
NOTES ON CONTINUUM MECHANICS

ROUBEN ROSTAMIAN

Abstract. Here are brief notes on some of the central topics of continuum mechanics.

These represent my take on the presentations in Gonzalez and Stuart [5], Gurtin [7], and

Chadwick [2].
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1. Notation

𝔼3 = the three-dimensional Euclidean space

 = the linear space of vectors in 𝔼3
 = the linear space of second order tensors  → 
+

= the set of all tensors 𝑨 ∈  with det𝑨 > 0
sym = the linear subspace of symmetric tensors in 
skew = the linear subspace of skew-symmetric tensors in 
+

sym
= the set of all symmetric and positive definite tensors

orth = the linear space of orthogonal tensors in 
+

orth
= the set of all tensors 𝑸 ∈ orth with det𝑸 > 0

2. Vectors

Throughout these notes, 𝔼3 refers to the three-dimensional Euclidean space. The ele-

ments of 𝔼3 are points. The oriented line segment that extends from the point 𝒙 to point 𝒚
is called a vector and is written 𝒗 = 𝒚 − 𝒙. We write  for the set of all vectors. Two vec-

tors 𝒖 and 𝒗 which are parallel and have common orientation are regarded equal. Thus,

 is the equivalence class of all vectors under this concept of equality.

We write ‖𝒗‖ for the length of the vector 𝒗. The zero vector, written 𝟎, is the vector of

zero length. The product 𝛼𝒗 a vector 𝒗 ∈  and a number 𝛼 ∈ ℝ, is obtained by scaling

𝒗’s length by the factor 𝛼. A negative 𝛼 both scales and reverses 𝒗’s orientation. The sum

𝒖+𝒗 of vectors 𝒖, 𝒗 ∈  is the vector that coincides with the diagonal of the parallelogram

formed by 𝒖 and 𝒗.

The vectors 𝒖, 𝒗, 𝒘 ∈  are linearly independent if the equation 𝛼𝒖 + 𝛽𝒗 + 𝛾𝒘 = 𝟎,

𝛼, 𝛽, 𝛾 ∈ ℝ, implies that 𝛼 = 𝛽 = 𝛾 = 0.

The scalar product 𝒖 ⋅ 𝒗 of vectors 𝒖, 𝒗 ∈  is defined as 𝒖 ⋅ 𝒗 = ‖𝒖‖ ‖𝒗‖ cos 𝜃, where

𝜃 ∈ [0, 𝜋] is the angle between 𝒖 and 𝒗. Let us note that if 𝒖 and 𝒗 are orthogonal, then

𝒖 ⋅ 𝒗 = 0. Also note that 𝒖 ⋅ 𝒖 = ‖𝒖‖2.

The vector product (also known as the cross-product) 𝒖×𝒗 of vectors 𝒖, 𝒗 ∈  is a vector

𝒘 constructed as follows. If either of 𝒖 or 𝒗 is zero, or if 𝒖 and 𝒗 are collinear, then 𝒘 is

the zero vector. Otherwise, 𝒘 is a vector of length ‖𝒖‖ ‖𝒗‖ sin 𝜃 and is perpendicular to the

plane formed by 𝒖 and 𝒗. Here 𝜃 ∈ [0, 𝜋] is the angle between 𝒖 and 𝒗, as before. The con-

ditions stipulated above determine𝒘 up to a multiplicative factor of ±1. To disambiguate,

we pick the one which conforms to the right-hand rule. It follows then 𝒖×𝒗 = −𝒗×𝒖. The
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Figure 1. On the left: The area 𝐴 of the parallelogram formed by the

vectors 𝒖 and 𝒗 is

𝐴 = ‖𝒖‖ ℎ = ‖𝒖‖ ‖𝒗‖ sin 𝜃 = ‖𝒖 × 𝒗‖.
On the right: The volume 𝑉 of the parallelepiped formed by the vectors

𝒖, 𝒗, 𝒘 is the area of the base times the height, that is

𝑉 = ‖𝒖 × 𝒗‖ ℎ = ‖𝒖 × 𝒗‖ ‖𝒘‖ cos 𝜙 = ||(𝒖 × 𝒗) ⋅ 𝒘|| = ||[𝒖, 𝒗, 𝒘]||.

left diagram in Figure 1 shows that the area of the parallelogram formed by the vectors

is 𝒖 and 𝒗 is ‖𝒖 × 𝒗‖.

Proposition 1.
‖𝒖 × 𝒗‖2 = ‖𝒖‖2‖𝒗‖2 − (𝒖 ⋅ 𝒗)2 for all 𝒖, 𝒗 ∈  . (1)

Proof. Let 𝜃 ∈ [0, 𝜋] be the angle between 𝒖 and 𝒗. We know that 𝒖 ⋅ 𝒗 = ‖𝒖‖ ‖𝒗‖ cos 𝜃, and

‖𝒖 × 𝒗‖ = ‖𝒖‖ ‖𝒗‖ sin 𝜃. Therefore

‖𝒖 × 𝒗‖2 = ‖𝒖‖2‖𝒗‖2 sin2 𝜃 = ‖𝒖‖2‖𝒗‖2(1 − cos2 𝜃)

= ‖𝒖‖2‖𝒗‖2 − ‖𝒖‖2‖𝒗‖2 cos2 𝜃 = ‖𝒖‖2‖𝒗‖2 − (𝒖 ⋅ 𝒗)2. □

The scalar triple product [𝒖, 𝒗, 𝒘] of any three vectors 𝒖, 𝒗, 𝒘 ∈  is defined as [𝒖, 𝒗, 𝒘] =
(𝒖 × 𝒗) ⋅ 𝒘. It follows from geometry that [𝒖, 𝒗, 𝒘] is the volume of the parallelepiped

formed by the three vectors 𝒖, 𝒗, 𝒘. Consequently, [𝒖, 𝒗, 𝒘] = 0 if and only if the vectors

are linearly dependent.

The right diagram in Figure 1 shows that the volume of the parallelepiped formed by

the vectors is 𝒖, 𝒗, and 𝒘 is
||[𝒖, 𝒗, 𝒘]||. If the three vectors form a right-handed system,

then the absolute value signs are redundant and the volume is simply [𝒖, 𝒗, 𝒘].

In the rest of these notes, we shorten the term scalar triple product to triple product.

Proposition 2. For any 𝒖, 𝒗, 𝒘 ∈  we have

[𝒖, 𝒗, 𝒘] = [𝒗, 𝒘, 𝒖] = [𝒘, 𝒖, 𝒗] = −[𝒖, 𝒘, 𝒗] = −[𝒗, 𝒖, 𝒘] = −[𝒘, 𝒗, 𝒖].

In words, the triple product [𝒖, 𝒗, 𝒘] is invariant under the cyclic permutation of its members,
and it changes sign under a non-cyclic permutation.

Proof. Interchanging the first and second members of a triple product reverses its sign:

[𝒖, 𝒗, 𝒘] = (𝒖 × 𝒗) ⋅ 𝒘 = −(𝒗 × 𝒖) ⋅ 𝒘 = −[𝒗, 𝒖, 𝒘].
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Furthermore, from the observation that the triple product is zero if its vectors are linearly

dependent, it follows that

0 = [𝒖, 𝒗 + 𝒘, 𝒗 + 𝒘]
= [𝒖, 𝒗, 𝒗 + 𝒘] + [𝒖, 𝒘, 𝒗 + 𝒘]
= [𝒖, 𝒗, 𝒗] + [𝒖, 𝒗, 𝒘] + [𝒖, 𝒘, 𝒗] + [𝒖, 𝒘, 𝒘]
= [𝒖, 𝒗, 𝒘] + [𝒖, 𝒘, 𝒗].

We conclude that [𝒖, 𝒗, 𝒘] = −[𝒖, 𝒘, 𝒗], that is, interchanging the second and third mem-

bers of a triple product reverses its sign as well. The proposition’s assertion follows from

repeated interchanges of the triple product’s members; see Exercise 1. □

A frame is an orthonormal triplet of vectors. The orthonormality of the frame {𝒆1, 𝒆2, 𝒆3}
is conveniently expressed in terms of the Kronecker delta 𝛿𝑖𝑗 :

𝒆𝑖 ⋅ 𝒆𝑗 = 𝛿𝑖𝑗 , 𝑖, 𝑗 = 1, 2, 3, (2)

where

𝛿𝑖𝑗 =

{
1 if 𝑖 = 𝑗,
0 if 𝑖 ≠ 𝑗.

(3)

We say that the frame is right-handed if

𝒆1 × 𝒆2 = 𝒆3, 𝒆2 × 𝒆3 = 𝒆1, 𝒆3 × 𝒆1 = 𝒆2. (4)

Throughout these notes all frames are right-handed. The right-handedness is implicitly

assumed even when it is not made explicit.

We will find it convenient to express the three equations in (4) as a single equation

involving symbolic indices 𝑖, 𝑗 , 𝑘, similar to that in (2). Toward that end, let us observe

that for any 𝑖 and 𝑗 in the set {1, 2, 3}, we should be able to express the vector 𝒆𝑖 × 𝒆𝑗 as a

linear combination of the frame’s three vectors since the frame forms a basis for  . Thus,

𝒆𝑖 × 𝒆𝑗 =
3

∑
𝑘=1

𝜖𝑖𝑗𝑘𝒆𝑘 , (5)

The coefficients 𝜖𝑖𝑗𝑘 are determined as follows. If 𝑖 = 𝑗 , then 𝒆𝑖 ×𝒆𝑗 = 𝟎, while if 𝑖 ≠ 𝑗 , then

𝒆𝑖 × 𝒆𝑗 = ±𝒆𝑘 , where 𝑘 is that element of the index set {1, 2, 3} which is other than 𝑖 and 𝑗 .
The plus or minus sign is determined according to whether the sequence of indices 𝑖, 𝑗 , 𝑘
is a cyclic or non-cyclic permutation of {1, 2, 3}. We conclude that the coefficients 𝜖𝑖𝑗𝑘 are

given by

𝜖𝑖𝑗𝑘 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

1 if 𝑖𝑗𝑘 is a cyclic permutation of 123,
−1 if 𝑖𝑗𝑘 is a non-cyclic permutation of 123,
0 otherwise (that is, 𝑖𝑗𝑘 contains a repeated index).

(6)

The 𝜖𝑖𝑗𝑘 is known as the permutation symbol or the alternator.

Any frame is a basis in  , and therefore any vector 𝒖 ∈  may be be expressed as a

linear combination of the frame’s members.

𝒖 = 𝑢1 𝒆1 + 𝑢2 𝒆2 + 𝑢3 𝒆3. (7)
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The coefficients 𝑢1, 𝑢2, and 𝑢3 are called the components of 𝒖 in the frame. Multiplying this

by 𝒆1 we get 𝒖⋅𝒆1 = 𝑢1𝒆1 ⋅𝒆1+𝑢2𝒆2 ⋅𝒆1+𝑢3𝒆3 ⋅𝒆1 = 𝑢1 since 𝒆1 ⋅𝒆1 = 1 and 𝒆1 ⋅𝒆2 = 𝒆1 ⋅𝒆3 = 0.

Similarly, 𝒖 ⋅ 𝒆2 = 𝑢2 and 𝒖 ⋅ 𝒆3 = 𝑢3. We conclude that

𝒖 = (𝒖 ⋅ 𝒆1) 𝒆1 + (𝒖 ⋅ 𝒆2) 𝒆2 + (𝒖 ⋅ 𝒆3) 𝒆3 for all 𝒖 ∈  . (8)

The summation convention. Although expressions such as (7) and (8) may be com-

pactly presented through the sigma notation 𝒖 = ∑3
𝑖=1 𝑢𝑖 𝒆𝑖 and 𝒖 = ∑3

𝑖=1(𝒖 ⋅ 𝒆𝑖) 𝒆𝑖, it is

quite common to adopt a more economical notation by dropping the sigma symbol alto-

gether and writing them as 𝒖 = 𝑢𝑖 𝒆𝑖 and 𝒖 = (𝒖 ⋅ 𝒆𝑖) 𝒆𝑖, under the implicit assumption that

terms involving repeated indices are summed over as the repeated index ranges over 1, 2,

3. This is known as the summation convention or the Einstein notation as it was introduced

by Albert Einstein in his paper on general relativity in 1916. By the same token, the vec-

tor multiplication in (5) may be expressed as 𝒆𝑖 × 𝒆𝑗 = 𝜖𝑖𝑗𝑘 𝒆𝑘 . We will use the summation

convention wherever possible throughout these notes.

In the expression 𝒆𝑖 × 𝒆𝑗 = 𝜖𝑖𝑗𝑘 𝒆𝑘 , the symbols 𝑖 and 𝑗 are called free indices since

they may take on any of the values of 1, 2, 3, but their values are unspecified at the

moment. The symbol 𝑘 is called a dummy index since it takes on the values 1, 2, 3 in

the summation and then it disappears. The name of a dummy index is immaterial. For

instance, 𝜖𝑖𝑗𝑘 𝒆𝑘 = 𝜖𝑖𝑗𝑞 𝒆𝑞 because both sides expand to the same thing upon the evaluation

of the implied summation.

To illustrate the economy of notation provided by the summation convention, consider

the frame {𝒆1, 𝒆2, 𝒆3} and, following (8), express any two vectors 𝒖, 𝒗 ∈ 𝑉 in terms of their

components in the frame as 𝒖 = 𝑢𝑖 𝒆𝑖 and 𝒗 = 𝑣𝑗 𝒆𝑗 , where the summation convention is

in force. Then the dot product of the two vectors takes the form

𝒖 ⋅ 𝒗 = (𝑢𝑖𝒆𝑖) ⋅ (𝑣𝑗𝒆𝑗 ) = 𝑢𝑖𝑣𝑗 𝒆𝑖 ⋅ 𝒆𝑗 = 𝑢𝑖𝑣𝑗 𝛿𝑖𝑗 = 𝑢𝑖𝑣𝑖. (9)

In the last step of that calculation we have set 𝑣𝑗𝛿𝑖𝑗 = 𝑣𝑖. To see why, let’s revert to the

sigma notation, 𝑣𝑗𝛿𝑖𝑗 = ∑3
𝑗=1 𝑣𝑗𝛿𝑖𝑗 and observe that as 𝑗 runs from 1 to 3, the value of 𝛿𝑖𝑗

is nonzero only when 𝑗 hits the value of 𝑖, and thus, the summation collapses to a single

term, 𝑣𝑖.

In general, the expression 𝑎𝑗𝛿𝑖𝑗 always collapses to 𝑎𝑖, for any indexed variable 𝑎. This

is known as the transfer property of 𝛿𝑖𝑗 .

In the special case of 𝒗 = 𝒖, equation (9) yields an expression for the length of 𝒖 in

terms of its components in the frame:

‖𝒖‖2 = 𝒖 ⋅ 𝒖 = 𝑢𝑖𝑢𝑖

As another application, let 𝒖 = 𝑢𝑖 𝒆𝑖 and 𝒗 = 𝑣𝑗 𝒆𝑗 , as before, and then calculate the

vector product 𝒖 × 𝒗 in terms of the components of 𝒖 and 𝒗:

𝒖 × 𝒗 = (𝑢𝑖𝒆𝑖) × (𝑣𝑗𝒆𝑗 ) = 𝑢𝑖𝑣𝑗 (𝒆𝑖 × 𝒆𝑗 ) = 𝑢𝑖𝑣𝑗 (𝜖𝑖𝑗𝑘𝒆𝑘) = 𝜖𝑖𝑗𝑘𝑢𝑖𝑣𝑗 𝒆𝑘 . (10)

Building upon this calculation, we see that

(𝒖 × 𝒗) ⋅ 𝒘 = (𝜖𝑖𝑗𝑘𝑢𝑖𝑣𝑗 𝒆𝑘) ⋅ (𝑤𝑝𝒆𝑝) = 𝜖𝑖𝑗𝑘𝑢𝑖𝑣𝑗𝑤𝑝(𝒆𝑘 ⋅ 𝒆𝑝) = 𝜖𝑖𝑗𝑘𝑢𝑖𝑣𝑗𝑤𝑝𝛿𝑘𝑝 = 𝜖𝑖𝑗𝑘𝑢𝑖𝑣𝑗𝑤𝑘 ,
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where in the last step we have applied the transfer property of the Kronecker delta. We

conclude that

[𝒖, 𝒗, 𝒘] = 𝜖𝑖𝑗𝑘𝑢𝑖𝑣𝑗𝑤𝑘 . (11)

The special case of [𝒆𝑖, 𝒆𝑗 , 𝒆𝑘] is particularly interesting, and therefore let us make a

record of it. From (5) we have 𝒆𝑖 × 𝒆𝑗 = 𝜖𝑖𝑗𝑝𝒆𝑝 . Therefore

[𝒆𝑖, 𝒆𝑗 , 𝒆𝑘] = (𝒆𝑖 × 𝒆𝑗 ) ⋅ 𝒆𝑘 = 𝜖𝑖𝑗𝑝𝒆𝑝 ⋅ 𝒆𝑘 = 𝜖𝑖𝑗𝑝𝛿𝑝𝑘 = 𝜖𝑖𝑗𝑘 ,

that is

[𝒆𝑖, 𝒆𝑗 , 𝒆𝑘] = 𝜖𝑖𝑗𝑘 . (12)

3. Linear functionals

We deviate from our focus on the previous section’s three-dimensional vector space 
and consider a general, abstract, vector space 𝑋 , not necessarily three-dimensional, and

not even equipped with a dot product. The generality is not essential to our work since

eventually we will apply the results to  , but the abstract nature of 𝑋 helps to see the

lines of argument more clearly.

A functional is linear function 𝑓 ∶ 𝑋 → 𝑅.
1

Let 𝑓 be a functional on 𝑋 and let 𝑁 be its

null space, that is

𝑁 =
{
𝒙 ∈ 𝑋 ∶ 𝑓 (𝒙) = 0

}
.

We leave the proofs of the following statements as exercises:

(1) 𝑁 is a linear subspace of 𝑋 , that is, if 𝒖 and 𝒗 are in 𝑁 , and 𝛼, 𝛽 ∈ ℝ, then

𝛼𝒖 + 𝛽𝒗 ∈ 𝑁 .

(2) Suppose 𝑓 is not identically zero (and therefore 𝑁 is not the entire 𝑋 ). Then there

exists a 𝒒 ∈ 𝑋 so that every 𝒙 ∈ 𝑋 admits the decomposition

𝒙 = 𝒑 + 𝛽𝒒,

where 𝒑 ∈ 𝑁 and 𝛽 ∈ ℝ depend on 𝒙.

Hint: Let 𝒒 ∈ 𝑋 be such that 𝑓 (𝒒) ≠ 0 (why is there such a 𝒒?) and 𝒑 = 𝒙−
𝑓 (𝒙)
𝑓 (𝒒)

𝒒.

Show that 𝒑 ∈ 𝑁 .

Remark 1. Let 𝑀 be the span of the vector 𝒒. What we have shown above says

that 𝑋 = 𝑁 +𝑀 where 𝑀 is one dimensional. In other words, the null space of a

nontrivial function 𝑓 ∶ 𝑋 → ℝ is of co-dimension 1.

(3) Suppose𝑋 is equipped with a dot product. Then for each functional 𝑓 there exists

a unique 𝒚 ∈ 𝑋 so that

𝑓 (𝒙) = 𝒙 ⋅ 𝒚 for all 𝒙 ∈ 𝑋.

