∙ 𝐶 is parameterized by the arclength, that is, its equation is 𝜶(𝑠) = 𝒙(𝑢(𝑠), 𝑣(𝑠)),

its tangent vector is 𝒕(𝑠) = 𝜶 ′(𝑠), and ‖𝒕(𝑠)‖ = 1 at all 𝑠.

We define the unit normal 𝑵 to the surface through

𝑵 =
𝒙𝑢 × 𝒙𝑣

‖𝒙𝑢 × 𝒙𝑣‖
,

and therefore rotating 𝒙𝑢 through a 90 angle about 𝑵 produced the vector 𝒙𝑣 . (Recall that

we are assuming that the 𝑢 and 𝑣 coordinate lines are mutually orthogonal.) The curve 𝐶

inherits an orientation through that rotation. That orientation is marked by an arrowhead

on 𝐶 is Figure 1.

We introduce unit normals 𝒆1 and 𝒆2 along 𝒙𝑢 and 𝒙𝑣 , respectively. Observe that the

length of 𝒙𝑢 is
√
𝒙𝑢 ⋅ 𝒙𝑢 =

√
𝐸. Similarly, the length of 𝒙𝑣 is

√
𝐺. Therefore, we have

𝒆1 =
𝒙𝑢
√
𝐸
, 𝒆2 =

𝒙𝑣
√
𝐺
. (8)

Referring to Figure 1, we write 𝜃(𝑠) for the angle between 𝒙𝑢 and 𝒕 at any point along 𝐶.

Then 𝐶’s unit tangent vector 𝒕 may be expressed in terms of components along 𝒆1 and 𝒆2

through

𝒕 = 𝒆1 cos 𝜃 + 𝒆2 sin 𝜃. (9a)
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𝒙𝑢

𝒕𝑢

𝑝
𝜃

𝑣 =
c
o
n
st

𝐶

Figure 1. The 𝑢 coordinate line intersects the curve 𝐶 at 𝑝. The curve’s

tangent vector 𝒕 at 𝑝 makes an angle of 𝜃 relative to 𝒙𝑢. If we go one

complete turn around the curve, the angle 𝜃 increments by 2𝜋 radians.

We introduce the unit vector 𝒖 = 𝑵 × 𝒕 which is obtained by rotating 𝒕 by 90 degrees

counterclockwise within the tangent plane; see Figure 2. We have

𝒖 = −𝒆1 sin 𝜃 + 𝒆2 cos 𝜃. (9b)

Recall that the geodesic curvature of 𝐶 at 𝑝 is the projection of 𝒕′ onto 𝒖, that is

𝜅𝑔 = 𝒖 ⋅ 𝒕
′
,

where the prime indicates the derivative with respect to the arclength along 𝐶. To eval-

uate 𝜅𝑔 , we begin with calculating 𝒕′:

𝒕
′
= 𝒆

′
1 cos 𝜃 − 𝒆1𝜃

′
sin 𝜃 + 𝒆

′
2 sin 𝜃 + 𝒆2𝜃

′
cos 𝜃

= (−𝒆1 sin 𝜃 + 𝒆2 cos 𝜃) 𝜃
′
+ 𝒆

′
1 cos 𝜃 + 𝒆

′
2 sin 𝜃

= 𝒖 𝜃
′
+ 𝒆

′
1 cos 𝜃 + 𝒆

′
2 sin 𝜃.

Therefore we have

𝜅𝑔 = 𝒖 ⋅
[
𝒖 𝜃

′
+ 𝒆

′
1 cos 𝜃 + 𝒆

′
2 sin 𝜃]

= 𝒖 ⋅ 𝒖 𝜃
′
+ 𝒖 ⋅

[
𝒆
′
1 cos 𝜃 + 𝒆

′
2 sin 𝜃]

= 𝜃
′
+ (−𝒆1 sin 𝜃 + 𝒆2 cos 𝜃) ⋅ (𝒆

′
1 cos 𝜃 + 𝒆

′
2 sin 𝜃)

= 𝜃
′
− 𝒆1 ⋅ 𝒆

′
1 sin 𝜃 cos 𝜃 − 𝒆1 ⋅ 𝒆

′
2 sin

2
𝜃 + 𝒆2 ⋅ 𝒆

′
1 cos

2
𝜃 + 𝒆2 ⋅ 𝒆

′
2 sin

2
𝜃.

