## Math 423, Spring 2024

*Please* make an effort to *write neatly*, and *insert a few words* here and there to get your ideas across. It's difficult to understand (and evaluate) mathematics in the absence of guiding words.

You may write your solutions by hand, but a it would be terrific if you could do it in LageX. In any case, upload your solutions to the course's site on Blackboard by the midnight of Wednesday February 7.

- [3 pts] Let f(x) = x<sup>3</sup> + 1. Find the inverse function f<sup>-1</sup>.
   Solution: Solving the equation y = x<sup>3</sup> + 1 for x we obtain x = (y 1)<sup>1/3</sup>. We conclude that the inverse function of f is f<sup>-1</sup>(y) = (y 1)<sup>1/3</sup>.
- 2. [3 pts] Let  $a = \langle 1, 1, 1 \rangle$  and  $b = \langle 1, 2, 3 \rangle$ . Evaluate the cross product  $a \times b$ . Solution: Let  $\{i, j, k\}$  be the usual set of orthonormal vectors, and let's write

$$a = i + j + k$$
,  $b = i + 2j + 3k$ .

Then

$$a \times b = det \begin{bmatrix} i & j & k \\ 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} = (3-2)i - (3-1)j + (2-1)k = i - 2j + k.$$

For the sake of consistency with the original notation, it's better to express the result as  $a \times b = \langle 1, -2, 1 \rangle$ .

3. [3 pts] Find the equation of the tangent line to the parabola  $y = x^2$  at x = 2.

*Solution:* The *y* coordinate of the point of tangency is  $y = x^2|_{x=2} = 2^2 = 4$ . The slope there is  $y' = 2x|_{x=2} = 4$ . Therefore, the equation of the tangent line is y - 4 = 4(x - 2) which simplifies to y = 4x - 4.

4. [3 pts] *S* is the sphere of radius 1 centered at the origin of the *xyz* Cartesian coordinate system. Verify that the point *P* with coordinates  $\left(\frac{\sqrt{3}}{4}, \frac{3}{4}, \frac{1}{2}\right)$  lies on the sphere. Find the equation of the tangent plane to the sphere at *P*.

Solution: We have

$$\left(\frac{\sqrt{3}}{4}\right)^2 + \left(\frac{3}{4}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{3}{16} + \frac{9}{16} + \frac{1}{4} = 1,$$

which verifies that P lies on the sphere.

The vector  $\vec{OP} = \langle \frac{\sqrt{3}}{4}, \frac{3}{4}, \frac{1}{2} \rangle$  from the origin *O* to the point *P* is orthogonal to the sphere, and therefore to the tangent plane. We conclude that the equation of the tangent plane is

$$\frac{\sqrt{3}}{4}\left(x - \frac{\sqrt{3}}{4}\right) + \frac{3}{4}\left(y - \frac{3}{4}\right) + \frac{1}{2}\left(z - \frac{1}{2}\right) = 0,$$

which simplifies to

$$\frac{\sqrt{3}}{4}x + \frac{3}{4}y + \frac{1}{2}z = 1.$$





Solution #2: Referring to the diagram below, the angle *QOR* is an external angle of the isosceles triangle *POQ*, therefore it measures 2 $\theta$ . Then in the right triangle *QOH*, the length of the leg *OH* is  $a \cos 2\theta$ , and therefore the length of *PH* is  $a + a \cos 2\theta = a(1 + \cos 2\theta) = 2a \cos^2 \theta$ .



Solution #3: Referring to the diagram below, drop a perpendicular *OM* from *O* onto *PQ*. In the right triangle *PMO* the length of the hypotenuse is *a*, and therefore the length of *PM* is  $a \cos \theta$ . Since *POQ* is an isosceles triangle, the length of *PQ* is twice that of *PM*, that is,  $2a \cos \theta$ . Then from the geometry of the right triangle *PHQ* we conclude that length of *PH* is  $2a \cos^2 \theta$ .