Hint: First, address the easy special case when 𝑓 is identically zero. Next, suppose

𝑓 is not identically zero and let 𝑁 be its null space. From the previous problem

we know that the co-dimension of 𝑁 is 1. Pick 𝒏 to be a unit vector orthogonal

1
The word “functional” is a short way of saying “a linear function whose range is ℝ”. There is nothing

particularly deep about it.
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to 𝑁 . Then any 𝒙 ∈ 𝑋 may be deocomposed as 𝒙 = 𝒑 + 𝛽𝒏 where 𝒑 ∈ 𝑁 . Show

that 𝑓 (𝒙) = 𝒙 ⋅ (𝑓 (𝒏) 𝒏) and therefore 𝒚 = 𝑓 (𝒏) 𝒏.

Remark 2. The vector 𝒚 is called the representation of 𝑓 .

Remark 3. With only minor changes, the statement above generalizes to the

infinite-dimensional Hilbert space where it is called the Riesz Representation The-
orem.

(4) Let𝑋 be a vector space equipped with a dot product. Consider the linear mapping

𝐴 ∶ 𝑋 → 𝑋 . For a fixed 𝒚 ∈ 𝑋 , define 𝑓 ∶ 𝑋 → ℝ through 𝑓 (𝒙) = (𝐴𝒙)⋅𝒚. Verify

that 𝑓 is linear. Let 𝒚∗ be a representative of 𝑓 (see the previous problem). Then

(𝐴𝒙) ⋅ 𝒚 = 𝒙 ⋅ 𝒚∗ for all 𝒙 ∈ 𝑋 . This construction associates with every 𝒚 ∈ 𝑋 a

unique vector 𝒚∗ ∈ 𝑋 . The mapping 𝐴∗ ∶ 𝒚 ↦ 𝒚∗ is called the adjoint of 𝐴. Verify

that 𝐴∗
is linear.

Remark 4. In view of 𝒚∗ = 𝐴∗𝒚, we have the frequently used identity

(𝐴𝒙) ⋅ 𝒚 = 𝒙 ⋅ (𝐴∗𝒚). (13)

4. Second order tensors

A linear function 𝑨 ∶  →  is called a second order tensor. We write  for the set of

all second order tensors
2
. Thus, if 𝑨 ∈ , 𝒖, 𝒗 ∈  , and 𝛼, 𝛽 ∈ ℝ, we have

𝑨(𝛼𝒖 + 𝛽𝒗) = 𝛼𝑨𝒖 + 𝛽𝑨𝒗.

We will encounter fourth order tensors later in these notes, but when there is no chance

of misunderstanding, we say tensor when we mean a second order tensor.

We equip the set of tensors with a linear space structure by defining the operations of

addition and scalar multiplication on that set, as follows:

(𝑨 + 𝑩)(𝒖) = 𝑨𝒖 + 𝑩𝒖 and (𝛼𝑨)𝒖 = 𝛼(𝑨𝒖) (14)

for all 𝑨, 𝑩 ∈ , 𝛼 ∈ ℝ, and 𝒖 ∈  .

The zero tensor 𝟎 maps every vector to the zero vector, and the identity tensor 𝑰 maps

every vector to itself. Thus

𝟎𝒖 = 𝟎, 𝑰𝒖 = 𝒖, for all 𝒖 ∈  .

In continuum mechanics, the adjoint 𝐴∗
of 𝐴 (recall (13)) is traditionally called the

transpose of 𝑨 and is written 𝑨𝑇
. Thus

𝒖 ⋅ (𝑨𝑇 𝒗) = (𝑨𝒖) ⋅ 𝒗 for all 𝒖, 𝒗 ∈  . (15)

It follows that

(𝑨𝑇 )
𝑇 = 𝑨, (𝛼𝑨 + 𝛽𝑩)𝑇 = 𝛼𝑨𝑇 + 𝛽𝑩𝑇 , (𝑨𝑩)𝑇 = 𝑩𝑇𝑨𝑇

for all 𝑨, 𝑩 ∈  and all 𝛼, 𝛽 ∈ ℝ.

2
Thus, a second order tensor is what is called a linear operator on the vector space  in operator theory

and functional analysis. Following the well-established tradition, we write 𝑨𝒖 rather than 𝑨(𝒖) whenever

unambiguous, to indicate the action of the tensor 𝑨 on the vector 𝒖.



NOTES ON CONTINUUM MECHANICS 9

A tensor 𝑨 is called symmetric3
if 𝑨𝑇 = 𝑨, and skew-symmetric if if 𝑨𝑇 = −𝑨. The

identity

𝑨 =
1
2(
𝑨 + 𝑨𝑇 ) +

1
2(
𝑨 − 𝑨𝑇 )

shows that any tensor may be expressed as the sum of a symmetric and skew-symmetric

tensors.

Theorem 1. Associated with any tensor 𝑨 ∈  there are three numbers, called its principal
invariants and written 𝜄1(𝑨), 𝜄2(𝑨), 𝜄3(𝑨), such that for all 𝒖, 𝒗, 𝒘 ∈  we have:

[𝑨𝒖, 𝒗, 𝒘] + [𝒖, 𝑨𝒗, 𝒘] + [𝒖, 𝒗, 𝑨𝒘] = 𝜄1(𝑨) [𝒖, 𝒗, 𝒘], (16a)

[𝒖, 𝑨𝒗, 𝑨𝒘] + [𝑨𝒖, 𝒗, 𝑨𝒘] + [𝑨𝒖,𝑨𝒗, 𝒘] = 𝜄2(𝑨) [𝒖, 𝒗, 𝒘], (16b)

[𝑨𝒖, 𝑨𝒗, 𝑨𝒘] = 𝜄3(𝑨) [𝒖, 𝒗, 𝒘]. (16c)

Proof. We will prove (16a) and leave the proofs of (16b) and (16c) as exercises to the reader.

Pick any frame {𝒆1, 𝒆2, 𝒆3} and express 𝒖, 𝒗, 𝒘 in terms of components, that is, 𝒖 = 𝑢𝑖𝒆𝑖,
𝒗 = 𝑣𝑗𝒆𝑗 , 𝒘 = 𝑤𝑘𝒆𝑘 . Then

[𝑨𝒖, 𝒗, 𝒘] + [𝒖, 𝑨𝒗, 𝒘] + [𝒖, 𝒗, 𝑨𝒘]
= [𝑨(𝑢𝑖𝒆𝑖), 𝑣𝑗𝒆𝑗 , 𝑤𝑘𝒆𝑘] + [𝑢𝑖𝒆𝑖, 𝑨(𝑣𝑗𝒆𝑗 ), 𝑤𝑘𝒆𝑘] + [𝑢𝑖𝒆𝑖, 𝑣𝑗𝒆𝑗 , 𝑨(𝑤𝑘𝒆𝑘)]

= 𝑢𝑖𝑣𝑗𝑤𝑘([𝑨𝒆𝑖, 𝒆𝑗 , 𝒆𝑘] + [𝒆𝑖, 𝑨𝒆𝑗 , 𝒆𝑘] + [𝒆𝑖, 𝒆𝑗 , 𝑨𝒆𝑘])
= 𝑢𝑖𝑣𝑗𝑤𝑘𝑀𝑖𝑗𝑘 , (17)

where we have set

𝑀𝑖𝑗𝑘 = [𝑨𝒆𝑖, 𝒆𝑗 , 𝒆𝑘] + [𝒆𝑖, 𝑨𝒆𝑗 , 𝒆𝑘] + [𝒆𝑖, 𝒆𝑗 , 𝑨𝒆𝑘].

Let us verify that𝑀𝑖𝑗𝑘 is unchanged by a cyclic permutation of indices, that is, {𝑖, 𝑗 , 𝑘} →
{𝑘, 𝑖, 𝑗}. We have

𝑀𝑘𝑖𝑗 = [𝑨𝒆𝑘 , 𝒆𝑖, 𝒆𝑗 ] + [𝒆𝑘 , 𝑨𝒆𝑖, 𝒆𝑗 ] + [𝒆𝑘 , 𝒆𝑖, 𝑨𝒆𝑗 ]
= [𝒆𝑖, 𝒆𝑗 , 𝑨𝒆𝑘] + [𝑨𝒆𝑖, 𝒆𝑗 , 𝒆𝑘] + [𝒆𝑖, 𝑨𝒆𝑗 , 𝒆𝑘]
= 𝑀𝑖𝑗𝑘 .

Let us verify that𝑀𝑖𝑗𝑘 is unchanged by a non-cyclic permutation of indices, e.g., {𝑖, 𝑗 , 𝑘} →
{𝑗, 𝑖, 𝑘}. We have

𝑀𝑗𝑖𝑘 = [𝑨𝒆𝑗 , 𝒆𝑖, 𝒆𝑘] + [𝒆𝑗 , 𝑨𝒆𝑖, 𝒆𝑘] + [𝒆𝑗 , 𝒆𝑖, 𝑨𝒆𝑘]
= − [𝒆𝑖, 𝑨𝒆𝑗 , 𝒆𝑘] − [𝒆𝑖, 𝒆𝑗 , 𝑨𝒆𝑘] − [𝒆𝑖, 𝒆𝑗 , 𝑨𝒆𝑘]
= −𝑀𝑖𝑗𝑘 .

Let us verify that 𝑀𝑖𝑗𝑘 = 0 if any of its indices is repeated. Take, for instance, 𝑖 = 𝑗 .
Then

𝑀𝑖𝑖𝑘 = [𝑨𝒆𝑖, 𝒆𝑖, 𝒆𝑘] + [𝒆𝑖, 𝑨𝒆𝑖, 𝒆𝑘] + [𝒆𝑖, 𝒆𝑖, 𝑨𝒆𝑘]
= [𝑨𝒆𝑖, 𝒆𝑖, 𝒆𝑘] − [𝑨𝒆𝑖, 𝒆𝑖, 𝒆𝑘] + [𝒆𝑖, 𝒆𝑖, 𝑨𝒆𝑘]
= 0.

3
The equivalent term in operator theory is self-adjoint.
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We see that 𝑀𝑖𝑗𝑘 is unchanged by a cyclic permutation of indices, its sign reverses by a

non-cyclic permutation of indices, and is zero when any there are repeated indices. From

the previous lemma it follows that𝑀𝑖𝑗𝑘 = 𝐶𝜖𝑖𝑗𝑘 for some 𝐶. The factor 𝐶 may be evaluated

by taking taking any cyclic permutation of {1, 2, 3} for {𝑖, 𝑗 , 𝑘}. Thus, 𝑀𝑖𝑗𝑘 = 𝜖𝑖𝑗𝑘𝑀123.

Consequently, equation (17) takes the form

[𝑨𝒖, 𝒗, 𝒘] + [𝒖, 𝑨𝒗, 𝒘] + [𝒖, 𝒗, 𝑨𝒘] = 𝑢𝑖𝑣𝑗𝑤𝑘𝜖𝑖𝑗𝑘𝑀123,

which in view of (11) becomes

[𝑨𝒖, 𝒗, 𝒘] + [𝒖, 𝑨𝒗, 𝒘] + [𝒖, 𝒗, 𝑨𝒘] = 𝑀123[𝒖, 𝒗, 𝒘], (18)

Comparing this with (16a) we conclude that 𝜄1(𝑨) = 𝑀123, that is

𝜄1(𝑨) = [𝑨𝒆1, 𝒆2, 𝒆3] + [𝒆1, 𝑨𝒆2, 𝒆3] + [𝒆1, 𝒆2, 𝑨𝒆3].

To complete the proof, we observe that despite the appearances, 𝑀123 (and therefore

𝜄1(𝑨)) is independent of the choice of the frame {𝒆1, 𝒆2, 𝒆3}. Indeed, if it varied with the

choice of the frame, then (18) couldn’t hold since 𝒖, 𝒗,𝒘 are independent of the frame. □

Remark 5. The preceding proof establishes an explicit formula for the first principal in-

variant 𝜄1(𝑨). For future reference, here we summarize this here along with the corre-

sponding formulas for 𝜄2 and 𝜄3 which you will derive in the exercises:

𝜄1(𝑨) = [𝑨𝒆1, 𝒆2, 𝒆3] + [𝒆1, 𝑨𝒆2, 𝒆3] + [𝒆1, 𝒆2, 𝑨𝒆3], (19a)

𝜄2(𝑨) = [𝒆1, 𝑨𝒆2, 𝑨𝒆3] + [𝑨𝒆1, 𝒆2, 𝑨𝒆3] + [𝑨𝒆1, 𝑨𝒆2, 𝒆3], (19b)

𝜄3(𝑨) = [𝑨𝒆1, 𝑨𝒆2, 𝑨𝒆3]. (19c)

Let’s reiterate that the principal invariants 𝜄1(𝑨), 𝜄2(𝑨), and 𝜄3(𝑨) are independent of the

choice of the frame {𝒆1, 𝒆2, 𝒆3}.

5. The dyadic product

The dyadic product (also known as the tensor product) of vectors 𝒖, 𝒗 ∈  , is the second

order tensor 𝒖 ⊗ 𝒗 defined through its action on vectors:

(𝒖 ⊗ 𝒗) 𝒙 = (𝒗 ⋅ 𝒙) 𝒖, for all 𝒙 ∈  . (20)

Proposition 3. For all 𝑨, 𝑩 ∈ , 𝒖, 𝒗, 𝒘, 𝒂, 𝒃 ∈  , and 𝛼, 𝛽 ∈ ℝ, we have

(𝛼𝒖 + 𝛽𝒗) ⊗ 𝒘 = 𝛼𝒖 ⊗ 𝒘 + 𝛽𝒗 ⊗ 𝒘, (21a)

(𝒖 ⊗ 𝒗)𝑇 = 𝒗 ⊗ 𝒖, (21b)

(𝒂 ⊗ 𝒃) (𝒖 ⊗ 𝒗) = (𝒃 ⋅ 𝒖) (𝒂 ⊗ 𝒗), (21c)

𝑨 (𝒖 ⊗ 𝒗) = (𝑨𝒖) ⊗ 𝒗, (21d)

(𝒖 ⊗ 𝒗)𝑨 = 𝒖 ⊗ (𝑨𝑇 𝒗), (21e)

𝑨(𝒖 ⊗ 𝒗)𝑩 = (𝑨𝒖) ⊗ (𝑩𝑇𝒃), (21f)

𝜄1(𝒖 ⊗ 𝒗) = 𝒖 ⋅ 𝒗, (21g)

𝜄2(𝒖 ⊗ 𝒗) = 0, (21h)

𝜄3(𝒖 ⊗ 𝒗) = 0, (21i)
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Proof. Here we will verify the identities (21b) and (21g), leaving the remaining as exer-

cises.

To verify (21b), pick any 𝒙, 𝒚 ∈ , and then calculate

𝒙 ⋅ [(𝒖 ⊗ 𝒗)𝑇𝒚]
by (15)

= [(𝒖 ⊗ 𝒗)𝒙] ⋅ 𝒚
by (20)

= [(𝒗 ⋅ 𝒙) 𝒖] ⋅ 𝒚

= (𝒗 ⋅ 𝒙) (𝒖 ⋅ 𝒚) = 𝒙 ⋅ [(𝒖 ⋅ 𝒚) 𝒗]
by (20)

= 𝒙 ⋅ [(𝒗 ⊗ 𝒖) 𝒚].

Therefore, 𝒙⋅[(𝒖⊗𝒗)𝑇𝒚−(𝒗⊗𝒖) 𝒚] = 0 for all 𝒙 ∈  . It follows that (𝒖⊗𝒗)𝑇𝒚−(𝒗⊗𝒖) 𝒚 = 𝟎,

that is [(𝒖 ⊗ 𝒗)𝑇 − (𝒗 ⊗ 𝒖)] 𝒚 = 0 for all 𝒚 ∈  , and thus (𝒖 ⊗ 𝒗)𝑇 − 𝒗 ⊗ 𝒖 = 𝟎, whence

(𝒖 ⊗ 𝒗)𝑇 = 𝒗 ⊗ 𝒖, as asserted.

To verify (21g), recall the representation of 𝜄1(𝑨) in (19a) and evaluate the first term

on its right-hand side with 𝑨 = 𝒖 ⊗ 𝒗:

[(𝒖 ⊗ 𝒗) 𝒆1, 𝒆2, 𝒆3] = [(𝒗 ⋅ 𝒆1) 𝒖, 𝒆2, 𝒆3] = 𝑣1[𝒖, 𝒆2, 𝒆3]

= 𝑣1[𝑢𝑖𝒆𝑖, 𝒆2, 𝒆3] = 𝑢𝑖𝑣1[𝒆𝑖, 𝒆2, 𝒆3]
by (12)

= 𝑢𝑖𝑣1𝜖𝑖23 = 𝑢1𝑣1.

The last step is based on the observation that 𝜖𝑖23 is nonzero only when 𝑖 = 1.

Repeating the calculation with the second and third terms on the right-hand side

of (19a) we arrive at

𝜄1(𝒖 ⊗ 𝒗) = 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3 = 𝑢𝑖𝑣𝑖
by (9)

= 𝒖 ⋅ 𝒗.

□

6. Component form of vectors and tensors

Theorem 2. Let {𝒆1, 𝒆2, 𝒆3} be a frame in  . Then for an 𝑨 ∈  we have

𝑨 = (𝒆𝑖 ⋅ 𝑨𝒆𝑗 ) 𝒆𝑖 ⊗ 𝒆𝑗 . (22)

Proof. Recall that according to (8), any 𝒖 ∈  may be expressed as 𝒖 = (𝒖⋅𝒆𝑗 ) 𝒆𝑗 . Therefore

𝑨𝒖 = 𝑨((𝒖 ⋅ 𝒆𝑗 ) 𝒆𝑗) = (𝒖 ⋅ 𝒆𝑗 ) 𝑨𝒆𝑗 .

Now, 𝑨𝒆𝑗 is an element of  , and again by (8) it may be expressed as 𝑨𝒆𝑗 = (𝑨𝒆𝑗 ⋅ 𝒆𝑖) 𝒆𝑖,
and therefore

𝑨𝒖 = (𝒖 ⋅ 𝒆𝑗 )[ (𝑨𝒆𝑗 ⋅ 𝒆𝑖) 𝒆𝑖] = (𝑨𝒆𝑗 ⋅ 𝒆𝑖) (𝒖 ⋅ 𝒆𝑗 ) 𝒆𝑖 = (𝑨𝒆𝑗 ⋅ 𝒆𝑖) (𝒆𝑖 ⊗ 𝒆𝑗 ) 𝒖.

Since 𝒖 is arbitrary, it follows that 𝑨 = (𝑨𝒆𝑗 ⋅ 𝒆𝑖) (𝒆𝑖 ⊗ 𝒆𝑗 ). □

Corollary 1. Let {𝒆1, 𝒆2, 𝒆3} be a frame in  . Then the set

 =
{
𝒆𝑖 ⊗ 𝒆𝑗 ∶ 𝑖, 𝑗 ∈ {1, 2, 3}

}
(23)

is a basis for , and in particular, the space  is 9-dimensional.