But 𝒆1 ⋅ 𝒆
′
1 = 0 and 𝒆2 ⋅ 𝒆

′
2 = 0 because 𝒆1 and 𝒆2 are unit vectors. Furthermore, since 𝒆1

and 𝒆2 are mutually orthogonal, we have 𝒆1 ⋅ 𝒆2 = 0 and therefore 𝒆′1 ⋅ 𝒆2 + 𝒆1 ⋅ 𝒆
′
2 = 0, that

is, −𝒆1 ⋅ 𝒆
′
2 = 𝒆′1 ⋅ 𝒆2, and therefore the expression above simplifies to

𝜅𝑔 = 𝜃
′
+ 𝒆

′
1 ⋅ 𝒆2.

To proceed further, let us calculate

𝒆
′
1 =

𝑑𝒆1

𝑑𝑠
=

𝜕𝒆1

𝜕𝑢

𝑑𝑢

𝑑𝑠
+
𝜕𝒆1

𝜕𝑣

𝑑𝑣

𝑑𝑠
=
(

𝒙𝑢
√
𝐸)𝑢

𝑢
′
+
(

𝒙𝑢
√
𝐸)𝑣

𝑣
′
,

where we have replaced 𝒆1 and 𝒆2 by their definitions in (8). We calculate each of the

terms of the right-hand side separately and then add up. We have

(

𝒙𝑢
√
𝐸)𝑢

=
𝒙𝑢𝑢𝐸

1/2 − 𝒙𝑢(𝐸
1/2

)𝑢

𝐸
=

𝒙𝑢𝑢𝐸
1/2 − 1

2
𝒙𝑢𝐸

−1/2𝐸𝑢

𝐸
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𝒆1

𝒆2

𝒕

𝒖

𝜃

𝑝

Figure 2. This is a “bird’s eye view” of the tangent plane 𝑇𝑝 at 𝑝. The

unit vectors 𝒆1 and 𝒆2 point along the directions 𝒙𝑢 and 𝒙𝑣 , and the unit

vector 𝒕 is the unit tangent to the curve (not shown) that passes through

𝑝. The unit vector 𝒖 is obtained by rotating 𝒕 counterclockwise by 90

degrees.

But 𝐸 = 𝒙𝑢 ⋅ 𝒙𝑢 and therefore 𝐸𝑢 = 2𝒙𝑢𝑢 ⋅ 𝒙𝑢. We conclude that

(

𝒙𝑢
√
𝐸)𝑢

=
𝒙𝑢𝑢𝐸

1/2 − 𝒙𝑢𝐸
−1/2(𝒙𝑢𝑢 ⋅ 𝒙𝑢)

𝐸
.

Similarly, we calculate

(

𝒙𝑢
√
𝐸)𝑣

=
𝒙𝑢𝑣𝐸

1/2 − 𝒙𝑢(𝐸
1/2

)𝑣

𝐸
=

𝒙𝑢𝑣𝐸
1/2 − 1

2
𝒙𝑢𝐸

−1/2𝐸𝑣

𝐸

But 𝐸 = 𝒙𝑢 ⋅ 𝒙𝑢 and therefore 𝐸𝑣 = 2𝒙𝑢𝑣 ⋅ 𝒙𝑢. We conclude that

(

𝒙𝑢
√
𝐸)𝑣

=
𝒙𝑢𝑣𝐸

1/2 − 𝒙𝑢𝐸
−1/2(𝒙𝑢𝑣 ⋅ 𝒙𝑢)

𝐸
.

Resuming the interrupted calculation, we have

𝒆
′
1 =

𝒙𝑢𝑢𝐸
1/2 − 𝒙𝑢𝐸

−1/2(𝒙𝑢𝑢 ⋅ 𝒙𝑢)

𝐸
𝑢
′
+
𝒙𝑢𝑣𝐸

1/2 − 𝒙𝑢𝐸
−1/2(𝒙𝑢𝑣 ⋅ 𝒙𝑢)

𝐸
𝑣
′
.