6. [6 pts] Find the length of the parabolic arc  $y = x^2$ ,  $0 \le x \le 1$ . Solution: The length of any curve y = f(x),  $a \le x \le b$  is given by

$$L = \int_a^b \sqrt{1 + f'(x)^2} \, dx.$$

In the present case we have  $f(x) = x^2$ , and therefore f'(x) = 2x and the length is

$$L = \int_0^1 \sqrt{1 + 4x^2} \, dx$$

To evaluate the integral, we let  $2x = \sinh u$ . Then  $2 dx = \cosh u du$ , that is,  $dx = \frac{1}{2} \cosh u du$ , and therefore

$$\int \sqrt{1+4x^2} \, dx = \frac{1}{2} \int \sqrt{1+\sinh^2 u} \cosh u \, du = \frac{1}{2} \int \cosh^2 u \, du = \frac{1}{4} \int (1+\cosh 2u) \, du$$
$$= \frac{1}{4} \Big[ u + \frac{1}{2} \sinh 2u \Big] = \frac{1}{4} \Big[ u + \sinh u \cosh u \Big] = \frac{1}{4} \Big[ u + \sinh u \sqrt{1+\sinh^2 u} \Big]$$
$$= \frac{1}{4} \Big[ \arcsin 2x + (2x)\sqrt{1+(2x)^2} \Big] = \frac{1}{4} \arcsin 2x + \frac{1}{2}x\sqrt{1+4x^2}$$
$$= \frac{1}{4} \ln \Big[ 2x + \sqrt{1+4x^2} \Big] + \frac{1}{2}x\sqrt{1+4x^2}.$$

We conclude that

$$L = \int_0^1 \sqrt{1 + 4x^2} \, dx = \frac{1}{4} \ln[2 + \sqrt{5}] + \frac{1}{2} \sqrt{5} \approx 1.4789.$$

## A note on hyperbolic functions

The hyperbolic cosine and sine functions are defined as

$$\cosh u = \frac{1}{2} (e^u + e^{-u}), \quad \sinh u = \frac{1}{2} (e^u - e^{-u}).$$

From these definitions it follows that

$$\frac{d}{du}\cosh u = \sinh u,\tag{1a}$$

$$\frac{d}{du}\sinh u = \cosh u,\tag{1b}$$

$$\cosh^2 u - \sinh^2 u = 1, \tag{1c}$$

$$\cosh 2u = \cosh^2 u + \sinh^2 u \tag{1d}$$

$$\sinh 2u = 2\sinh u \cosh u. \tag{1e}$$

(Be sure to verify these yourself. It's not hard at all.)

The identities (1c) and (1d) may be combined to produce a few other useful identities. Look, for instance, at

$$\cosh 2u = \cosh^2 u + \sinh^2 u \stackrel{\text{by (1c)}}{=} \cosh^2 u + (\cosh^2 u - 1) = 2\cosh^2 u - 1.$$

and therefore

$$\cosh^2 u = \frac{1}{2} \left( 1 + \cosh 2u \right). \tag{1f}$$

Yet another point: The functions arcsinh and arccosh may be expressed in terms of elementary functions. For instance, let  $y = \operatorname{arcsinh} u$ . Then  $u = \sinh y = \frac{1}{2} (e^y - e^{-y})$ , and therefore  $e^y - e^{-y} = 2u$ . We multiply through by  $e^y$  and rearrange that into  $(e^y)^2 - 2u(e^y) - 1 = 0$ . This is a quadratic in  $e^y$  whose solution is  $e^y = \frac{2u \pm \sqrt{4u^2+4}}{2} = u \pm \sqrt{1+u^2}$ . The minus sign in the  $\pm$  is not acceptable because  $e^y$  cannot be negative. We conclude that  $e^y = u + \sqrt{1+u^2}$ , and therefore  $y = \ln \left[ u + \sqrt{1+u^2} \right]$ . Recalling that  $y = \operatorname{arcsinh} u$ , we conclude that

$$\operatorname{arcsinh} u = \ln \left[ u + \sqrt{1 + u^2} \right].$$
(1g)

Do you see where these identities are used in evaluating the integral?