Proof. According to Theorem 2, any 𝑨 ∈  may be formed as a linear combination of the

elements of . All that remains is to show that the set  is linearly independent. We

leave that for an exercise. □
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Equation (22) expresses the second order tensor 𝑨 as a linear combination of the basis

elements from . The nine (scalar) coefficients 𝑎𝑖𝑗 = 𝒆𝑖 ⋅ 𝑨𝒆𝑗 are the components of the
tensor 𝑨 in the basis . Thus, a tensor 𝑨 may be expressed in terms of its components as

𝑨 = 𝑎𝑖𝑗𝒆𝑖⊗𝒆𝑗 in the same way a vector 𝒖 is expressed in terms of its components 𝒖 = 𝑢𝑖𝒆𝑖.
Let’s observe that

𝑨𝒖 = (𝑎𝑖𝑗𝒆𝑖 ⊗ 𝒆𝑗 ) (𝑢𝑝𝒆𝑝) = 𝑎𝑖𝑗𝑢𝑝 (𝒆𝑖 ⊗ 𝒆𝑗 ) 𝒆𝑝 = 𝑎𝑖𝑗𝑢𝑝 (𝒆𝑗 ⋅ 𝒆𝑝) 𝒆𝑖 = 𝑎𝑖𝑗𝑢𝑝 𝛿𝑗𝑝 𝒆𝑖 = 𝑎𝑖𝑗𝑢𝑗 𝒆𝑖.

We see that the components 𝑎𝑖𝑗𝑢𝑗 of the vector𝑨𝒖 are obtained by multiplying the matrix

[𝑎𝑖𝑗 ] and the vector [𝑢𝑗 ]. This leads to the commutative diagram

𝒖 𝒗 = 𝑨𝒖

𝑢𝑗 𝑣𝑖 = 𝑎𝑖𝑗𝑢𝑗

{𝒆1 ,𝒆2 ,𝒆3}

𝑨

𝑎𝑖𝑗

{𝒆1 ,𝒆2 ,𝒆3}

Example 1. Let 𝑎𝑖𝑗 and 𝑏𝑖𝑗 be the components of the second order tensors 𝑨 and 𝑩 in the

basis . Show that the components of 𝑪 = 𝑨𝑩 relative to  are 𝑐𝑖𝑗 = 𝑎𝑖𝑝𝑏𝑝𝑗 .

Solution. From (22) and (15) we have 𝑨𝑩 = (𝒆𝑖 ⋅ 𝑨𝑩 𝒆𝑗 ) 𝒆𝑖 ⊗ 𝒆𝑗 = (𝑨𝑇 𝒆𝑖 ⋅ 𝑩 𝒆𝑗 ) 𝒆𝑖 ⊗ 𝒆𝑗 .
However,

𝑨𝑇 𝒆𝑖 = (𝒆𝑝 ⋅ 𝑨𝑇 𝒆𝑖) 𝒆𝑝 = (𝑨𝒆𝑝 ⋅ 𝒆𝑖) 𝒆𝑝 , = (𝒆𝑖 ⋅ 𝑨𝒆𝑝) 𝒆𝑝 = 𝑎𝑖𝑝 𝒆𝑝 ,
𝑩𝒆𝑗 = (𝒆𝑞 ⋅ 𝑩𝒆𝑗 ) 𝒆𝑞 = 𝑏𝑞𝑗 𝒆𝑞 ,

and therefore

𝑨𝑇 𝒆𝑖 ⋅ 𝑩 𝒆𝑗 = (𝑎𝑖𝑝 𝒆𝑝) (𝑏𝑞𝑗 𝒆𝑞) = 𝑎𝑖𝑝𝑏𝑞𝑗 𝒆𝑝 ⋅ 𝒆𝑞 = 𝑎𝑖𝑝𝑏𝑞𝑗 𝛿𝑝𝑞 = 𝑎𝑖𝑝𝑏𝑝𝑗 .

We conclude that 𝑪 = 𝑨𝑩 = 𝑎𝑖𝑝𝑏𝑝𝑗 𝒆𝑖 ⊗ 𝒆𝑗 , whence 𝑐𝑖𝑗 = 𝑎𝑖𝑝𝑏𝑝𝑗 .

This slightly different but equivalent calculation does not invoke the components 𝑎𝑖𝑝
and 𝑏𝑞𝑗 directly:

𝑨𝑇 𝒆𝑖 ⋅ 𝑩 𝒆𝑗 = [(𝒆𝑖 ⋅ 𝑨𝒆𝑝) 𝒆𝑝] ⋅ [(𝒆𝑞 ⋅ 𝑩𝒆𝑗 ) 𝒆𝑞] = (𝒆𝑖 ⋅ 𝑨𝒆𝑝) (𝒆𝑞 ⋅ 𝑩𝒆𝑗 ) (𝒆𝑝 ⋅ 𝒆𝑞)
= (𝒆𝑖 ⋅ 𝑨𝒆𝑝) (𝒆𝑞 ⋅ 𝑩𝒆𝑗 ) 𝛿𝑝𝑞 = (𝒆𝑖 ⋅ 𝑨𝒆𝑝) (𝒆𝑝 ⋅ 𝑩𝒆𝑗 ).

Choose whichever approach you prefer.

Note that 𝑐𝑖𝑗 = 𝑎𝑖𝑝𝑏𝑝𝑗 states that the matrix [𝑐𝑖𝑗 ] is the product of the matrices [𝑎𝑖𝑝] and

[𝑏𝑝𝑗 ]. □

What are the components of the tensor 𝒖 ⊗ 𝒗? Let’s calculate:

𝒖 ⊗ 𝒗 = (𝑢𝑖 𝒆𝑖) ⊗ (𝑣𝑗 𝒆𝑗 ) = 𝑢𝑖𝑣𝑗 𝒆𝑖 ⊗ 𝒆𝑗 .

We conclude that the components of the tensor 𝒖 ⊗ 𝒗 are 𝑢𝑖𝑣𝑗 .

Example 2. Let 𝑎𝑖𝑗 be the components of the tensor 𝑨 in the frame {𝒆1, 𝒆2, 𝒆3}, that is,

𝑨 = 𝑎𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 . Show that 𝜄1(𝑨) = 𝑎𝑖𝑖.
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Solution. Recall the representation of 𝜄1(𝑨) in (19a). Let’s evaluate the first term on the

right-hand side:

[𝑨𝒆1, 𝒆2, 𝒆3] = [𝑎𝑖𝑗 (𝒆𝑖 ⊗ 𝒆𝑗 ) 𝒆1, 𝒆2, 𝒆3] = [𝑎𝑖𝑗 (𝒆1 ⋅ 𝒆𝑗 ) 𝒆𝑖, 𝒆2, 𝒆3]

= [𝑎𝑖𝑗𝛿𝑗1 𝒆𝑖, 𝒆2, 𝒆3] = [𝑎𝑖1 𝒆𝑖, 𝒆2, 𝒆3]
by (12)

= 𝑎𝑖1𝜖𝑖23 = 𝑎11.

The last step is based on the observation that 𝜖𝑖23 is nonzero only when 𝑖 = 1.

Evaluating the remaining terms on the right-hand side of (19a), we conclude that

𝜄1(𝑨) = 𝑎11 + 𝑎22 + 𝑎33 = 𝑎𝑖𝑖. □

Remark 6. Let us observe that the expression 𝑎𝑖𝑖 is the trace of the matrix [𝑎𝑖𝑗 ] of the

components of𝑨 in the frame {𝒆1, 𝒆2, 𝒆3}. Since 𝜄1(𝑨) is independent of the choice of frame,

the equality 𝜄1(𝑨) = 𝑎𝑖𝑖 shows that the trace 𝑎𝑖𝑖 is frame-independent. That’s despite the

fact that the individual components 𝑎𝑖𝑗 vary with the frame. For this reason, the first

principal invariant, 𝜄1(𝑨), is called the trace of 𝑨. We write this as

𝜄1(𝑨) = tr𝑨. (24a)

Example 3. Let 𝑎𝑖𝑗 be the components of the tensor 𝑨 in the frame {𝒆1, 𝒆2, 𝒆3}, that is,

𝑨 = 𝑎𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 . Show that

𝜄2(𝑨) =
1
2((

tr 𝑨)
2 − tr(𝑨2)), (24b)

Solution. As in the previous example, we begin with calculating the first term on the

right-hand side of (19b):

[𝒆1, 𝑨𝒆2, 𝑨𝒆3] = [𝒆1, 𝑎𝑖𝑗 (𝒆𝑖 ⊗ 𝒆𝑗 ) 𝒆2, 𝑎𝑝𝑞(𝒆𝑝 ⊗ 𝒆𝑞) 𝒆3] = [𝒆1, 𝑎𝑖𝑗 (𝒆2 ⋅ 𝒆𝑗 ) 𝒆𝑖, 𝑎𝑝𝑞(𝒆3 ⋅ 𝒆𝑞) 𝒆𝑝]
= [𝒆1, 𝑎𝑖𝑗𝛿2𝑗 𝒆𝑖, 𝑎𝑝𝑞𝛿3𝑞 𝒆𝑝] = [𝒆1, 𝑎𝑖2 𝒆𝑖, 𝑎𝑝3 𝒆𝑝] = 𝑎𝑖2𝑎𝑝3[𝒆1, 𝒆𝑖, 𝒆𝑝] = 𝑎𝑖2𝑎𝑝3𝜖1𝑖𝑝 .

In the summation over the index 𝑖 in the term 𝑎𝑖2𝑎𝑝3𝜖1𝑖𝑝 , the coefficient 𝜖1𝑖𝑝 is zero

when 𝑖 = 1, therefore we need to consider only 𝑖 = 2 and 𝑖 = 3. Expanding the sum or 𝑖,
we get:

[𝒆1, 𝑨𝒆2, 𝑨𝒆3] = 𝑎22𝑎𝑝3𝜖12𝑝 + 𝑎32𝑎𝑝3𝜖13𝑝 .
Now, in the sum 𝑎22𝑎𝑝3𝜖12𝑝 , the only nonzero term is obtained for 𝑝 = 3 since 𝜖12𝑝 = 1
when 𝑝 = 3 and is zero otherwise. Similarly, in the sum 𝑎32𝑎𝑝3𝜖13𝑝 , the only nonzero term

is obtained for 𝑝 = 2 since 𝜖13𝑝 = −1 when 𝑝 = 2 and is zero otherwise. We conclude that

[𝒆1, 𝑨𝒆2, 𝑨𝒆3] = 𝑎22𝑎33 − 𝑎32𝑎23.

Evaluating the remaining terms on the right-hand side of (19b) in a similar fashion, we

arrive at

𝜄2(𝑨) = (𝑎22𝑎33𝑎33𝑎11𝑎11𝑎22) − (𝑎32𝑎23𝑎13𝑎31𝑎21𝑎12)
Then it’s a matter of some straightforward (but tedious) algebra to show that the expres-

sion above is equivalent to (24b). □

A calculation similar to those in the previous two examples shows that

𝜄3(𝑨) = [𝐴𝒆1, 𝐴𝒆2, 𝐴𝒆3] = 𝑎𝑖1𝑎𝑗2𝑎𝑘3𝜖𝑖𝑗𝑘 .

Expanding the summation as it was done in the previous example, leads to a sum of six

terms. A close inspection of the term reveals that the sum is exactly the determinant of the
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matrix [𝑎𝑖𝑗 ]. For that reason, the third principal invariant, 𝜄3(𝑨), is called the determinant
of 𝑨. We write this as

𝜄3(𝑨) = det𝑨. (24c)

Remark 7. An immediate consequence of (16a) is that

tr(𝛼𝑨 + 𝛽𝑩) = 𝛼 tr𝑨 + 𝛽 tr 𝑩 for all 𝑨, 𝑩 ∈ , 𝛼, 𝛽 ∈ ℝ.

and thus, in particular, the trace is a linear function from  to ℝ. Immediate consequences

of (16c) are that for any 𝑨, 𝑩 ∈  and 𝛼 ∈ ℝ:

det(𝛼𝑨) = 𝛼3 det𝑨, (25a)

det(𝑨𝑩) = det𝑨 det 𝑩, (25b)

det 𝑰 = 1. (25c)

7. The scalar product of second order tensors

In Section 4 we made the set  of the second order tensors into a linear space by

defining addition and multiplication by scalars in (14). In this section we equip  with

a scalar product, thus making it an inner product space. Specifically, we define the scalar

product 𝑨∶𝑩 of the second order tensors 𝑨, 𝑩 ∈  through

𝑨∶𝑩 = tr(𝑨𝑇𝑩). (26)

If we expresses 𝑨 and 𝑩 in terms of their components relative to a frame {𝒆1, 𝒆2, 𝒆3} as in

𝑨 = 𝑎𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 and 𝑩 = 𝑏𝑝𝑞 𝒆𝑝 ⊗ 𝒆𝑞 , we get

𝑨∶𝑩 = tr((𝑎𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 )
𝑇 (𝑏𝑝𝑞 𝒆𝑝 ⊗ 𝒆𝑞)) = 𝑎𝑖𝑗𝑏𝑝𝑞 tr((𝒆𝑗 ⊗ 𝒆𝑖)(𝒆𝑝 ⊗ 𝒆𝑞))

by (21c)

= 𝑎𝑖𝑗𝑏𝑝𝑞 tr((𝒆𝑖 ⋅ 𝒆𝑝)(𝒆𝑗 ⊗ 𝒆𝑞)) = 𝑎𝑖𝑗𝑏𝑝𝑞(𝒆𝑖 ⋅ 𝒆𝑝) tr(𝒆𝑗 ⊗ 𝒆𝑞)
by (21g)

= 𝑎𝑖𝑗𝑏𝑝𝑞𝛿𝑖𝑝𝛿𝑗𝑞,

and therefore

𝑨∶𝑩 = 𝑎𝑖𝑗𝑏𝑖𝑗 . (27)

We conclude that 𝑨∶𝑩 = 𝑩∶𝑨, and that 𝑨∶𝑨 = 𝑎𝑖𝑗𝑎𝑖𝑗 ≥ 0. One may verify along the

same lines that the definition in (26) satisfies all the requirements of the inner product.

We leave it for an exercise to verify that the basis  of  is an orthonormal set in terms

of this scalar product.

8. Eigenvalues and spectral representation

Proposition 4. Given a tensor𝑨 ∈ , there exists a nonzero vector 𝒖 ∈  such that𝑨𝒖 = 𝟎
if and only if det𝑨 = 0.

Proof. (a) Suppose that det𝑨 = 0. We wish to prove that there exists a nonzero vector 𝒖
so that 𝑨𝒖 = 𝟎. By (24c) we have 𝜄3(𝑨) = 0. Then by (19c), we have [𝑨𝒆1, 𝑨𝒆2, 𝑨𝒆3] = 0
for any frame {𝒆1, 𝒆2, 𝒆3}. This implies that the set {𝑨𝒆1, 𝑨𝒆2, 𝑨𝒆3} is not linearly indepen-

dent, and therefore there exist numbers 𝛼𝑖, 𝛼2, 𝛼3, not all zero, so that 𝛼𝑖𝑨𝒆𝑖 = 𝟎, that is,

𝑨(𝛼𝑖𝒆𝑖) = 𝟎. Then 𝒖 = 𝛼𝑖𝒆𝑖 has the property that it is nonzero and 𝑨𝒖 = 𝟎.
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(b) Suppose that the unit vector 𝒖 is such that 𝑨𝒖 = 𝟎. We wish to show that det𝑨 = 0.

Pick unit vectors 𝒗 and𝒘 so that {𝒖, 𝒗, 𝒘} is orthonormal. Then by (24c) and (19c) we have

det𝑨 = 𝜄3(𝑨) = [𝑨𝒖,𝑨𝒗, 𝑨𝒘] = 0 since 𝑨𝒖 = 𝟎. □

A number 𝜆 ∈ ℝ is said to be an eigenvalue of the tensor 𝑨 if there exits a nonzero

vector 𝒗 so that 𝑨𝒗 = 𝜆𝒗, or equivalently, (𝜆𝑰 − 𝑨)𝒗 = 𝟎, where 𝑰 is the identity tensor.

The vector 𝒗 is called the eigenvector associated with the eigenvalue 𝜆.

It follows from Proposition 4 that 𝜆 is an eigenvalue of 𝑨 if and only if

det(𝜆𝑰 − 𝑨) = 0. (28)

This is called the characteristic equation of the tensor 𝑨. The left-hand side of (28), which

according to the following theorem is a cubic polynomial in 𝜆, is called the characteristic
polynomial of the tensor 𝑨.

Theorem 3. The characteristic polynomial 𝜒(𝜆) ≡ det(𝜆𝑰 −𝑨) of the tensor 𝑨 is a cubic in
𝜆, and its coefficients are the tensor’s principal invariants:

𝜒(𝜆) = 𝜆3 − 𝜄1(𝑨) 𝜆2 + 𝜄2(𝑨) 𝜆 + 𝜄3(𝑨). (29)

Proof. In view of by (24c) and (19c) the characteristic polynomial may be expressed as

𝜒(𝜆) = det(𝜆𝑰 − 𝑨) = [(𝜆𝑰 − 𝑨)𝒆1, (𝜆𝑰 − 𝑨)𝒆2, (𝜆𝑰 − 𝑨)𝒆3]

for an arbitrary frame {𝒆1, 𝒆2, 𝒆3}. Let us expand that scalar triple product:

[𝜆𝒆1 − 𝑨𝒆1, 𝜆𝒆2 − 𝑨𝒆2, 𝜆𝒆3 − 𝑨𝒆3]
= [𝜆𝒆1, 𝜆𝒆2 − 𝑨𝒆2, 𝜆𝒆3 − 𝑨𝒆3] − [𝑨𝒆1, 𝜆𝒆2 − 𝑨𝒆2, 𝜆𝒆3 − 𝑨𝒆3].

The first term on the right-hand side expands to

[𝜆𝒆1, 𝜆𝒆2 − 𝑨𝒆2, 𝜆𝒆3 − 𝑨𝒆3] = [𝜆𝒆1, 𝜆𝒆2, 𝜆𝒆3 − 𝑨𝒆3] − [𝜆𝒆1, 𝑨𝒆2, 𝜆𝒆3 − 𝑨𝒆3]
= [𝜆𝒆1, 𝜆𝒆2, 𝜆𝒆3] − [𝜆𝒆1, 𝜆𝒆2, 𝑨𝒆3] − [𝜆𝒆1, 𝑨𝒆2, 𝜆𝒆3] + [𝜆𝒆1, 𝑨𝒆2, 𝑨𝒆3],

while the second term on the right-hand side expands to

[𝑨𝒆1, 𝜆𝒆2 − 𝑨𝒆2, 𝜆𝒆3 − 𝑨𝒆3] = [𝑨𝒆1, 𝜆𝒆2, 𝜆𝒆3 − 𝑨𝒆3] − [𝑨𝒆1, 𝑨𝒆2, 𝜆𝒆3 − 𝑨𝒆3]
= [𝑨𝒆1, 𝜆𝒆2, 𝜆𝒆3] − [𝑨𝒆1, 𝜆𝒆2, 𝑨𝒆3] − [𝑨𝒆1, 𝑨𝒆2, 𝜆𝒆3] + [𝑨𝒆1, 𝑨𝒆2, 𝑨𝒆3].