Recalling that 𝒆2 = 𝒙𝑣/
√
𝐺, we arrive at

𝒆
′
1 ⋅ 𝒆2 =

𝒙𝑢𝑢𝐸
1/2 − 𝒙𝑢𝐸

−1/2(𝒙𝑢𝑢 ⋅ 𝒙𝑢)

𝐸
√
𝐺

𝑢
′
⋅ 𝒙𝑣 +

𝒙𝑢𝑣𝐸
1/2 − 𝒙𝑢𝐸

−1/2(𝒙𝑢𝑣 ⋅ 𝒙𝑢)

𝐸
√
𝐺

𝑣
′
⋅ 𝒙𝑣 .

Due to our assumption that 𝐹 = 𝒙𝑢 ⋅ 𝒙𝑣 = 0, the expression above simplifies to

𝒆
′
1 ⋅ 𝒆2 =

1
√
𝐸𝐺 [

𝒙𝑢𝑢 ⋅ 𝒙𝑣 𝑢
′
+ 𝒙𝑢𝑣 ⋅ 𝒙𝑣 𝑣

′

]
. (10)

To further simplify, we recall that

𝒙𝑢𝑢 = Γ
1
11𝒙𝑢 + Γ

2
11𝒙𝑣 + 𝑒𝑵 , 𝒙𝑢𝑣 = Γ

1
12𝒙𝑢 + Γ

2
12𝒙𝑣 + 𝑔𝑵 .

When 𝐹 = 0, the Christoffel symbols reduce to

Γ
1
11 =

𝐸𝑢

2𝐸
, Γ

1
12 =

𝐸𝑣

2𝐸
, Γ

1
22 = −

𝐺𝑢

2𝐸
,

Γ
2
11 = −

𝐸𝑣

2𝐺
, Γ

2
12 =

𝐺𝑢

2𝐺
, Γ

2
22 =

𝐺𝑣

2𝐺
,

and therefore

𝒙𝑢𝑢 =
𝐸𝑢

2𝐸
𝒙𝑢 −

𝐸𝑣

2𝐺
𝒙𝑣 , 𝒙𝑢𝑣 =

𝐸𝑣

2𝐸
𝒙𝑢 +

𝐺𝑢

2𝐺
𝒙𝑣 .
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and

𝒙𝑢𝑢 ⋅ 𝒙𝑣 = −
𝐸𝑣

2𝐺
𝒙𝑣 ⋅ 𝒙𝑣 = −

1

2
𝐸𝑣 , 𝒙𝑢𝑣 ⋅ 𝒙𝑣 =

𝐺𝑢

2𝐺
𝒙𝑣 ⋅ 𝒙𝑣 =

1

2
𝐺𝑢.

We conclude that

𝒆
′
1 ⋅ 𝒆2 =

1

2
√
𝐸𝐺 [

𝐺𝑢 𝑣
′
− 𝐸𝑣 𝑢

′

]
,

and then, referring to (10)

𝜅𝑔 = 𝜃
′
+

1

2
√
𝐸𝐺 [

𝐺𝑢 𝑣
′
− 𝐸𝑣 𝑢

′

]
. (11)

Remark 2. As Tristan Needham has pointed out, Gauss’s choice of 𝐸 and 𝐺 for the metric

coefficient is rather unfortunate, as letting 𝐸 = 𝐴2
and 𝐺 = 𝐵2

avoids all those square

roots in the calculations and leads to much cleaner formulas in terms of 𝐴 and 𝐵. As a

case in point, the expression (11) would take the form

𝜅𝑔 = 𝜃
′
+
𝐵𝑢

𝐵
𝑢
′
−
𝐴𝑢

𝐴
𝑣
′
.

Returning to (11), let us integrate its two sides over the entire boundary of 𝐶. If 𝐶 is

a smooth, in the sense it has no corners (e.g., it’s not a triangle) then 𝜃′ integrates to 2𝜋,

and considering that 𝑢′ = 𝑑𝑢/𝑑𝑠 and 𝑣′ = 𝑑𝑣/𝑑𝑠, we get

∫
𝐶

𝜅𝑔 𝑑𝑠 = 2𝜋 + ∫
𝐶

1

2
√
𝐸𝐺 [

𝐺𝑢 𝑣
′
− 𝐸𝑣 𝑢

′

]
𝑑𝑠 = 2𝜋 + ∫

�̂� [

𝐺𝑢

2
√
𝐸𝐺

𝑑𝑣 −
𝐸𝑣

2
√
𝐸𝐺

𝑑𝑢
]
.