*Challenge yourself*: Derive the counterparts of (1f) and (1g) for  $\sinh^2 u$  and  $\operatorname{arccosh} u$ .

7. [6 pts] Find the length of the parametrically defined curve

$$\mathbf{r}(t) = \langle t - \sin t, 1 - \cos t \rangle, \quad 0 \le t \le 2\pi.$$

*Solution*: The length of any parametric curve  $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ ,  $a \le t \le b$ , is given by

$$L = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} \, dx.$$

In our case we have  $x(t) = t - \sin t$ ,  $y(t) = 1 - \cos t$ , and therefore  $x'(t) = 1 - \cos t$  and  $y'(t) = \sin t$ . Then we calculate

$$x'(t)^{2} + y'(t)^{2} = (1 - \cos t)^{2} + (\sin t)^{2} = 1 - 2\cos t + \cos^{2} t + \sin^{2} t = 2(1 - \cos t) = 4\sin^{2} \frac{t}{2}.$$

It follows that

$$\sqrt{x'(t)^2 + y'(t)^2} = 2 \sin \frac{t}{2}$$

We are going to integrate this over  $0 \le t \le 2\pi$ . Then we have  $\le \frac{t}{2} \le \pi$  and therefore  $\sin \frac{t}{2} \ge 0$  and the absolute value signs are not required. That is, in this range we have

$$\sqrt{x'(t)^2 + y'(t)^2} = 2\sin\frac{t}{2}.$$

Then the curve's length is

$$L = \int_0^{2\pi} \sqrt{x'(t)^2 + y'(t)^2} \, dt = \int_0^{2\pi} 2\sin\frac{t}{2} \, dt = -4\cos\frac{t}{2} \Big|_0^{2\pi} = -4\left[\cos\pi - \cos 0\right] = 8.$$

8. [6 pts] Consider the graph of  $z = x^2 - y^2 + 5$  in the Cartesian coordinates. Find the surface area of the part of that graph that lies above the disk  $x^2 + y^2 \le 1$ .

*Solution:* The area of the graph of any function z = f(x, y) over a region *D* is the value of the double integral

$$\iint_D \sqrt{1 + f_x(x, y)^2 + f_y(x, y)^2} \, dA,$$

where  $f_x$  and  $f_y$  denote the partial derivatives of f with respect to x and y. In the current problem we have  $f(x, y) = x^2 + y^2$  and therefore the integrand is  $\sqrt{1 + 4x^2 + 4y^2}$ .

Considering that our domain *D* is a disk, it makes sense to do the calculations in polar coordinates  $(r, \theta)$ , where

$$x = r \cos \theta, \quad y = r \sin \theta.$$

Then the integrand simplifies to  $\sqrt{1 + 4r^2}$ . The area element dA, as we have seen in multivariable calculus, is  $dA = r dr d\theta$ . We now calculate

area = 
$$\int_0^{2\pi} \int_0^1 \sqrt{1 + 4r^2} r \, dr \, d\theta = 2\pi \int_0^1 \sqrt{1 + 4r^2} r \, dr.$$

To continue, we let  $u = 1 + 4r^2$ , whence du = 8r dr, that is,  $r dr = \frac{1}{8} du$ . The limits of integration change to 1 and 5. We conclude that

area = 
$$2\pi \int_{1}^{5} u^{1/2} \frac{du}{8} = 2\pi \times \frac{1}{8} \times \frac{2}{3} u^{3/2} \Big|_{1}^{5} = \frac{\pi}{6} \left[ 5\sqrt{5} - 1 \right] \approx 5.33.$$