Putting it all together we arrive at

𝜒(𝜆) = [𝜆𝒆1, 𝜆𝒆2, 𝜆𝒆3] − [𝜆𝒆1, 𝜆𝒆2, 𝑨𝒆3] − [𝜆𝒆1, 𝑨𝒆2, 𝜆𝒆3] + [𝜆𝒆1, 𝑨𝒆2, 𝑨𝒆3]
− [𝑨𝒆1, 𝜆𝒆2, 𝜆𝒆3] + [𝑨𝒆1, 𝜆𝒆2, 𝑨𝒆3] + [𝑨𝒆1, 𝑨𝒆2, 𝜆𝒆3] − [𝑨𝒆1, 𝑨𝒆2, 𝑨𝒆3],

which we rearrange into

𝜒(𝜆) = [𝜆𝒆1, 𝜆𝒆2, 𝜆𝒆3] − [𝜆𝒆1, 𝜆𝒆2, 𝑨𝒆3] − [𝜆𝒆1, 𝑨𝒆2, 𝜆𝒆3] − [𝑨𝒆1, 𝜆𝒆2, 𝜆𝒆3]
+ [𝜆𝒆1, 𝑨𝒆2, 𝑨𝒆3] + [𝑨𝒆1, 𝜆𝒆2, 𝑨𝒆3] + [𝑨𝒆1, 𝑨𝒆2, 𝜆𝒆3] − [𝑨𝒆1, 𝑨𝒆2, 𝑨𝒆3]

and further simplify

𝜒(𝜆) = 𝜆3 − 𝜆2([𝒆1, 𝒆2, 𝑨𝒆3] + [𝒆1, 𝑨𝒆2, 𝒆3] + [𝑨𝒆1, 𝒆2, 𝒆3])
+ 𝜆([𝒆1, 𝑨𝒆2, 𝑨𝒆3] + [𝑨𝒆1, 𝒆2, 𝑨𝒆3] + [𝑨𝒆1, 𝑨𝒆2, 𝒆3]) − [𝑨𝒆1, 𝑨𝒆2, 𝑨𝒆3].

In view of equations (19), we recognize the coefficients of 𝜆 as 𝑨’s principal invariants,

and hence arrive at (29). □
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Remark 8. Since the principal invariants 𝜄1(𝑨), 𝜄2(𝑨), 𝜄3(𝑨) are real, the characteristic

equation 𝜒(𝜆) = 0 has either one real root or three real roots. We conclude that an

arbitrary second order tensor 𝑨 has either one eigenvalue or three eigenvalues.
4

Proposition 5. Let 𝒗 be an eigenvector of the tensor 𝑨, and let 𝜆 be the corresponding
eigenvector. Then, for any polynomial 𝑓 , the vector 𝒗 is an eigenvector of 𝑓 (𝑨), and 𝑓 (𝜆) is
the associated eigenvalue.

Proof. From 𝑨𝒗 = 𝜆𝒗 we get

𝑨2𝒗 = 𝑨(𝑨𝒗) = 𝑨(𝜆𝒗) = 𝜆𝑨𝒗 = 𝜆2𝒗.

Then, by inductions, 𝑨𝑘𝒗 = 𝜆𝑘𝒗, for all 𝑘 = 1, 2, …. But an 𝑛th degree polynomial is of the

form 𝑓 (𝑥) = ∑𝑛
𝑘=0 𝑎𝑘𝑥𝑘 . Therefore

𝑓 (𝑨)𝒗 =
𝑛

∑
𝑘=0

𝑎𝑘𝑨𝑘𝒗 =
𝑛

∑
𝑘=0

𝑎𝑘𝜆𝑘𝒗 = 𝑓 (𝜆)𝒗,

as asserted. □

Theorem 4 (Cayley-Hamilton). Any tensor 𝑨 satisfies its own characteristic equation in
the sense that

𝜒(𝑨) ≡ 𝑨3 − 𝜄1(𝑨)𝑨2 + 𝜄2(𝑨)𝑨 + 𝜄3(𝑨)𝑰 = 𝟎. (30)

Proof. The proof in the general case is rather tedious, so here we present a proof in the

special case where𝑨 has three eigenvalues, let’s say 𝜆1, 𝜆2, 𝜆3, and that the corresponding

eigenvectors 𝒗1, 𝒗2, 𝒗3 form a basis for the vector space  .

Since eigenvalues are roots of the characteristic equation, we have 𝜒(𝜆) = (𝜆−𝜆1)(𝜆−
𝜆2)(𝜆 − 𝜆3), and therefore (30) is equivalent to

𝜒(𝑨) = (𝑨 − 𝜆1𝑰)(𝑨 − 𝜆2𝑰)(𝑨 − 𝜆3𝑰) = 𝟎.

We observe that the order of the three parenthesized factors is immaterial since for any 𝑖
and 𝑗 we have

(𝑨 − 𝜆𝑖𝑰)(𝑨 − 𝜆𝑗 𝑰) = 𝑨2 − (𝜆𝑖 + 𝜆𝑗 )𝑨 + 𝜆𝑖𝜆𝑗 𝑰 ,

which is unchanged under the interchange of 𝑖 and 𝑗 . Then we see that for any eigenvector

𝒗𝑖 we have

𝜒(𝑨) 𝒗𝑖 = (𝑨 − 𝜆1𝑰)(𝑨 − 𝜆2𝑰)(𝑨 − 𝜆3𝑰) 𝒗𝑖 = 𝟎

since we may rearrange the parenthesized factors to put (𝑨 − 𝜆𝑖𝑰) as the last term, and

then (𝑨 − 𝜆𝑖𝑰) 𝒗𝑖 = 𝟎 since 𝒗𝑖 is an eigenvector.

Now, an arbitrary 𝒖 ∈  may be expressed as a linear combination 𝒖 = 𝛼1𝒗1+𝛼2𝒗2+𝛼3𝒗3
due to the assumption that the eigenvectors form a basis. Then

𝜒(𝑨)𝒖 = 𝜒(𝑨)(𝛼1𝒗1 + 𝛼2𝒗2 + 𝛼3𝒗3) = 𝛼1𝜒(𝑨) 𝒗1 + 𝛼2𝜒(𝑨) 𝒗2 + 𝛼3𝜒(𝑨) 𝒗3 = 𝟎.

We conclude that 𝜒(𝑨) = 𝟎 since 𝒖 is arbitrary. □

4
Tacit in this statement is that we account for multiple roots. Thus, the polynomial equation (𝜆−1)2(𝜆−2) = 0

has three roots, 𝜆 = 1, 1, 2.
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9. Symmetric tensors

It’s possible to show, but we skip the proof here, that a symmetric tensor, i.e., one with

the property 𝑨 = 𝑨𝑇
, always has three eigenvalues, and the corresponding eigenvectors

may be selected to be an orthonormal set.

For a symmetric tensor 𝑨 we may express the principal invariants 𝜄1(𝑨), 𝜄2(𝑨), 𝜄3(𝑨)
in terms of 𝑨’s eigenvalues 𝜆1, 𝜆2, 𝜆3 as follows.

Theorem 5.

𝜄1(𝑨) = 𝜆1 + 𝜆2 + 𝜆3, (31a)

𝜄2(𝑨) = 𝜆1𝜆2 + 𝜆2𝜆3 + 𝜆3𝜆1, (31b)

𝜄3(𝑨) = 𝜆1𝜆2𝜆3. (31c)

Proof. The eigenvalues 𝜆1, 𝜆2, 𝜆3 are the roots of the characteristic equation (29). Therefore

𝜆3 − 𝜄1(𝑨) 𝜆2 + 𝜄2(𝑨) 𝜆 − 𝜄3(𝑨) = (𝜆 − 𝜆1)(𝜆 − 𝜆2)(𝜆 − 𝜆3)

= 𝜆3 − (𝜆1 + 𝜆2 + 𝜆3)𝜆2 + (𝜆1𝜆2 + 𝜆2𝜆3 + 𝜆3𝜆1)𝜆 − 𝜆1𝜆2𝜆3.

The theorem’s assertion follows by comparing the left- and right-hand sides. □

Theorem 6 (Spectral representation). Let {𝒆1, 𝒆2, 𝒆3} be an orthonormal set of eigenvectors
corresponding to the eigenvalues 𝜆1, 𝜆2, 𝜆3 of the symmetric tensor 𝑨. Then

𝑨 =
3

∑
𝑖=1

𝜆𝑖𝒆𝑖 ⊗ 𝒆𝑖. (32)

Proof. In Exercise 11 you will show that 𝑰 = 𝒆𝑖 ⊗ 𝒆𝑖. It follows that

𝑨 = 𝑨𝑰 = 𝑨(𝒆𝑖 ⊗ 𝒆𝑖)
by (21d)

= (𝑨𝒆𝑖) ⊗ 𝒆𝑖 =
3

∑
𝑖=1

(𝜆𝑖𝒆𝑖) ⊗ 𝒆𝑖. □

A symmetric tensor 𝑨 is said to be positive semi-definite if 𝒖 ⋅ 𝑨𝒖 ≥ 0 for all vectors 𝒖,

and it is said to be positive definite if 𝒖 ⋅ 𝑨𝒖 > 0 for all nonzero vectors 𝒖.

Let 𝑨 as in the statement of Theorem 6. If 𝑨 is positive semi-definite, then for any

𝒖 ∈  we have

𝒖 ⋅𝑨𝒖 = 𝒖 ⋅(
3

∑
𝑖=1

𝜆𝑖𝒆𝑖⊗𝒆𝑖)𝒖 = 𝒖 ⋅(
3

∑
𝑖=1

𝜆𝑖(𝒆𝑖 ⋅ 𝒖)𝒆𝑖) =
3

∑
𝑖=1

𝜆𝑖(𝒆𝑖 ⋅ 𝒖)(𝒆𝑖 ⋅ 𝒖) =
3

∑
𝑖=1

𝜆𝑖(𝒆𝑖 ⋅ 𝒖)2 ≥ 0.

Since 𝒖 is arbitrary, it follows that 𝜆𝑖 ≥ 0 for 𝑖 = 1, 2, 3. In other words, if 𝑨 is symmetric

and positive semi-definite, then its eigenvalues are nonnegative.

Remark 9. Let𝑨 be a symmetric positive definite tensor with an orthonormal set {𝒆1, 𝒆2, 𝒆3}
of eigenvectors, and the corresponding eigenvalues 𝜆1, 𝜆2, 𝜆3, as in Theorem 6. Pick a

point 𝒐 ∈ 𝔼3 as the origin, and identify any point 𝒙 ∈ 𝔼3 by the position vector that

extends from 𝒐 to 𝒙. Then for any such 𝒙 we have

𝑨𝒙 =
3

∑
𝑖=1

𝜆𝑖 (𝒆𝑖 ⊗ 𝒆𝑖) 𝒙 =
3

∑
𝑖=1

𝜆𝑖 (𝒆𝑖 ⋅ 𝒙) 𝒆𝑖 =
3

∑
𝑖=1

𝜆𝑖𝑥𝑖 𝒆𝑖,
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𝜆1𝒆1𝜆2𝒆2
𝑨

Figure 2. The application of the symmetric and positive definite tensor

𝑨 to any neighborhood of the origin results in shrinking/stretching of

the neighborhood in the eigenvector directions 𝒆1 and 𝒆2 by the factors

𝜆1 and 𝜆2.

where 𝑥𝑖 is the component of 𝒙 along 𝒆𝑖. We see that the effect of applying 𝑨 to the

vector 𝒙 = 𝑥𝑖𝒆𝑖, amount to shrinking/stretching the components of 𝒙 by factors of 𝜆𝑖.
In particular, 𝑨𝒆𝑖 = 𝜆𝑖𝒆𝑖, that is, vectors that are aligned with the eigenvector directions

simply get shrunk/stretched without a change in orientations. The overall effect is that

under the action of 𝑨, a neighborhood of the origin 𝒐 deforms by shrinking/stretching by

the factors 𝜆𝑖 in the directions 𝒆𝑖. Figure 2 illustrates this effect in two dimensions.

Theorem 7. A positive semi-definite tensor 𝑨 has a unique positive semi-definite square
root, 𝑨1/2. Specifically, if 𝑨 has the spectral representation (32), then

𝑨1/2 =
3

∑
𝑖=1

𝜆1/2𝑖 𝒆𝑖 ⊗ 𝒆𝑖. (33)

Proof. Clearly 𝑨1/2
is positive semi-definite. Let us calculate:

(𝑨1/2)
2 = (

3

∑
𝑖=1

𝜆1/2𝑖 𝒆𝑖 ⊗ 𝒆𝑖)(
3

∑
𝑗=1

𝜆1/2𝑗 𝒆𝑗 ⊗ 𝒆𝑗) =
3

∑
𝑖=1

3

∑
𝑗=1

𝜆1/2𝑖 𝜆1/2𝑗 (𝒆𝑖 ⊗ 𝒆𝑖)(𝒆𝑗 ⊗ 𝒆𝑗 )

by (21c)

=
3

∑
𝑖=1

3

∑
𝑗=1

𝜆1/2𝑖 𝜆1/2𝑗 (𝒆𝑖 ⋅ 𝒆𝑗 ) 𝒆𝑖 ⊗ 𝒆𝑗 =
3

∑
𝑖=1

3

∑
𝑗=1

𝜆1/2𝑖 𝜆1/2𝑗 𝛿𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 =
3

∑
𝑖=1

𝜆𝑖 𝒆𝑖 ⊗ 𝒆𝑖 = 𝑨,

which shows that𝑨1/2
is a square root of𝑨. Indeed, it is the unique positive semi-definite

root, for if 𝐵 is another positive semi-definite tensor with the property 𝑩2 = 𝑨, then

according to Proposition 5, eigenvectors of 𝑩 are eigenvectors of 𝑨, and the squares of

the eigenvalues of 𝑩 are eigenvalues of𝑨. Therefore by the by the spectral representation

theorem 6, 𝑩 has the representation given in (33). □

10. Skew-symmetric tensors

Recall that a tensor 𝑾 is said to be skew-symmetric if 𝑾 𝑇 = −𝑾 . Let us observe that

for any two vectors 𝒖 and 𝒗 we have

𝒖 ⋅ 𝑾 𝒗 = (𝑾 𝑇𝒖) ⋅ 𝒗 = −(𝑾 𝒖) ⋅ 𝒗 = −𝒗 ⋅ 𝑾 𝒖, (34)

and in particular,

𝒖 ⋅ 𝑾 𝒖 = 0. (35)

A skew-symmetric tensor, like all tensors in  , has at least one eigenvalue (see Re-

mark 8). Let 𝜆 be that eigenvalue and the unit vector 𝒆1 be an associated eigenvector.
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Thus, 𝑾𝒆1 = 𝜆𝒆1, whence 𝒆1 ⋅ 𝑾 𝒆1 = 𝜆 ‖𝒆𝟏‖2, which, in in view of (35), reduces to

𝜆 ‖𝒆𝟏‖2 = 0. Since ‖𝒆𝟏‖ = 1, we conclude that 𝜆 = 0. Thus, a skew-symmetric tensor

has either one eigenvalue which is zero, or three eigenvalues, all being zeros. Let us note

that the eigenvector 𝒆1 satisfies 𝑾𝒆1 = 𝟎.

Let 𝒆2 and 𝒆3 be vectors—not necessarily eigenvectors—so that {𝒆1, 𝒆2, 𝒆3} forms a right-

handed frame  . Then by Theorem 2 we have 𝑾 = (𝒆𝑖 ⋅ 𝑾 𝒆𝑗 ) 𝒆𝑖 ⊗ 𝒆𝑗 which expands into

a sum of nine terms:

𝑾 = (𝒆1 ⋅ 𝑾 𝒆1) 𝒆1 ⊗ 𝒆1 + (𝒆2 ⋅ 𝑾 𝒆2) 𝒆2 ⊗ 𝒆2 + (𝒆3 ⋅ 𝑾 𝒆3) 𝒆3 ⊗ 𝒆3
+ (𝒆1 ⋅ 𝑾 𝒆2) 𝒆1 ⊗ 𝒆2 + (𝒆2 ⋅ 𝑾 𝒆1) 𝒆2 ⊗ 𝒆1
+ (𝒆2 ⋅ 𝑾 𝒆3) 𝒆2 ⊗ 𝒆3 + (𝒆3 ⋅ 𝑾 𝒆2) 𝒆3 ⊗ 𝒆2
+ (𝒆3 ⋅ 𝑾 𝒆1) 𝒆3 ⊗ 𝒆1 + (𝒆1 ⋅ 𝑾 𝒆3) 𝒆1 ⊗ 𝒆3.

Each of the first three terms on the right-hand side is zero due to (35). In what remains,

all terms that involve 𝑾𝒆1 are zero as noted in the previous paragraph. Furthermore, all

terms of the form 𝒆1 ⋅ 𝑾 𝒆𝑘 are zero since 𝒆1 ⋅ 𝑾 𝒆𝑘 = (𝑾 𝑇 𝒆1) ⋅ 𝒆𝑘 = −(𝑾 𝒆1) ⋅ 𝒆𝑘 = 0 for

the same reason. Thus, we are left with 𝑾 = (𝒆2 ⋅ 𝑾 𝒆3) 𝒆2 ⊗ 𝒆3 + (𝒆3 ⋅ 𝑾 𝒆2) 𝒆3 ⊗ 𝒆2. But

(𝒆2 ⋅ 𝑾 𝒆3) = −(𝒆3 ⋅ 𝑾 𝒆2) according to (34), and therefore

𝑾 = 𝜔 (𝒆3 ⊗ 𝒆2 − 𝒆2 ⊗ 𝒆3), where 𝜔 = 𝒆3 ⋅ 𝑾 𝒆2. (36)

Theorem 8. Let 𝑾 be a skew-symmetric tensor, 𝒆1 be an eigenvector of unit length, and 𝜔
defined as in (36). Set 𝒘 = 𝜔𝒆1. Then

𝑾𝒂 = 𝒘 × 𝒂, for all 𝒂 ∈  . (37)

The vector 𝒘 is called the axial vector of the tensor 𝑾 .

Proof. We have

𝑾𝒂 = 𝜔 (𝒆3 ⊗ 𝒆2 − 𝒆2 ⊗ 𝒆3) 𝒂 = 𝜔 ((𝒆2 ⋅ 𝒂) 𝒆3 − (𝒆3 ⋅ 𝒂) 𝒆2).

Moreover, we have 𝒂 = (𝒂 ⋅ 𝒆𝑖) 𝒆𝑖, and therefore

𝒘 × 𝒂 = (𝜔 𝒆1) × (𝒂 ⋅ 𝒆𝑖) 𝒆𝑖 = 𝜔 (𝒂 ⋅ 𝒆𝑖) 𝒆1 × 𝒆𝑖
= 𝜔 [(𝒂 ⋅ 𝒆2) 𝒆1 × 𝒆2 + (𝒂 ⋅ 𝒆3) 𝒆1 × 𝒆3] = 𝜔 [(𝒂 ⋅ 𝒆2) 𝒆1 × 𝒆2 − (𝒂 ⋅ 𝒆3) 𝒆3 × 𝒆1].