Note the change of the domain of integration from 𝐶 to �̂� at the last step. That’s because

in the integration over 𝐶, the variable of integration is the arc length 𝑠, therefore ∫
𝐶
⋯ 𝑑𝑠

is tantamount to ∫
𝐿

0
⋯ 𝑑𝑠, where 𝐿 is the length of the closed curve 𝐶. In the last step,

we have changed the variables of the line integral to 𝑢 and 𝑣. The integration now takes

place over the curve �̂� which is the pre-image of the curve 𝐶 in the parameter space 𝑢𝑣.
Similarly, let Ω be the surface patch in Figure 1 delimited by the curve 𝐶. Its pre-image

in the parameter space is the region Ω̂ enclosed by the curve �̂�. The integral over �̂� in

the displayed equation above may be converted to an integral of the domain Ω̂ through

Green’s Theorem, whereby

∫
𝐶

𝜅𝑔 𝑑𝑠 = 2𝜋 + ∫
Ω̂ [

(

𝐺𝑢

2
√
𝐸𝐺)𝑢

+
(

𝐸𝑣

2
√
𝐸𝐺)𝑣]

𝑑𝑢 𝑑𝑣.

= 2𝜋 + ∫
Ω̂

1
√
𝐸𝐺 [(

𝐺𝑢

2
√
𝐸𝐺)𝑢

+
(

𝐸𝑣

2
√
𝐸𝐺)𝑣]

√
𝐸𝐺 𝑑𝑢 𝑑𝑣.

Referring to equation (20) of the class notes dg.pdf, we see that the Gaussian curvature

formula (obtained under the assumption 𝐹 = 0) is

𝐾 = −
1

√
𝐸𝐺 [(

𝐺𝑢

2
√
𝐸𝐺)𝑢

+
(

𝐸𝑣

2
√
𝐸𝐺)𝑣]

.

This leads to

∫
𝐶

𝜅𝑔 𝑑𝑠 = 2𝜋 − ∫
Ω̂

𝐾
√
𝐸𝐺 𝑑𝑢 𝑑𝑣.

Finally, we change the integration from the Ω̂ domain to the surface patch Ω, and

having in mind that the differential area element 𝑑𝐴 in Ω is related to the differential area

element 𝑑𝑢 𝑑𝑣 in Ω̂ through 𝑑𝐴 =
√
𝐸𝐺 𝑑𝑢 𝑑𝑣, we arrive at

∫
𝐶

𝜅𝑔 𝑑𝑠 + ∫
Ω

𝐾 𝑑𝐴 = 2𝜋. (12)
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𝐴1

𝐴2

𝐴3

𝜃1 𝜃2

𝜃3

Figure 3. The “triangle” 𝐶 lies on the surface 𝒙(𝑢, 𝑣). Its edges are arbi-

trary curves that intersect at the three vertices. The external angles are

𝜃1, 𝜃2, 𝜃3.

This is the most basic form of the Gauss–Bonnet Theorem. The integral of the Gaussian

curvature 𝐾 over Ω is called the total curvature of Ω.

2.1. Application to a triangular patch. There are several variants of theGauss–Bonnet

Theorem. For instance, we have assumed that the domains of integration Ω and Ω̂ are

homeomorphic to the unit disk, that is, they may not have holes. That excludes annular

domains. As an another instance, we have assumed that the curves 𝐶 and �̂� are smooth,

that is, they may not have corners. That excludes common domains such as triangles and

polygons. Modified versions of (12) accommodate for these.

Let us see how we may extend (12) to a triangular domain. Figure 3 shows the curve

𝐶 as “triangle” whose edges are arbitrary curves lying on the surface 𝒙(𝑢, 𝑣) and whose

external angles are 𝜃1, 𝜃2, 𝜃3. A we traverse the curve in a complete cycle, the tangent 𝒕

turns by 2𝜋 radians as in the smooth case. The integral ∫
𝐶
𝑑𝜃, however, picks up only the

changes in 𝜃 along the curved edges; it is oblivious to the discontinuous increments at

the vertices. The correct expression is

𝜃1 + 𝜃2 + 𝜃3 + ∫
𝐶

𝑑𝜃 = 2𝜋,

which is better expressed as

∫
𝐶

𝑑𝜃 = 2𝜋 − 𝜃1 − 𝜃2 − 𝜃3.