Thus, we calculate

𝑾𝒂 − 𝒘 × 𝒂 = 𝜔 [(𝒆2 ⋅ 𝒂)(𝒆3 − 𝒆1 × 𝒆2) − (𝒆3 ⋅ 𝒂)(𝒆2 − 𝒆3 × 𝒆1)] = 𝟎,

where we have appealed to 𝒆3 = 𝒆1 × 𝒆2 and 𝒆2 = 𝒆3 × 𝒆1 since {𝒆1, 𝒆2, 𝒆3} is a right-handed

frame. □

Theorem 9. Let 𝒖 and 𝒘 be arbitrary vectors. Then 𝑾 = 𝒗 ⊗ 𝒖 − 𝒖⊗ 𝒗 is skew-symmetric,
and 𝒘 = 𝒖 × 𝒗 is 𝑾 ’s axial vector.

Proof. By (21b) we have

𝑾 𝑇 = (𝒗 ⊗ 𝒖 − 𝒖 ⊗ 𝒗)𝑇 = (𝒗 ⊗ 𝒖)𝑇 − (𝒖 ⊗ 𝒗)𝑇 = 𝒖 ⊗ 𝒗 − 𝒗 ⊗ 𝒖 = −(𝒗 ⊗ 𝒖 − 𝒖 ⊗ 𝒗) = −𝑾 ,
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and therefore 𝑾 is skew-symmetric. Now, let us calculate

𝑾 (𝒖 × 𝒗) = (𝒗 ⊗ 𝒖 − 𝒖 ⊗ 𝒗) (𝒖 × 𝒗)

= (𝒖 ⋅ (𝒖 × 𝒗)) 𝒗 − (𝒗 ⋅ (𝒖 × 𝒗)) 𝒖 = [𝒖, 𝒖, 𝒗] 𝒗 − [𝒗, 𝒖, 𝒗] 𝒖.

The scalar triple products [𝒖, 𝒖, 𝒗] and [𝒗, 𝒖, 𝒗] are both zero, and therefore 𝑾 (𝒖 × 𝒗) = 𝟎.

We conclude that 𝒖 × 𝒗 points along 𝑾 ’s axial vector, and therefore 𝒘 = 𝑐 𝒖 × 𝒗 for some

number 𝑐 . We proceed to show that 𝑐 = 1. Toward that end, let us observe that for any

𝒂 ∈  we have 𝑾𝒂 = 𝒘 × 𝒂, that is

(𝒗 ⊗ 𝒖 − 𝒖 ⊗ 𝒗) 𝒂 = (𝑐 𝒖 × 𝒗) × 𝒂,

which expands to

(𝒖 ⋅ 𝒂) 𝒗 − (𝒗 ⋅ 𝒂) 𝒖 = 𝑐 (𝒖 × 𝒗) × 𝒂. (38)

In particular, setting 𝒂 = 𝒖 this results in

(𝒖 ⋅ 𝒖) 𝒗 − (𝒗 ⋅ 𝒖) 𝒖 = 𝑐 (𝒖 × 𝒗) × 𝒖.

Form the dot product of both sides with 𝒗:

(𝒖 ⋅ 𝒖) (𝒗 ⋅ 𝒗) − (𝒖 ⋅ 𝒗)2 = 𝑐 ((𝒖 × 𝒗) × 𝒖) ⋅ 𝒗.

The coefficient of 𝑐 is the scalar triple product [𝒖 × 𝒗, 𝒖, 𝒗], whose terms may be rotated

into [𝒖, 𝒗, 𝒖 × 𝒗], which then evaluates to (𝒖 × 𝒗) ⋅ (𝒖 × 𝒗), that is, ‖𝒖 × 𝒗‖2. Thus we have

arrived at

‖𝒖‖2‖𝒗‖2 − (𝒖 ⋅ 𝒗)2 = 𝑐 ‖𝒖 × 𝒗‖2. (39)

Comparing this with (1) we conclude that 𝑐 = 1. □

Remark 10. As we have shown that 𝑐 = 1 is in the above proof, equation (38) implies the

very useful identity

(𝒖 × 𝒗) × 𝒂 = (𝒖 ⋅ 𝒂) 𝒗 − (𝒗 ⋅ 𝒂) 𝒖, (40a)

or equivalently

𝒂 × (𝒖 × 𝒗) = (𝒂 ⋅ 𝒗) 𝒖 − (𝒂 ⋅ 𝒖) 𝒗, (40b)

which hold for all vectors 𝒖, 𝒗, 𝒂 ∈  . Here is a good way of remembering these identities.

On the left-hand side of (40a), regard 𝒗 as the “near neighbor” and 𝒖 as the “far neighbor”

of 𝒂. Then the right-hand side of (40a) reads: “the (dot product of 𝒂 with its far neighbor)

times the near neighbor, minus the (dot product of 𝒂 with its near neighbor) times the far

neighbor”. The quoted mnemonic applies word for word to (40b).

See Exercise 17 for alternative ways of expressing the identities (40a) and (40b).

Remark 11. The article [3] has several alternative derivations of the identities (40).

11. Orthogonal tensors

A tensor 𝑸 ∈  is said to be orthogonal if it preserves the dot product in the sense that

𝑸 𝒖 ⋅ 𝑸 𝒗 = 𝒖 ⋅ 𝒗, for all 𝒖, 𝒗 ∈  . (41)

Since 𝑸 𝒖 ⋅ 𝑸 𝒗 = 𝒖 ⋅ 𝑸𝑇𝑸 𝒗, the definition (41) may be written as

𝒖 ⋅ (𝑸𝑇𝑸 − 𝑰)𝒗 = 𝟎, for all 𝒖, 𝒗 ∈  ,
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from which it follows that 𝑸𝑇𝑸 = 𝑰 . Conversely, if 𝑸 ∈  is such that 𝑸𝑇𝑸 = 𝑰 , then

clearly (41) holds. We conclude that the condition

𝑸𝑇𝑸 = 𝑰. (42)

is an equivalent definition of the orthogonality of a tensor 𝑸 ∈ .

Let us observe that (41) implies that

‖𝑸𝒖‖ = ‖𝒖‖ for all 𝒖 ∈  , (43)

that is, an orthogonal tensor preserves vector lengths.

If𝑸 is orthogonal, equation (25b) implies that det(𝑸𝑇𝑸) = (det𝑸)2 = 1, that is, det𝑸 =
±1, and therefore 𝑸 is invertible. It follows that

𝑸−1 = 𝑸𝑇 , 𝑸𝑸𝑇 = 𝑰. (44)

The orthogonal tensor 𝑸 is said to be proper orthogonal is det𝑸 = 1, and improper or-
thogonal if det𝑸 = −1. If 𝑸 is improper orthogonal, then −𝑸 is proper orthogonal. From

now on we assume that our orthogonal tensors are proper orthogonal unless explicitly

stated otherwise.

In view of (42), we have

𝑸𝑇 (𝑸 − 𝑰) = 𝑸𝑇𝑸 − 𝑸𝑇 = 𝑰 − 𝑸𝑇 = (𝑰 − 𝑸)𝑇 = −(𝑸 − 𝑰)𝑇 .

Then det(𝑸𝑇 (𝑸 − 𝑰)) = − det(𝑸 − 𝑰). But according to (25b), and since since det𝑸 = 1,

we have

det(𝑸𝑇 (𝑸 − 𝑰)) = det(𝑸𝑇 ) det(𝑸 − 𝑰) = det(𝑸 − 𝑰)

It follows that det(𝑸 − 𝑰) = − det(𝑸 − 𝑰), and therefore det(𝑸 − 𝑰) = 0. We conclude that

𝑸 has an eigenvalue equal to 1. Therefore, there exists and eigenvector, say 𝒆1, so that

𝑸𝒆1 = 𝒆1. Let us point out in passing that by applying 𝑸𝑇
to this equation we get 𝒆1 =

𝑸𝑇 𝒆1, and therefore 𝒆1 is also and eigenvector of 𝑸𝑇
corresponding to the eigenvalue 1.

Theorem 10. Let the unit vector 𝒆1 be an eigenvector of the proper orthogonal tensor 𝑸,
and let 𝒆2 and 𝒆3 be unit vectors so that {𝒆1, 𝒆2, 𝒆3} forms a right-handed orthonormal frame
in  . Then, there exists a 𝜃 ∈ [−𝜋, 𝜋] so that

𝑸 = 𝒆1 ⊗ 𝒆1 + (𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3) cos 𝜃 − (𝒆2 ⊗ 𝒆3 − 𝒆3 ⊗ 𝒆2) sin 𝜃, (45a)

or equivalently, (due to Exercise 11):

𝑸 = 𝒆1 ⊗ 𝒆1 + (𝑰 − 𝒆1 ⊗ 𝒆1) cos 𝜃 − (𝒆2 ⊗ 𝒆3 − 𝒆3 ⊗ 𝒆2) sin 𝜃. (45b)

Proof. The representation of 𝑸 in (45a) is a particular application of the general tensor

representation (22) in terms of the nine basis elements in (23). Deriving (45a) amounts

to calculating the nine components 𝒆𝑖 ⋅ 𝑸𝒆𝑗 . The calculation of five of the components is

straightforward, but that of the remaining four, whose values have been left blank in the
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following display, requires some effort:

𝒆1 ⋅ 𝑸𝒆1 = 𝒆1 ⋅ 𝒆1 = 1, (46a)

𝒆1 ⋅ 𝑸𝒆2 = (𝑸𝑇 𝒆1) ⋅ 𝒆2 = 𝒆1 ⋅ 𝒆2 = 0, (46b)

𝒆1 ⋅ 𝑸𝒆3 = (𝑸𝑇 𝒆1) ⋅ 𝒆3 = 𝒆1 ⋅ 𝒆3 = 0, (46c)

𝒆2 ⋅ 𝑸𝒆1 = 𝒆2 ⋅ 𝒆1 = 0, (46d)

𝒆2 ⋅ 𝑸𝒆2 = (46e)

𝒆2 ⋅ 𝑸𝒆3 = (46f)

𝒆3 ⋅ 𝑸𝒆1 = 𝒆3 ⋅ 𝒆1 = 0, (46g)

𝒆3 ⋅ 𝑸𝒆2 = (46h)

𝒆3 ⋅ 𝑸𝒆3 = (46i)

To calculate the missing values, let us observe that according to (46b),𝑸𝒆2 is perpendic-

ular to 𝒆1, and therefore co-planar with the vectors 𝒆2 and 𝒆3. It follows that𝑸𝒆2 is a linear

combination of 𝒆2 and 𝒆3, that is,𝑸𝒆2 = 𝛼2𝒆2+𝛼3𝒆3 for some scalars 𝛼2 and 𝛼3. Since 𝒆2 is a

unit vector, by (43) we have ‖𝑸𝒆𝟐‖ = 1. But ‖𝑸𝒆𝟐‖2 = (𝛼2𝒆2+𝛼3𝒆3) ⋅ (𝛼2𝒆2+𝛼3𝒆3) = 𝛼22 +𝛼23 ,

and therefore 𝛼22 + 𝛼23 = 1.

Similarly, according to (46c), 𝑸𝒆3 is perpendicular to 𝒆1, and therefore co-planar with

the vectors 𝒆2 and 𝒆3. It follows that 𝑸𝒆3 = 𝛽2𝒆2 + 𝛽3𝒆3 for some scalars 𝛽2 and 𝛽3, and

𝛽22 + 𝛽23 = 1.

Additionally, since 𝒆2 ⋅ 𝒆3 = 0, from (41) we get 𝑸𝒆2 ⋅ 𝑸𝒆3 = 0. It follows that

𝑸𝒆2 ⋅ 𝑸𝒆3 = (𝛼2𝒆2 + 𝛼3𝒆3) ⋅ (𝛽2𝒆2 + 𝛽3𝒆3) = 𝛼2𝛽2 + 𝛼3𝛽3 = 0.

Finally, referring to (19c) and (24c), we have:

det𝑸 = 𝜄3(𝑸) = [𝑸𝒆1, 𝑸𝒆2, 𝑸𝒆3] = [𝒆1, 𝛼2𝒆2 + 𝛼3𝒆3, 𝛽2𝒆2 + 𝛽3𝒆3]

= (𝒆1 × (𝛼2𝒆2 + 𝛼3𝒆3)) ⋅ (𝛽2𝒆2 + 𝛽3𝒆3) = (𝛼2𝒆3 − 𝛼3𝒆2) ⋅ (𝛽2𝒆2 + 𝛽3𝒆3)
= 𝛼2𝛽3 − 𝛼3𝛽2 = 1,

where the final step is due to det𝑸 = 1.

To summarize, we have the following four relationships among the four coefficients

𝛼2, 𝛼3, 𝛽2, and 𝛽3:

𝛼22 + 𝛼23 = 1, 𝛽22 + 𝛽23 = 1, 𝛼2𝛽2 + 𝛼3𝛽3 = 0, 𝛼2𝛽3 − 𝛼3𝛽2 = 1.

A close inspection leads to the following solution to the system:

𝛼2 = cos 𝜃, 𝛼3 = sin 𝜃, 𝛽2 = − sin 𝜃, 𝛽3 = cos 𝜃,

for some −𝜋 < 𝜃 ≤ 𝜋. This enables us to fill in the missing parts in (46). We have:

𝒆2 ⋅ 𝑸𝒆2 = 𝒆2 ⋅ (𝛼2𝒆2 + 𝛼3𝒆3) = 𝛼2 = cos 𝜃, (47a)

𝒆2 ⋅ 𝑸𝒆3 = 𝒆2 ⋅ (𝛽2𝒆2 + 𝛽3𝒆3) = 𝛽2 = − sin 𝜃, (47b)

𝒆3 ⋅ 𝑸𝒆2 = 𝒆3 ⋅ (𝛼2𝒆2 + 𝛼3𝒆3) = 𝛼3 = sin 𝜃, (47c)

𝒆3 ⋅ 𝑸𝒆3 = 𝒆3 ⋅ (𝛽2𝒆2 + 𝛽3𝒆3) = 𝛽3 = cos 𝜃. (47d)
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This, together with the equations in (46) indicates that only five of the nine components

of the summation (22) survive and we get:

𝑸 = 𝒆1 ⊗ 𝒆𝟏 + (𝒆2 ⊗ 𝒆𝟐) cos 𝜃 − (𝒆2 ⊗ 𝒆𝟑) sin 𝜃 + (𝒆3 ⊗ 𝒆𝟐) sin 𝜃 + (𝒆3 ⊗ 𝒆𝟑) cos 𝜃,

which is equivalent to (45a). □

It is left to an exercise to show that

𝜄1(𝑸) = 1 + 2 cos 𝜃, 𝜄2(𝑸) = 1 + 2 cos 𝜃, 𝜄3(𝑸) = 1. (48)

Remark 12. In view of (29) and the principal invariants found in (48), the characteristic

polynomial of 𝑸 is

𝜒(𝜆) = 𝜆3 − (1 + 2 cos 𝜃)𝜆2 + (1 + 2 cos 𝜃)𝜆 − 1

= (𝜆 − 1)(𝜆2 − 2𝜆 cos 𝜃 + 1).

The discriminant of the quadratic factor is 4(cos2 𝜃 − 1), which is negative for any 𝜃 other

than 0 or 𝜋. Therefore, under this restriction, the characteristic equation has only one

real root, and 𝑸 has only one eigenvalue.

12. An orthogonal tensor as a rotation

Theorem 10 shows that any orthogonal tensor has the representation (45a). Here we

wish to investigate that representation’s geometric significance.

Recall that 𝒆1 in (45a) is the sole eigenvector of 𝑸. We are now going to show that that

applying the orthogonal tensor 𝑸 to an arbitrary vector 𝒖 ∈  a amounts to rotating 𝒖
by the angle 𝜃 about the axis spanned by 𝒆1. More generally, applying 𝑸 to any subset

 ⊂  amounts to rotating  about that axis by 𝜃.

Figure 3 depicts the vectors of the frame {𝒆1, 𝒆2, 𝒆3}, where 𝒆1 is the eigenvector of 𝑸.

It also shows:

∙ an arbitrary vector 𝒖;

∙ the result 𝑸𝒖 of applying 𝑸 to 𝒖;

∙ the vectors 𝒂 and 𝒃 which are the orthogonal projections of 𝒖 and 𝑸𝒖 onto the

“equatorial plane”, that is, the plane spanned by 𝒆2 and 𝒆3.

We observe that the component of 𝒖 along 𝒆1 is (𝒖 ⋅ 𝒆1)𝒆1, whence the component of 𝒖 on

the equatorial plane is 𝒂 = 𝒖− (𝒖 ⋅ 𝒆1)𝒆1 = 𝒖−𝑢1𝒆1 in the component notation 𝑢𝑗 = 𝒖 ⋅ 𝒆𝑗 .
To determine an expression for 𝒃, we apply (45a) to 𝒖:

𝑸𝒖 = (𝒆1 ⊗ 𝒆1)𝒖 + (𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3)𝒖 cos 𝜃 − (𝒆2 ⊗ 𝒆3 − 𝒆3 ⊗ 𝒆2)𝒖 sin 𝜃,

= (𝒆1 ⋅ 𝒖)𝒆1 + ((𝒆2 ⋅ 𝒖)𝒆2 + (𝒆3 ⋅ 𝒖)𝒆3) cos 𝜃 − ((𝒆3 ⋅ 𝒖)𝒆2 − (𝒆2 ⋅ 𝒖)𝒆3) sin 𝜃
= 𝑢1𝒆1 + (𝑢2𝒆2 + 𝑢3𝒆3) cos 𝜃 − (𝑢3𝒆2 − 𝑢2𝒆3) sin 𝜃.

The projection of𝑸𝒖 onto the equatorial plane is obtained by removing the 𝒆1 component.

Thus, 𝒃 = (𝑢2𝒆2+𝑢3𝒆3) cos 𝜃−(𝑢3𝒆2−𝑢2𝒆3) sin 𝜃. Then, a straightforward calculation with
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𝜃

𝒆2

𝒆1

𝒆3

𝒖

𝒂

𝑸𝒖

𝒃

𝜃

Figure 3. Applying the orthogonal tensor 𝑸 rotates the world by an

angle 𝜃 about the axis spanned by the eigenvector 𝒆1. In particular, the

(arbitrary) vector 𝒖 goes into the vector 𝑸𝒖. The projections of 𝒖 and

𝑸𝒖 onto the equatorial plane are 𝒂 and 𝒃.

the expression obtained for 𝒂 and 𝒃 shows that ‖𝒂‖2 = ‖𝒃‖2 = 𝑢22 + 𝑢23, and that

𝒂 ⋅ 𝒃 = (𝒖 − 𝑢1𝒆1) ⋅ ((𝑢2𝒆2 + 𝑢3𝒆3) cos 𝜃 − (𝑢3𝒆2 − 𝑢2𝒆3) sin 𝜃)
= (𝑢22 + 𝑢23) cos 𝜃. = ‖𝒂‖ ‖𝒃‖ cos 𝜃,

from which we conclude that the angle between the vectors 𝒂 and 𝒃 is 𝜃, as asserted.

13. The exponential function

We define the exponential of a tensor 𝑨 via

𝑒𝑨 =
∞

∑
𝑛=0

1
𝑛!
𝑨𝑛 = 𝑰 + 𝑨 +

1
2
𝑨2 + ⋯ . (49)

It can be shown (proof later) that this series converges for any 𝑨 ∈ , and therefore 𝑒𝑨 is

well-defined. Moreover, since 𝑨𝑛
is in  for any 𝑛, then 𝑒𝑨 ∈ .

Let 𝑿(𝑡) = 𝑒𝑨𝑡 , 𝑡 ∈ ℝ. Then it is not difficult to show that 𝑿(𝑡) is the unique solution

of the initial value problem

∙
𝑿(𝑡) = 𝑨𝑿(𝑡), 𝑿(0) = 𝑰 , (50)

of the tensorial differential equation where

∙
𝑿(𝑡) indicates the derivative

𝑑
𝑑𝑡𝑿(𝑡).

Proposition 6. For any 𝑨 ∈  we have

det 𝑒𝑨𝑡 = 𝑒(tr 𝑨) 𝑡 . (51)
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(proof will be provided later)

Proposition 7. Let 𝑾 be a skew-symmetric tensor. Then 𝑸 = 𝑒𝑾 is orthogonal.

Proof. We know that 𝑿(𝑡) = 𝑒𝑾 𝑡
is the solution of the initial value problem

∙
𝑿(𝑡) = 𝑾𝑿(𝑡), 𝑿(0) = 𝑰 ,

Let 𝑹(𝑡) = 𝑿(𝑡)𝑿(𝑡)𝑇 . Then

∙
𝑹 =

∙
𝑿𝑿 𝑇 + 𝑿

∙
𝑿 𝑇 = (𝑾𝑿)𝑿 𝑇 + 𝑿(𝑾𝑿)𝑇 = 𝑾 (𝑿𝑿 𝑇 ) + (𝑿𝑿)𝑇 )𝑾 𝑇 = 𝑾𝑹 − 𝑹𝑾 .

Since 𝑹(0) = 𝑿(0)𝑿(0)𝑇 = 𝑰 , we see that 𝑹(𝑡) is the (unique) solution of the initial value

problem

∙
𝑹 = 𝑾𝑹 − 𝑹𝑾 , 𝑹(0) = 𝑰 .

But we observe that𝑹(𝑡) ≡ 𝑰 is also a solution of that initial value problem. By uniqueness,

we conclude that 𝑹(𝑡) ≡ 𝑰 . Consequently, 𝑿(𝑡)𝑿(𝑡)𝑇 = 𝑰 , that is, 𝑿(𝑡) is an orthogonal

tensor for all 𝑡. But 𝑿(𝑡) = 𝑒𝑾 𝑡
. Therefore, 𝑒𝑾 𝑡

is an orthogonal tensor for all 𝑡. In

particular particular, 𝑒𝑾 is an orthogonal tensor. □

14. Polar decomposition

Lemma 1. Let 𝑹 be an orthogonal tensor and 𝑽 be a symmetric positive definite tensor. Then
𝑹𝑇 𝑽 𝑹 is symmetric and positive definite tensor.

Proof. The tensor 𝑹𝑇 𝑽 𝑹 is clearly symmetric. We need to show that the quadratic form

𝒖⋅𝑹𝑇 𝑽 𝑹𝒖 > 0 for all nonzero vectors 𝒖. To see that, we recall that according to Theorem 7,

the tensor 𝑽 has a unique symmetric positive definite square root which we write as 𝑽 1/2
.

Then

𝒖 ⋅ 𝑹𝑇 𝑽 𝑹𝒖 = 𝑹𝒖 ⋅ 𝑽 𝑹𝒖 = 𝑹𝒖 ⋅ 𝑽 1/2𝑽 1/2𝑹𝒖 = 𝑽 1/2𝑹𝒖 ⋅ 𝑽 1/2𝑹𝒖 = ‖𝑽 𝟏/𝟐𝑹𝒖‖2 ≥ 0,

which shows that 𝑹𝑇 𝑽 𝑹 is positive semi-definite. Moreover, if the quadratic form is zero,

then 𝑽 1/2𝑹𝒖 = 𝟎, but since 𝑽 1/2
is positive-definite, it is invertible, and therefore upon

applying the inverse of 𝑽 1/2
to the previous result, we see that 𝑹𝒖 = 𝟎. Then applying 𝑹𝑇

(that is, 𝑹−1
) to this, we arrive at 𝒖 = 𝟎. In conclusion, the quadratic form is zero only

when 𝒖 is zero, which indicates that 𝑹𝑇 𝑽 𝑹 is positive-definite. □

Theorem 11 (Polar decomposition). An invertible tensor 𝑨 ∈  admits a right polar de-

composition

𝑨 = 𝑹𝑼 , (52)

and a left polar decomposition

𝑨 = 𝑽 𝑹, (53)

where 𝑹 is orthogonal, and 𝑼 and 𝑽 are symmetric and positive definite. The tensors 𝑹, 𝑼 , 𝑽
are uniquely determined by 𝑨.

Proof. According to the exercises 15 and 16, the tensors 𝑨𝑇𝑨 and 𝑨𝑨𝑇
are symmetric

and positive definite, and therefore by Theorem 7 they have symmetric positive-definite

square roots, say 𝑼 and 𝑽 , respectively. Thus

𝑨𝑇𝑨 = 𝑼 2, 𝑨𝑨𝑇 = 𝑽 2.
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Let

𝑹 = 𝑨𝑼 −1, 𝑷 = 𝑽 −1𝑨. (54)

Let us show that both 𝑹 and 𝑷 are orthogonal tensors:

𝑹𝑇𝑹 = (𝑨𝑼 −1)
𝑇
(𝑨𝑼 −1) = (𝑼 −1𝑨𝑇 )(𝑨𝑼 −1) = 𝑼 −1𝑨𝑇𝑨𝑼 −1 = 𝑼 −1𝑼 2𝑼 −1 = 𝑰,

𝑷𝑷𝑇 = (𝑽 −1𝑨)(𝑽 −1𝑨)
𝑇 = (𝑽 −1𝑨)(𝑨𝑇 𝑽 −1) = 𝑽 −1𝑨𝑨𝑇 𝑽 −1 = 𝑽 −1𝑽 2𝑽 −1 = 𝑰.

The first equation in (54) is equivalent to (52). To complete the proof of (52) we need to

show the uniqueness of the decomposition. Toward that end, let’s suppose that 𝑨 admits

and alternative right polar decomposition 𝑨 = 𝑹′𝑼 ′
, where 𝑹′

is orthogonal and 𝑼 ′
is

symmetric and positive definite. Then

𝑨𝑇𝑨 = (𝑹′𝑼 ′)
𝑇
(𝑹′𝑼 ′) = 𝑼 ′𝑹′𝑇𝑹′𝑼 ′ = 𝑼 ′ 2,

that is, 𝑼 ′
is a symmetric and positive definite square root of 𝑨𝑇𝑨. But according to

Theorem 7, such square root is unique, and therefore 𝑼 ′ = 𝑼 . Then

𝑹′ = 𝑨𝑼 ′−1 = 𝑨𝑼 −1 = 𝑹,

which proves the uniqueness of the right polar decomposition. The uniqueness of the left

polar decomposition may be proved in the same way.

The second equation in (54) implies that 𝑨 = 𝑽 𝑷. In order to arrive at (53), we need to

show that 𝑷 = 𝑹. For that let’s observe that 𝑷𝑷𝑇 = 𝑰 and therefore

𝑨 = 𝑽 𝑷 = (𝑷𝑷𝑇 )𝑽 𝑷 = 𝑷(𝑷𝑇 𝑽 𝑷).

According to Lemma 1, the tensor 𝑷𝑇 𝑽 𝑷 is symmetric and positive definite, therefore,

𝑨 = 𝑷(𝑷𝑇 𝑽 𝑷) is a right polar decomposition of 𝑨. But we have already seen that the

right polar decomposition is unique, and therefore it should agree with 𝑨 = 𝑹𝑼 in (52).

We conclude that 𝑷 = 𝑹, completing the proof of (53). □

Remark 13. The name “polar decomposition” is associated with equations (52) and (53)

in a loose analogy with the polar representation of complex numbers 𝑧 = 𝑟𝑒𝑖𝜃, where the

rotation 𝑒𝑖𝜃 in the complex plane in likened to the action of the orthogonal tensor 𝑹 in

the polar decomposition.

Remark 14. A simple shear is a deformation in the Cartesian 𝑥–𝑦 given by the mapping

(
𝑥
𝑦) → (

𝑥 + 2𝑦 tan 𝛾
𝑦 ) = (

1 2 tan 𝛾
0 1 )(

𝑥
𝑦) . (55)

The mapping preserves the 𝑦 coordinates of the points, therefore the points move in the

horizontal direction. The horizontal displacement, 2𝑦 tan 𝛾 , is proportional to the 𝑦 coor-

dinate, therefore points with greater 𝑦 are displaced by proportionally greater amounts.

The constant of proportionality is taken to be 2 tan 𝛾 for at least two reasons. First, the

algebra is simpler this way compared to what it would have been with a generic propor-

tionality constant, say, 𝑐. Second, the angle 𝛾 turns out to have a geometric interpretation

as we shall see toward the end of the calculations.

The gradient 𝑭 of the mapping defined in (55), and the corresponding right Cauchy–

Green strain tensor are

𝑭 = (
1 2 tan 𝛾
0 1 ) , 𝑪 = 𝑭 𝑇 𝑭 = (

1 2 tan 𝛾
2 tan 𝛾 1 + 4 tan2 𝛾) .
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√
𝜆1𝒆1

√
𝜆2𝒆2

𝑼 𝑹

Figure 4. A homogeneous deformation with the deformation gradient

𝑭 = 𝑹𝑼 acts on any neighborhood of the origin by shrinking/stretching

the neighborhood along the eigenvectors 𝒆1 and 𝒆2 by the factors

√
𝜆1

and

√
𝜆2, followed by a rigid rotation by the orthogonal tensor 𝑹. The

eigenvalues of 𝑼 are the square roots of the eigenvalues 𝜆1 and 𝜆2 of

the right Cauchy–Green strain tensor 𝑪 = 𝑭 𝑇 𝑭 .

The eigenvalues and eigenvectors of 𝑪 are

𝜆1 = 1/𝜎2, 𝒆1 = (
𝜎
1) , 𝜆2 = 𝜎2, 𝒆2 = (

−1
𝜎 ) ,

where 𝜎 = (1 − sin 𝛾)/ cos 𝛾 . Since 𝑼 2 = 𝑪, the eigenvectors of 𝑼 coincide with those of

𝑪, and its eigenvalues are

√
𝜆1 = 1/𝜎 and

√
𝜆2 = 𝜎. Letting 𝑷 be the matrix with columns

𝒆1 and 𝒆2, and 𝑳 be the diagonal matrix with the eigenvalues of 𝑼 on the diagonal, we

have 𝑼 = 𝑷𝑳𝑷−1
, and therefore

𝑼 = (
𝜎 −1
1 𝜎 )(

1/𝜎 0
0 𝜎)(

𝜎 −1
1 𝜎 )

−1

=
(
cos 𝛾 sin 𝛾
sin 𝛾 1+sin2 𝛾

cos 𝛾 )
.

Finally, we calculate the orthogonal tensor 𝑹:

𝑹 = 𝑭𝑼 −1 = (
1 2 tan 𝛾
0 1 )(

cos 𝛾 sin 𝛾
sin 𝛾 1+sin2 𝛾

cos 𝛾 )

−1

= (
cos 𝛾 sin 𝛾
− sin 𝛾 cos 𝛾) ,

which represents a clockwise rotation by the angle 𝛾 . Figure 4 illustrates the effect of ap-

plying the deformation gradient 𝑭 to a neighborhood of the origin. The neighborhood

shrinks/stretches along the eigenvectors 𝒆1 and 𝒆2 of 𝑼 by the factors

√
𝜆1 and

√
𝜆2, fol-

lowed by clockwise rigid rotation by the angle 𝛾 .

15. More tensor algebra

Lemma 2. Let 𝒆 be a unit vector. Then the tensor 𝑸 = 𝑰 − 2𝒆 ⊗ 𝒆 is orthogonal.

Proof. From (21b) we see that 𝑸 = 𝑸𝑇
. Therefore

𝑸𝑇𝑸 = (𝑰 − 2𝒆 ⊗ 𝒆)(𝑰 − 2𝒆 ⊗ 𝒆) = 𝑰 − 4𝒆 ⊗ 𝒆 + 4(𝒆 ⊗ 𝒆)(𝒆 ⊗ 𝒆) = 𝑰 .

In the last step we have made use of the identity (21c). □

Lemma 3. The tensor 𝑸 defined in the previous lemma is a reflection operator about the
plane perpendicular to 𝒆.
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Proof. We have:

𝑸𝒆 = (𝑰 − 2𝒆 ⊗ 𝒆) 𝒆 = 𝒆 − 2(𝒆 ⋅ 𝒆) 𝒆 = −𝒆.
Moreover, for any vector 𝒆′ such that 𝒆′ ⋅ 𝒆 = 0 we have:

𝑸𝒆′ = (𝑰 − 2𝒆 ⊗ 𝒆) 𝒆′ = 𝒆′ − 2(𝒆′ ⋅ 𝒆) 𝒆 = 𝒆′. □

Lemma 4. Let the tensor 𝑸 be as in the previous lemma. If 𝑸𝒗 = −𝒗 for a vector 𝒗, then 𝒗
must be a multiple of the vector 𝒆.

Proof. We have 𝑸𝒗 = (𝑰 − 2𝒆 ⊗ 𝒆) 𝒗 = 𝒗 − 2(𝒆 ⋅ 𝒗) 𝒆. Setting this equal to −𝒗 we get

𝒗 = (𝒆 ⋅ 𝒗) 𝒆. □

Lemma 5. Let {𝒆1, 𝒆2, 𝒆3} and {𝒆′1, 𝒆′2, 𝒆′3} be two frames in 𝔼3, and let

𝑸 = 𝒆′𝑖 ⊗ 𝒆𝑖. (summation over 𝑖!)

Then 𝑸 is orthogonal and 𝑸𝒆𝑖 = 𝒆′𝑖 for each 𝑖, and thus, the orthogonal transformation 𝑸
rotates the frame {𝒆1, 𝒆2, 𝒆3} to the frame {𝒆′1, 𝒆′2, 𝒆′3}.

Proof. From (21b) we see that 𝑸𝑇 = 𝒆𝑖 ⊗ 𝒆′𝑖 , therefore:

𝑸𝑇𝑸 = (𝒆𝑗 ⊗ 𝒆′𝑗 ) (𝒆
′
𝑖 ⊗ 𝒆𝑖) = (𝒆′𝑗 ⋅ 𝒆

′
𝑖 ) (𝒆𝑗 ⊗ 𝒆𝑖) = 𝛿𝑖𝑗 (𝒆𝑗 ⊗ 𝒆𝑖) = 𝒆𝑖 ⊗ 𝒆𝑖 = 𝑰,

which shows that 𝑸 is orthogonal. Here we have applied the identity (21c) and the result

of Exercise 11 that 𝒆𝑖 ⊗ 𝒆𝑖 = 𝑰 . To complete the lemma’s proof, we calculate

𝑸𝒆𝑖 = (𝒆′𝑗 ⊗ 𝒆𝑗 ) 𝒆𝑖 = (𝒆𝑗 ⋅ 𝒆𝑖) 𝒆′𝑗 = 𝛿𝑖𝑗 𝒆′𝑗 = 𝒆
′
𝑖 . □

The next two lemmas, due to Chao-Cheng Wang, are collectively known as Wang’s
Lemma.

Lemma 6 (Wang’s Lemma, Part 1). Let 𝑨 ∈ sym have eigenvalues 𝜆1, 𝜆2, 𝜆3 and let
{𝑒1, 𝒆2, 𝒆3} be a corresponding orthonormal set of eigenvectors. If the eigenvalues are distinct
then:

(a) 𝑨 = 𝜆1𝒆1 ⊗ 𝒆1 + 𝜆2𝒆2 ⊗ 𝒆2 + 𝜆3𝒆3 ⊗ 𝒆3;
(b) The set {𝑰 , 𝑨, 𝑨𝟐} is linearly independent;
(c) span{𝑰 , 𝑨, 𝑨𝟐} = span{𝒆1 ⊗ 𝒆1, 𝒆2 ⊗ 𝒆2, 𝒆3 ⊗ 𝒆3}.

Proof. Part (a) is a restatement of the Spectral Theorem 6. For part (b), we need to show

that 𝛼𝑨2 +𝛽𝑨+ 𝛾𝑰 = 𝟎 implies that 𝛼 = 𝛽 = 𝛾 = 0. To see this, apply the two sides of the

equation 𝛼𝑨2 + 𝛽𝑨 + 𝛾𝑰 = 𝟎 to the eigenvector 𝒆𝑖 to get 𝛼𝜆2𝑖 + 𝛽𝜆𝑖 + 𝛾 = 0 for 𝑖 = 1, 2, 3.

We see that this quadratic equation has three distinct roots, and therefore its coefficients

must be zero.

As to part (c), let  = span{𝒆1 ⊗ 𝒆1, 𝒆2 ⊗ 𝒆2, 𝒆3 ⊗ 𝒆3}. From Exercise 11 we know

that 𝑰 = ∑𝑖 𝒆𝑖 ⊗ 𝒆𝑖. Furthermore, 𝑨 = ∑𝑖 𝜆𝑖𝒆𝑖 ⊗ 𝒆𝑖 and 𝑨𝟐 = ∑𝑖 𝜆2𝑖 𝒆𝑖 ⊗ 𝒆𝑖. Therefore

𝑰 , 𝑨, 𝑨𝟐 ∈ . But by part (b), {𝑰 , 𝑨, 𝑨𝟐} is linearly independent, therefore it is a basis for

the three-dimensional space . □

Lemma 7 (Wang’s Lemma, Part 2). Let 𝜆1, 𝜆2, 𝜆3 be the eigenvalues of 𝑨 ∈ sym, and
suppose that 𝜆3 = 𝜆2 ≠ 𝜆1. Let 𝒆 be a unit eigenvector corresponding to the eigenvalue 𝜆1.
Then we have:
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(a) 𝑨 = 𝜆1𝒆 ⊗ 𝒆 + 𝜆2(𝑰 − 𝒆 ⊗ 𝒆).
(b The set {𝑰 , 𝑨} is linearly independent;
(c) span{𝑰 , 𝑨} = span{𝒆 ⊗ 𝒆, 𝑰 − 𝒆 ⊗ 𝒆}.

The proof of this lemma is left for Exercise 31.

16. Isotropic functions

Much of this section’s analysis is due to R. S. Rivlin and J. L. Ericksen [21]. The pre-

sentation here follows the significantly simplified version in [7].

A subset of  of  is said to be invariant under orth if 𝑨 ∈  implies that 𝑸𝑨𝑸𝑇 ∈ 
for all𝑸 ∈ orth. Some frequently occurring invariant subspaces are listed in the following

lemma whose proof is left for Exercise 32.

Lemma 8. The following subsets of  are invariant under orth:

, sym, +, +
sym, orth, +

orth.

Note: In the rest of this section,  signifies an invariant subset of  under orth. We are

interested in generally nonlinear functions 𝑔 ∶  → ℝ and 𝐺 ∶  → .

A function 𝑔 ∶  → ℝ is said to be isotropic if

𝑔(𝑨) = 𝑔(𝑸𝑨𝑸𝑇 ) for all 𝑨 ∈  and all 𝑸 ∈ orth. (56)

A function 𝑮 ∶  →  is said to be isotropic if

𝑸𝑮(𝑨)𝑸𝑇 = 𝑮(𝑸𝑨𝑸𝑇 ) for all 𝑨 ∈  and all 𝑸 ∈ orth. (57)

Lemma 9. Suppose 𝑔 ∶  → ℝ is such that

𝑔(𝑨) = 𝑔(𝑸𝑨𝑸𝑇 ) for all 𝑨 ∈  and all 𝑸 ∈ +
orth.