In our previous calculation in the context of a smooth curve 𝐶, we integrated (11)

around 𝐶 and replaced the integral of 𝜃′ by 2𝜋. In the case of a triangular curve, the

integration of 𝜃′ yields the modified value shown above, and therefore the Gauss–Bonnet

Theorem over a triangle takes the form

∫
𝐶

𝜅𝑔 𝑑𝑠 + ∫
Ω

𝐾 𝑑𝐴 = 2𝜋 − 𝜃1 − 𝜃2 − 𝜃3. (13)

Let’s write 𝛼𝑘 for the internal angles of the triangle. We have 𝜃𝑘 = 𝜋 − 𝛼𝑘 , 𝑘 = 1, 2, 3;

see Figure 4. Substituting these into (13), we get

∫
𝐶

𝜅𝑔 𝑑𝑠 + ∫
Ω

𝐾 𝑑𝐴 = 𝛼1 + 𝛼2 + 𝛼3 − 𝜋. (14)
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𝐴1

𝐴2

𝐴3

𝛼1
𝛼2

𝛼3

Figure 4. This is the a copy of Figure 3’s “triangle” where 𝜃𝑘 marked

the triangle’s external angles. In the current figure 𝛼𝑘 mark the triangle’s

internal angles. These are supplementary to the external angles, that is,

𝛼𝑘 + 𝜃𝑘 = 𝜋, 𝑘 = 1, 2, 3.

In particular, if the triangle’s edges are geodesics, then 𝜅𝑔 = 0 on the edges, and we arrive

at the interesting conclusion that

∫
Ω

𝐾 𝑑𝐴 = 𝛼1 + 𝛼2 + 𝛼3 − 𝜋. (15)

The right-hand side of that expression is called the triangle’s angular excess. The result is

expressed in words as:

The total curvature of a geodesic triangle equals its angular excess.

In that regard, Gauss writes:

“Hoc theorema, quod ni fallimur, ad elegantissima in theoria superficierum

curvarum referendum esse videtur.”
2

Another way of looking at (15) is to divide it by the area of Ω:

1

area of Ω ∫
Ω

𝐾 𝑑𝐴 =
𝛼1 + 𝛼2 + 𝛼3 − 𝜋

area of Ω
,

and then pass to the limit asΩ shrinks to a point 𝑝. The left-hand side, being the average of

𝐾 overΩ, converges to the curvature of the surface at 𝑝, and we arrive at a very appealing

characterization of the Gaussian curvature:

𝐾 = lim
Ω→𝑝

angular excess of Ω

area of Ω
.

2.2. Total curvature as a topological invariant. Consider a closed surface Ω which is

topologically equivalent to a sphere, that is, Ω is obtained by stretching and deforming

a sphere without tearing and or introducing self-intersections. In the same way that the

sphere’s equator is the boundary between two hemispheres, the image of the equator un-

der that deformation is the boundary 𝐶 between two disjoint surfaces Ω1 and Ω2. For the

sake of simplicity, assume that 𝐶 is a smooth curve. Each of Ω1 and Ω2 is homeomorphic

2
“This theorem, if we are not mistaken, ought to be counted among the most elegant in the theory of curved

surfaces.”
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to a disk. and therefore the Gauss-Bonnet Theorem applies:

∫
𝐶

𝜅𝑔 𝑑𝑠 + ∫
Ω1

𝐾 𝑑𝐴 = 2𝜋,

−∫
𝐶

𝜅𝑔 𝑑𝑠 + ∫
Ω2

𝐾 𝑑𝐴 = 2𝜋.

The minus sign is to account for the fact that the orientation of 𝐶 reverses when viewed

as the boundary of Ω1 versus the boundary of Ω2. Adding the two equations above we

see that

∫
Ω

𝐾 𝑑𝐴 = 4𝜋. (16)

Stated in words:

The total curvature of a surface which is topologically equivalent to a sphere
is 4𝜋.

This is an impressive result. The particularities of the surface Ω such as its shape and size

do not affect affect the result. As long as the surface looks like a distorted sphere, its total

curvature is 4𝜋!.