Then 𝑔 is isotropic.

Proof. We need to show that 𝑔(𝑨) = 𝑔(𝑸𝑨𝑸𝑇 ) for all 𝑸 ∈ orth. By the lemma’s hypoth-

esis we already know that this holds when𝑸 ∈ +
orth

. It remains to show that it also holds

for 𝑸 in orth\+
orth

. But if 𝑸 is of the latter type, then −𝑸 is in +
orth

, therefore for such

a 𝑸 we calculate

𝑔(𝑸𝑨𝑸𝑇 ) = 𝑔((−𝑸)𝑨(−𝑸𝑇 )) = 𝑔(𝑨). □

Lemma 10. Suppose 𝐺 ∶  →  is such that

𝑸𝑮(𝑨)𝑸𝑇 = 𝑮(𝑸𝑨𝑸𝑇 ) for all 𝑨 ∈  and all 𝑸 ∈ +
orth.

Then 𝐺 is isotropic.

We leave the proof of this lemma for Exercise 33.



NOTES ON CONTINUUM MECHANICS 30

16.1. Scalar-valued isotropic functions. Recall the definition a scalar-valued isotropic

function in (56). The determinant, viewed as a (nonlinear) function from  to ℝ, is

isotropic since det(𝑸𝑨𝑸𝑇 ) = (det𝑸) (det 𝑨) (det 𝑸𝑇 ) = det𝑨 for all 𝑨 ∈  and 𝑸 ∈ orth.

As another example, the trace, viewed as a (linear) function, from  to ℝ, is isotropic since

tr(𝑸𝑨𝑸𝑇 ) = tr((𝑸𝑨) (𝑸𝑇 )) = tr((𝑸𝑇 ) (𝑸𝑨)) = tr𝑨

for all 𝑨 ∈  and 𝑸 ∈ orth. Here we have applied the identity tr(𝑨𝑩) = tr(𝑩𝑨) from

Exercise 12.

Lemma 11. The three principal invariants 𝜄𝑖 ∶  → ℝ, 𝑖 = 1, 2, 3, are isotropic functions.

Proof. In the two examples above we have observed that 𝜄1 = tr and 𝜄3 = det are isotropic.

It remains to verify that 𝜄2 is isotropic. For this, recall (24b) on page 13, and observe that

(𝑸𝑨𝑸𝑇 )2 = 𝑸𝑨2𝑸𝑇
, hence tr((𝑸𝑨𝑸𝑇 )2) = tr(𝑸𝑨2𝑸𝑇 ) = tr(𝑨2). □

Lemma 12. The function 𝑔 ∶  ⊂ sym → ℝ is isotropic if and only if there exists a
function 𝑔̃ ∶ ℝ3 → ℝ such that

𝑔(𝑨) = 𝑔̃(𝜄1(𝑨), 𝜄2(𝑨), 𝜄3(𝑨)), for all 𝑨 ∈ . (58)

Proof. If 𝑔 is of the form (58), then it is isotropic since by the previous lemma we have

𝑔(𝑸𝑨𝑸𝑇 ) = 𝑔̃(𝜄1(𝑸𝑨𝑸𝑇 ), 𝜄2(𝑸𝑨𝑸𝑇 ), 𝜄3(𝑸𝑨𝑸𝑇 ))
= 𝑔̃(𝜄1(𝑨), 𝜄2(𝑨), 𝜄3(𝑨)) = 𝑔(𝑨) for all 𝑨 ∈  and 𝑸 ∈ orth.

As to the converse, assume 𝑔 is isotropic. We wish to show that 𝑔(𝑨) depends solely

in the invariants of 𝑨, that is, the invariants of 𝑨 suffice to determine the value of 𝑔(𝑨).
To put it in yet another way, if 𝑨 and 𝑩 have the same invariants, then 𝑔(𝑨) = 𝑔(𝑩).

Thus, take 𝑨 and 𝑩 in sym, and let 𝜄1, 𝜄2, 𝜄3 denote their common invariants. Then 𝑨
and 𝑩 share the common characteristic equation:

𝜆3 − 𝜄1𝜆2 + 𝜄2𝜆 − 𝜄3 = 0,

and therefore they have the same eigenvalues. It follows that, their spectral decomposi-

tions look like these:

𝑨 = ∑
𝑖
𝜆𝑖𝒆𝑖 ⊗ 𝒆𝑖, 𝑩 = ∑

𝑖
𝜆𝑖𝒆′𝑖 ⊗ 𝒆

′
𝑖 ,

where {𝑒′𝑖 }3𝑖=1 to {𝑒𝑖}3𝑖=1 are frames. Let𝑸 be the orthogonal transformation that rotates the

frame {𝑒𝑖}3𝑖=1 to {𝑒′𝑖 }3𝑖=1 as in Lemma 5, that is, 𝒆′𝑖 = 𝑸𝒆𝑖, 𝑖 = 1, 2, 3. Then by (21f) we have:

𝑸 (𝒆𝑙 ⊗ 𝒆𝑖) 𝑸𝑇 = (𝑸𝒆𝑖) ⊗ (𝑸𝒆𝑖) = 𝒆′𝑖 ⊗ 𝒆
′
𝑖 .

It follows that 𝑸𝑩𝑸𝑇 = 𝑨, whence:

𝑔(𝑨) = 𝑔(𝑸𝑩𝑸𝑇 ) = 𝑔(𝑩). □
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16.2. Tensor-valued isotropic functions.

Theorem 12 (Transfer Theorem). If 𝑮 ∶  ⊂ sym →  is isotropic, then any eigenvector
of 𝑨 is an eigenvector of 𝑮(𝑨).

Proof. Let 𝜆𝑖, 𝑖 = 1, 2, 3, be the eigenvalues, and 𝒆𝑖 be an orthonormal set of the corre-

sponding eigenvectors of 𝑨. By the Spectral Theorem we have 𝑨 = ∑𝑖 𝜆𝑖𝒆𝑖 ⊗ 𝒆𝑖.

Let 𝑸 = 𝑰 − 2𝒆1 ⊗ 𝒆1. By Lemma 2, 𝑸 is orthogonal, and thus, by (21f) we get:

𝑸𝑨𝑸𝑇 = ∑
𝑖
𝜆𝑖𝑸(𝒆𝑖 ⊗ 𝒆𝑖)𝑸𝑇 = ∑

𝑖
𝜆𝑖(𝑸𝒆𝑖) ⊗ (𝑸𝒆𝑖) = ∑

𝑖
𝜆𝑖𝒆𝑖 ⊗ 𝒆𝑖 = 𝑨.

In the last step we have used Lemma 3 whereby𝑸𝒆𝑖 = −𝒆𝑖 if 𝑖 = 1 and𝑸𝒆𝑖 = 𝒆𝑖 otherwise.

Now, since 𝑮 is isotropic, we have 𝑸𝑮(𝑨)𝑸𝑇 = 𝑮(𝑸𝑨𝑸𝑇 ) = 𝑮(𝑨), whence 𝑸𝑮(𝑨) =
𝑮(𝑨)𝑸, therefore 𝑸𝑮(𝑨)𝒆1 = 𝑮(𝑨)𝑸𝒆1 = −𝑮(𝑨)𝒆1.

We see that 𝑸 maps the vector 𝑮(𝑨)𝒆1 to its own negative, hence by Lemma 4 we

conclude that 𝑮(𝑨)𝒆1 is a multiple of 𝒆1, and therefore 𝒆1 is an eigenvector of 𝑮(𝑨). □

The next theorem is central to all modern theories of continuum mechanics. The proof

is somewhat long and technical and it’s often omitted in textbooks on the subject. For

instance, it is stated without proof in [5], page 31. The presentation in these notes is

modeled after that in an appendix in [7].

Theorem 13 (Rivlin–Ericksen). The function 𝑮 ∶  ⊂ sym → sym is isotropic if and
only if

𝑮(𝑨) = 𝛼0𝑰 + 𝛼1𝑨 + 𝛼2𝑨2 for all 𝑨 ∈ , (59)

where 𝛼0, 𝛼1, and 𝛼2 are scalar isotropic functions of 𝑨.

Proof. If𝑮 has the form in (59), then it is trivial to verify that it is isotropic. Here we prove

the converse. Thus, we pick an arbitrary 𝑨 ∈  and consider three cases, as follows.

Case 1: 𝑨 has three distinct eigenvalues.

According to the Spectral Theorem we have𝑨 = ∑𝑖 𝜆𝑖𝒆𝑖⊗𝒆𝑖. By the Transfer Theorem

(Theorem 12), 𝑮(𝑨) has the same eigenvectors as 𝑨, therefore it has a spectral decompo-

sition of the form 𝑮(𝑨) = ∑𝑖 𝛽𝑖𝒆𝑖 ⊗ 𝒆𝑖. Then from Lemma 6 we deduce that

𝑮(𝑨) = 𝛼0(𝑨) 𝑰 + 𝛼1(𝑨)𝑨 + 𝛼2(𝑨)𝑨2. (60a)

Case 2: 𝑨 has eigenvalues 𝜆2 = 𝜆3 ≠ 𝜆1.

As in the Case 1, we have 𝑨 = ∑𝑖 𝜆𝑖𝒆𝑖 ⊗ 𝒆𝑖 and 𝑮(𝑨) = ∑𝑖 𝛽𝑖𝒆𝑖 ⊗ 𝒆𝑖, with 𝛽2 = 𝛽3.
Therefore, with an appeal to Exercise 11 we have

𝑮(𝑨) = 𝛽1𝒆1 ⊗ 𝒆1 + 𝛽2(𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3) = 𝛽1𝒆1 ⊗ 𝒆1 + 𝛽2(𝑰 − 𝒆1 ⊗ 𝒆1),

We see that 𝑮(𝑨) is a linear combination of 𝒆1⊗𝒆1 and 𝑰 −𝒆1⊗𝒆1. Therefore by Lemma 7

we have

𝑮(𝑨) = 𝛼0(𝑨) 𝑰 + 𝛼1(𝑨)𝑨 + 0 × 𝑨2. (60b)

Case 3: 𝑨 has eigenvalues 𝜆1 = 𝜆2 = 𝜆3.
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We have 𝑨 = ∑𝑖 𝜆𝑖𝒆𝑖 ⊗ 𝒆𝑖 = 𝜆1(𝒆1 ⊗ 𝒆1 + 𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3) = 𝜆1𝑰 , and therefore any

nonzero vector in  is an eigenvector of 𝑨, and by the Transfer Theorem, an eigenvector

of 𝑮(𝑨). We conclude that 𝑮(𝑨) is a multiple of identity, and therefore

𝑮(𝑨) = 𝛼0(𝑨) 𝑰 + 0 × 𝑨 + 0 × 𝑨2. (60c)

We see that 𝑮(𝑨) has the form (60a) in general, where the coefficients 𝛼1 and 𝛼2 may

be zero in some special cases. It remains to show that the coefficients 𝛼0, 𝛼1 and 𝛼2 are

isotropic scalar functions, that is, they are of the form (12). Toward that end, pick an

arbitrary 𝑸 ∈ orth and compute:

𝑮(𝑸𝑨𝑸𝑇 ) = 𝛼0(𝑸𝑨𝑸𝑇 ) 𝑰 + 𝛼1(𝑸𝑨𝑸𝑇 ) 𝑸𝑨𝑸𝑇 + 𝛼2(𝑸𝑨𝑸𝑇 ) (𝑸𝑨𝑸𝑇 )2.

The left hand side equals 𝑸𝑮(𝑨)𝑸𝑇
by isotropy. On the right hand side the expression

(𝑸𝑨𝑸𝑇 )2 expands to 𝑸𝑨2𝑸𝑇
. Therefore we get:

𝑸𝑮(𝑨)𝑸𝑇 = 𝛼0(𝑸𝑨𝑸𝑇 ) 𝑰 + 𝛼1(𝑸𝑨𝑸𝑇 ) 𝑸𝑨𝑸𝑇 + 𝛼2(𝑸𝑨𝑸𝑇 ) 𝑸𝑨2𝑸𝑇 ,

which simplifies to

𝑮(𝑨) = 𝛼0(𝑸𝑨𝑸𝑇 ) 𝑰 + 𝛼1(𝑸𝑨𝑸𝑇 ) 𝑨 + 𝛼2(𝑸𝑨𝑸𝑇 ) 𝑨2.

By subtracting this from (60a) we obtain:

(𝛼0(𝑨) − 𝛼0(𝑸𝑨𝑸𝑇 ))𝑰 + (𝛼1(𝑨) − 𝛼1(𝑸𝑨𝑸𝑇 ))𝑨 + (𝛼2(𝑨) − 𝛼2(𝑸𝑨𝑸𝑇 ))𝑨2 = 𝟎,

and thus, by the linear independence of the set {𝑰 , 𝑨, 𝑨2} we conclude that

𝛼0(𝑨) = 𝛼0(𝑸𝑨𝑸𝑇 ), 𝛼1(𝑨) = 𝛼1(𝑸𝑨𝑸𝑇 ), 𝛼2(𝑨) = 𝛼2(𝑸𝑨𝑸𝑇 )

for all 𝑸 ∈ orth, indicating that the scalar-valued functions 𝛼𝑖 are isotropic. □

Remark 15. By Lemma 12, the coefficients 𝛼0, 𝛼1 and 𝛼2 in the Rivlin–Ericksen theorem

are functions of the invariants of 𝑨. Thus, a fully expanded version of (59) reads:

𝑮(𝑨) = 𝛼̃0(𝜄1(𝑨), 𝜄2(𝑨), 𝜄3(𝑨))𝑰

+ 𝛼̃1(𝜄1(𝑨), 𝜄2(𝑨), 𝜄3(𝑨))𝑨

+ 𝛼̃2(𝜄1(𝑨), 𝜄2(𝑨), 𝜄3(𝑨))𝑨2. (61)

17. Tensor calculus

This section presents an overview of the calculus of scalar fields 𝜙 ∶ 𝔼3 → ℝ, vector
fields 𝒖 ∶ 𝔼3 →  , and tensor fields 𝑨 ∶ 𝔼3 → . To simplify the exposition, we as-

sume that the function are defined everywhere in 𝔼3 and are differentiable as many times

as needed. These assumptions are by no means vital and may be severely restricted in

obvious ways.

17.1. The gradient of a scalar field. The gradient of a scalar field 𝜙 ∶ 𝔼3 → ℝ is the

vector field 𝐠𝐫𝐚𝐝 𝜙 ∶ 𝔼3 →  with the property that its value at a point 𝒙 ∈ 𝔼3 satisfies

𝐠𝐫𝐚𝐝 𝜙(𝒙) ⋅ 𝒒 =
𝑑
𝑑𝜖
𝜙(𝒙 + 𝜖𝒒)|||𝜖=0, for all 𝒒 ∈  . (62)
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Given a constant (i.e., independent of 𝒙) frame {𝒆1, 𝒆2, 𝒆3}, let us represent the point 𝒙
and the vector 𝒒 in terms of components in that frame, as in 𝒙 = 𝑥𝑖𝒆𝑖 and 𝒒 = 𝑞𝑖𝒆𝑖, and

then introduce 𝜙̃ ∶ ℝ3 → ℝ via 𝜙̃(𝑥1, 𝑥2, 𝑥3) = 𝜙(𝑥𝑝𝒆𝑝). Then

𝑑
𝑑𝜖
𝜙(𝒙 + 𝜖𝒒) =

𝑑
𝑑𝜖
𝜙̃(𝑥1 + 𝜖𝑞1, 𝑥2 + 𝜖𝑞2, 𝑥3 + 𝜖𝑞3) = 𝜙̃,𝑖(𝑥1 + 𝜖𝑞1, 𝑥2 + 𝜖𝑞2, 𝑥3 + 𝜖𝑞3) 𝑞𝑖,

where 𝜙̃,𝑖 is the partial derivative of 𝜙̃ with respect to its 𝑖th argument. Evaluating the

result at 𝜖 = 0 yields

𝑑
𝑑𝜖
𝜙(𝒙 + 𝜖𝒒)|||𝜖=0 = 𝜙̃,𝑖(𝑥1, 𝑥2, 𝑥3) 𝑞𝑖 = 𝜙̃,𝑖(𝑥1, 𝑥2, 𝑥3) 𝒆𝑖 ⋅ 𝒒,

which, in view of (62), implies that

𝐠𝐫𝐚𝐝 𝜙(𝒙) = 𝜙̃,𝑖(𝑥1, 𝑥2, 𝑥3) 𝒆𝑖. (63)

Remark 16. The gradient defined in (62) is independent of any reference frame, there-

fore so is the component representation (63). The individual components, 𝜙̃,𝑖(𝑥1, 𝑥2, 𝑥3),
however, are very much dependent on the choice of the reference frame.

Remark 17. The notation 𝜙̃,𝑖 for the partial derivative of 𝜙̃ with respect to its 𝑖th argument

is used quite widely within the context of tensor analysis in general, and in continuum

mechanics in particular. We will adhere to that notation throughout the rest of these

notes.

Remark 18. Beware that in our textbook the distinction between 𝜙 ∶ 𝔼3 → ℝ and 𝜙̃ ∶
ℝ3 → ℝ is intentionally blurred—in page 47 this is called “a slight abuse of notation”—and

𝜙,𝑖 is used as the equivalent of 𝜙̃,𝑖.

17.2. The gradient of a vector field. The gradient of a vector field 𝒗 ∶ 𝔼3 →  is the

tensor field 𝐠𝐫𝐚𝐝 𝒗 ∶ 𝔼3 →  with the property that its value at a point 𝒙 ∈ 𝔼3 satisfies

(𝐠𝐫𝐚𝐝 𝒗(𝒙))𝒒 =
𝑑
𝑑𝜖
𝒗(𝒙 + 𝜖𝒒)|||𝜖=0, for all 𝒒 ∈  . (64)

Given a constant (i.e., independent of 𝒙) frame {𝒆1, 𝒆2, 𝒆3}, let’s represent 𝒗 in compo-

nents, as in 𝒗(𝒙) = 𝑣𝑖(𝒙) 𝒆𝑖. Moreover, let’s represent the point 𝒙 and the vector 𝒒 in terms

of their components in that frame, as in 𝒙 = 𝑥𝑖𝒆𝑖 and 𝒒 = 𝑞𝑖𝒆𝑖. Finally, for 𝑖 = 1, 2, 3, let

𝑣̃𝑖 ∶ ℝ3 → ℝ be defined trough 𝑣̃𝑖(𝑥1, 𝑥2, 𝑥3) = 𝑣𝑖(𝑥𝑝𝒆𝑝). Then

𝑑
𝑑𝜖
𝒗(𝒙 + 𝜖𝒒) =

𝑑
𝑑𝜖
𝑣̃𝑖(𝑥1 + 𝜖𝑞1, 𝑥2 + 𝜖𝑞2, 𝑥3 + 𝜖𝑞3)𝒆𝑖 = 𝑣̃𝑖,𝑗 (𝑥1 + 𝜖𝑞1, 𝑥2 + 𝜖𝑞2, 𝑥3 + 𝜖𝑞3) 𝒆𝑖𝑞𝑗 ,

where 𝑣̃𝑖,𝑖 is the partial derivative of 𝑣̃𝑖 with respect to its 𝑗th argument. Evaluating the

result at 𝜖 = 0 yields

𝑑
𝑑𝜖
𝒗(𝒙 + 𝜖𝒒)|||𝜖=0 = 𝑣̃𝑖,𝑗 (𝑥1, 𝑥2, 𝑥3) 𝒆𝑖𝑞𝑗 = 𝑣̃𝑖,𝑖(𝑥1, 𝑥2, 𝑥3) 𝒆𝑖 (𝒆𝑗 ⋅ 𝒒) = 𝑣̃𝑖,𝑖(𝑥1, 𝑥2, 𝑥3) (𝒆𝑖 ⊗ 𝒆𝑗 )𝒒,

which, in view of (64), implies that

𝐠𝐫𝐚𝐝 𝒗(𝒙) = 𝑣̃𝑖,𝑗 (𝑥1, 𝑥2, 𝑥3) 𝒆𝑖 ⊗ 𝒆𝑗 . (65)

Thus, 𝑣̃𝑖,𝑗 (𝑥1, 𝑥2, 𝑥3) are the components of 𝐠𝐫𝐚𝐝 𝒗(𝒙) relative to the {𝒆1, 𝒆2, 𝒆3} frame.
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17.3. The divergence of vector and tensor fields. The divergence of the vector field 𝒗
is the scalar field div 𝒗 ∶ 𝔼3 → ℝ defined through

div 𝒗 = tr 𝐠𝐫𝐚𝐝 𝒗. (66)

If 𝐠𝐫𝐚𝐝 𝒗 is expressed in terms of components relative to a frame as in (65), then (66)

implies that

div 𝒗 = 𝑣̃𝑖,𝑖. (67)

The divergence of the tensor field 𝑨 is the vector field div𝑨 ∶ 𝔼3 →  with the

property

(div𝑨) ⋅ 𝒒 = div(𝑨𝑇𝒒), for all 𝒒 ∈  . (68)

The presence of the transpose in that definition may look odd, but that is exactly what is

needed for generalizing the Divergence Theorem, familiar from calculus, to tensors.

If 𝑨 is expressed in components relative to a frame, as in 𝑨 = 𝑎̃𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 , then the

components of div𝑨 relative to the frame may be calculated as follows. From (21b) we

have 𝑨𝑇 = 𝑎̃𝑖𝑗 𝒆𝑗 ⊗ 𝒆𝑖, and therefore 𝑨𝑇𝒒 = 𝑎̃𝑖𝑗 (𝒆𝑗 ⊗ 𝒆𝑖)𝒒 = 𝑎̃𝑖𝑗 (𝒆𝑖 ⋅ 𝒒) 𝒆𝑗 , and therefore

by (67),

div(𝑨𝑇𝒒) = 𝑎̃𝑖𝑗 ,𝑗 (𝒆𝑖 ⋅ 𝒒) = (𝑎̃𝑖𝑗 ,𝑗 𝒆𝑖) ⋅ 𝒒,
then in view of (68) we conclude that

div𝑨 = 𝑎̃𝑖𝑗 ,𝑗 𝒆𝑖. (69)

17.4. The curl of a vector field. The curl of the vector field 𝒗 is the vector field 𝐜𝐮𝐫𝐥 𝒗 ∶
𝔼3 →  defined through

(𝐜𝐮𝐫𝐥 𝒗) × 𝒒 = (𝐠𝐫𝐚𝐝 𝒗 − (𝐠𝐫𝐚𝐝 𝒗)𝑇 ) 𝒒 for all 𝒒 ∈  . (70)

If 𝒗 is expressed in components relative to a frame as in 𝒗 = 𝑣𝑖 𝒆𝑖, then

𝐜𝐮𝐫𝐥 𝒗 = 𝜖𝑖𝑗𝑘 𝑣̃𝑖,𝑘 𝒆𝑗 (71a)

= (𝑣̃3,2 − 𝑣̃2,3) 𝒆1 + (𝑣̃1,3 − 𝑣̃3,1) 𝒆2 + (𝑣̃2,1 − 𝑣̃1,2) 𝒆3. (71b)

See page 53 of the textbook for details of the calculation.

17.5. The Laplacian of scalar and vector fields. The Laplacian of the scalar field 𝜙 is

the scalar field Δ𝜙 ∶ 𝔼3 → ℝ defined through

Δ𝜙 = div 𝐠𝐫𝐚𝐝 𝜙. (72)

If we express the points 𝒙 ∈ 𝔼3 in terms of components along a constant (i.e., independent

of 𝒙) frame {𝒆1, 𝒆2, 𝒆3} as 𝒙 = 𝑥𝑖𝒆𝑖, and let 𝜙̃(𝑥1, 𝑥2, 𝑥3) = 𝜙(𝑥𝑖𝒆𝑖) as we did earlier, then the

Laplacian of 𝜙 may be expressed as

Δ𝜙 = 𝜙̃,𝑖𝑖. (73)

See page 54 of the textbook for proof.

The Laplacian of the vector field 𝒗 is the vector field Δ𝒗 ∶ 𝔼3 →  defined through

Δ𝒗 = div 𝐠𝐫𝐚𝐝 𝒗. (74)

In terms of components this takes the form

Δ𝒗 = 𝑣̃𝑖,𝑗𝑗 𝒆𝑖. (75)

See page 54 of the textbook for proof.
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18. Functions of tensors

Here we learn how to calculate derivatives of functions defined on .

18.1. Scalar-valued functions of a tensor. The derivative of the scalar-valued function

𝜓 ∶  → ℝ is a tensor-valued function 𝐷𝜓 ∶  →  defined through

𝐷𝜓(𝑨)∶𝑩 =
𝑑
𝑑𝜖
𝜓(𝑨 + 𝜖𝑩)|||𝜖=0, for all 𝑩 ∈ . (76)

Let 𝑨 = 𝑎𝑖𝑗𝒆𝑖 ⊗ 𝒆𝑗 express the tensor 𝑨 relative to a frame {𝒆1, 𝒆2, 𝒆3}. Then 𝜓(𝑨) =
𝜓(𝑎𝑖𝑗𝒆𝑖 ⊗ 𝒆𝑗 ) leads to

𝐷𝜓(𝑨) =
𝜕𝜓(𝑎𝑖𝑗𝒆𝑖 ⊗ 𝒆𝑗 )

𝜕𝑎𝑖𝑗
𝒆𝑖 ⊗ 𝒆𝑗 . (77)

See page 60 of the textbook for a proof.

Example 4. Let 𝜓 ∶  → ℝ be defined as 𝜓(𝑨) = 1
2𝑨∶𝑨. Let us show that 𝐷𝜓(𝑨) = 𝑨.

Let 𝑨 = 𝑎𝑖𝑗𝒆𝑖 ⊗ 𝒆𝑗 relative to some frame {𝒆1, 𝒆2, 𝒆3}. Then according to (27) we have

𝜓(𝑨) = 1
2𝑎𝑝𝑞𝑎𝑝𝑞 , and therefore

𝜕
𝜕𝑎𝑖𝑗

𝜓(𝑨) =
𝜕
𝜕𝑎𝑖𝑗 (

1
2
𝑎𝑝𝑞𝑎𝑝𝑞) =

1
2(

𝜕𝑎𝑝𝑞
𝜕𝑎𝑖𝑗

𝑎𝑝𝑞 + 𝑎𝑝𝑞
𝜕𝑎𝑝𝑞
𝜕𝑎𝑖𝑗 )

=
𝜕𝑎𝑝𝑞
𝜕𝑎𝑖𝑗

𝑎𝑝𝑞 = 𝛿𝑝𝑖𝛿𝑞𝑗𝑎𝑝𝑞 = 𝑎𝑖𝑗 .

Then by (77) we have 𝐷𝜓(𝑨) = 𝑎𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 = 𝑨.

Theorem 14. Let 𝜓 ∶  → ℝ be defined as 𝜓(𝑨) = det𝑨. Then

𝐷𝜓(𝑨) = (det𝑨)𝑨−𝑇 for all invertible 𝑨 ∈ , (78)

where 𝑨−𝑇 is the transpose of the inverse of 𝑨.

Proof. For any 𝑩 ∈  and 𝜖 ∈ ℝ we have

𝑨 + 𝜖𝑩 = 𝜖𝑨(
1
𝜖
𝑰 + 𝑨−1𝑩) = −𝜖𝑨(−

1
𝜖
𝑰 − 𝑨−1𝑩) = −𝜖𝑨(𝜆𝑰 − 𝑨

−1𝑩),

where we have set 𝜆 = −1/𝜖. Then by (25a) and (25b) we get

det(𝑨 + 𝜖𝑩) = −𝜖3(det 𝑨) det(𝜆𝑰 − 𝑨−1𝑩)

and then by (29)

𝜓(𝑨 + 𝜖𝑩) = −𝜖3(det 𝑨)(𝜆
3 − 𝜄1(𝑨−1𝑩) 𝜆2 + 𝜄2(𝑨−1𝑩) 𝜆 − 𝜄3(𝑨−1𝑩)

= (det𝑨)(−𝜖
3𝜆3 + 𝜄1(𝑨−1𝑩) 𝜖3𝜆2 − 𝜄2(𝑨−1𝑩) 𝜖3𝜆 + 𝜄3(𝑨−1𝑩 𝜖3)

= (det𝑨)(1 + 𝜄1(𝑨−1𝑩) 𝜖 + 𝜄2(𝑨−1𝑩) 𝜖2 + 𝜄3(𝑨−1𝑩) 𝜖3).

Then

𝑑
𝑑𝜖
𝜓(𝑨 + 𝜖𝑩) = (det𝑨)(𝜄1(𝑨

−1𝑩) + 𝜄2(𝑨−1𝑩) (2𝜖) + 𝜄3(𝑨−1𝑩) (3𝜖2)),

whence

𝐷𝜓(𝑨)∶𝑩 =
𝑑
𝑑𝜖
𝜓(𝑨 + 𝜖𝑩)|||𝜖=0 = (det𝑨) 𝜄1(𝑨−1𝑩).
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Recalling (24a) we have 𝜄1(𝑨−1𝑩) = tr(𝑨−1𝑩), and recalling (26) this is the same as𝑨−𝑇∶𝑩.

We conclude that

𝐷𝜓(𝑨)∶𝑩 = (det𝑨) (𝑨−𝑇∶𝑩) for all 𝑩 ∈ ,

which is equivalent to (78) since 𝑩 is arbitrary. □

Corollary 2. Consider a time-dependent tensor 𝑨(𝑡). We write
∙
𝑨 for its derivative with

respect to time. Then

𝑑
𝑑𝑡

det 𝑨 = (det𝑨) tr(𝑨−1 ∙
𝑨) = (det 𝑨)𝑨−𝑇∶

∙
𝑨. (79)

Proof. Let 𝜓(𝑨) = det𝑨, and let 𝑨(𝑡) = 𝑎𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 in some frame {𝒆1, 𝒆2, 𝒆3}, where 𝑎𝑖𝑗 =
𝑎𝑖𝑗 (𝑡) and

∙𝑎𝑖𝑗 = 𝑑𝑎𝑖𝑗/𝑑𝑡. Then by the chain rule

𝑑
𝑑𝑡

det 𝑨 =
𝑑
𝑑𝑡
𝜓(𝑎𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 ) =

𝜕𝜓
𝜕𝑎𝑖𝑗

∙𝑎𝑖𝑗 =
𝜕𝜓
𝜕𝑎𝑖𝑗

𝛿𝑖𝑝𝛿𝑗𝑞
∙𝑎𝑝𝑞

=
𝜕𝜓
𝜕𝑎𝑖𝑗 (

(𝒆𝑖 ⊗ 𝒆𝑗 )∶(𝒆𝑝 ⊗ 𝒆𝑞))
∙𝑎𝑝𝑞 = (

𝜕𝜓
𝜕𝑎𝑖𝑗

𝒆𝑖 ⊗ 𝒆𝑗)∶(
∙𝑎𝑝𝑞 𝒆𝑝 ⊗ 𝒆𝑞) = 𝐷𝜓(𝑨)∶

∙
𝑨.

Substituting for 𝐷𝜓(𝑨) from (78) we get

𝑑
𝑑𝑡

det 𝑨 = (det𝑨)𝑨−𝑇∶
∙
𝑨,

as asserted. □

(See page 62 of the textbook for an alternative proof.)

Remark 19. Since tr(𝑨𝑩) = tr(𝑩𝑨) and 𝑨∶𝑩 = 𝑩∶𝑨, the equations (79) may be equiva-

lently expressed as

𝑑
𝑑𝑡

det 𝑨 = (det𝑨) tr(
∙
𝑨𝑨−1) = (det 𝑨)

∙
𝑨∶𝑨−𝑇 . (79-alt)

19. Integral Theorems

In the following, 𝐵 is a “nice” domain in 𝔼3, and 𝜕𝐵 is the domain’s boundary. We write

𝑑𝑉 for the infinitesimal volume element when integrating over 𝐵, and we write 𝑑𝐴 for

the infinitesimal volume element when integrating over 𝜕𝐵.

Here we are going to derive several forms of the Divergence Theorem starting from

the basic theorem of Gauss for scalar functions defined in a Cartesian coordinate system

in ℝ𝑑
. Specifically, let 𝜙 ∶= Ω ⊂ 𝑅𝑑 → ℝ be a sufficiently smooth scalar field, and let

𝒏 = ⟨𝑛1, 𝑛2, … 𝑛𝑑⟩ be the outward unit normal vector at any point on the boundary of Ω.

Then Gauss’s theorem, which we state here without proof, is

∫
Ω

𝜕𝜙
𝜕𝑥𝑖

𝑑𝑉 = ∫
𝜕Ω
𝜙𝑛𝑖 𝑑𝐴. (80)

We restate this for functions 𝜙 ∶ 𝐵 ⊂ 𝔼3 → ℝ as
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Theorem 15 (Gauss). Let 𝜙 ∶= 𝐵 ⊂ 𝔼3 → ℝ be a sufficiently smooth scalar field, and let 𝒏
be the outward unit normal vector at any point on the boundary of 𝐵. Then

∫
𝐵
𝐠𝐫𝐚𝐝 𝜙 𝑑𝑉 = ∫

𝜕𝐵
𝜙𝒏 𝑑𝐴. (81)

The well-known Divergence Theorem for vector fields is an immediate consequence

of Gauss’s theorem.

Theorem 16 (The Divergence Theorem for vector fields). For a sufficiently smooth vector
field 𝒗 ∶ 𝐵 →  we have

∫
𝐵
div 𝒗 𝑑𝑉 = ∫

𝜕𝐵
𝒗 ⋅ 𝒏 𝑑𝐴, (82)

where 𝒏 is the outward unit normal to the boundary. The quantity on the right-hand side
of (82) is call the flux of the vector field 𝒗 across the boundary.

Proof. Recalling (67), that is, div 𝒗 = 𝑣̃𝑖,𝑖. Then according to (80) version of Gauss’s theo-

rem

∫
𝐵
div 𝒗 𝑑𝑉 = ∫

𝐵
𝑣̃𝑖,𝑖 𝑑𝑉 = ∫

𝜕𝐵
𝑣̃𝑖𝑛𝑖 𝑑𝐴 = ∫

𝜕𝐵
𝒗 ⋅ 𝒏 𝑑𝐴,

as asserted. It’s also possible to achieve the same result by applying the (81) version of

Gauss’s theorem, although the calculation would be a little bit longer. We have

div 𝒗 = 𝑣̃𝑖,𝑖 = 𝑣̃𝑖,𝑗 𝛿𝑖𝑗 = 𝑣̃𝑖,𝑗 𝒆𝑖 ⋅ 𝒆𝑗 = (𝑣̃𝑖,𝑗 𝒆𝑗 ) ⋅ 𝒆𝑖 = (𝐠𝐫𝐚𝐝 𝑣̃𝑖) ⋅ 𝒆𝑖,

and therefore, by (81)

∫
𝐵
div 𝒗 𝑑𝑉 = ∫

𝐵
(𝐠𝐫𝐚𝐝 𝑣̃𝑖) ⋅ 𝒆𝑖 𝑑𝑉 = ∫

𝜕𝐵
𝑣̃𝑖 𝒏 ⋅ 𝒆𝑖 𝑑𝐴 = ∫

𝜕𝐵
(𝑣̃𝑖 𝒆𝑖) ⋅ 𝒏 𝑑𝐴 = ∫

𝜕𝐵
𝒗 ⋅ 𝒏 𝑑𝐴. □

Theorem 17 (The Divergence Theorem for tensor fields). For a sufficiently smooth tensor
field 𝑨 ∶ 𝐵 →  we have

∫
𝐵
div𝑨 𝑑𝑉 = ∫

𝜕𝐵
𝑨𝒏 𝑑𝐴, (83)

where 𝒏 is the outward unit normal to the boundary.

Proof. Recalling the definition (68) of the divergence of a tensor, for any vector 𝒒 ∈  we

have

∫
𝐵
(div𝑨) ⋅ 𝒒 𝑑𝑉 = ∫

𝐵
div(𝑨𝑇𝒒) 𝑑𝑉

by (82)

= ∫
𝜕𝐵
𝑨𝑇𝒒 ⋅ 𝒏 𝑑𝐴

by (15)

= ∫
𝜕𝐵
𝑨𝒏 ⋅ 𝒒 𝑑𝐴,

which is equivalent to (83) since 𝒒 is arbitrary. □

Theorem 18 (The Generalized Divergence Theorem). Let 𝒖 be a vector field and𝑨 a tensor
field on a domain 𝐵 ⊂ 𝔼3. Then we have

∫
𝐵(
𝒖 ⊗ div𝑨 + (𝐠𝐫𝐚𝐝 𝒖)𝑨𝑇

) 𝑑𝑉 = ∫
𝜕𝐵
𝒖 ⊗ 𝑨𝒏 𝑑𝐴, (84a)

or the equivalent transposed version:

∫
𝐵(

(div𝑨) ⊗ 𝒖 + 𝑨 (𝐠𝐫𝐚𝐝 𝒖)𝑇) 𝑑𝑉 = ∫
𝜕𝐵
(𝑨𝒏) ⊗ 𝒖 𝑑𝐴. (84b)
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Proof. To prove the (84b) variant, pick any constant vector 𝒒 ∈  and calculate

∫
𝜕𝐵
(𝑨𝒏 ⊗ 𝒖) 𝒒 𝑑𝐴 = ∫

𝜕𝐵
(𝒖 ⋅ 𝒒)𝑨𝒏 𝑑𝐴

by (83)

= ∫
𝐵
div((𝒖 ⋅ 𝒒)𝑨) 𝑑𝐴.

Now, referring to equation (215) of Exercise 24, we have

div((𝒖 ⋅ 𝒒)𝑨) = 𝑨𝐠𝐫𝐚𝐝(𝒖 ⋅ 𝒒) + (𝒖 ⋅ 𝒒) div𝑨,

and then, by equation (216) of Exercise 25:

𝐠𝐫𝐚𝐝(𝒖 ⋅ 𝒒) = (𝐠𝐫𝐚𝐝 𝒖)𝑇𝒒 + (𝐠𝐫𝐚𝐝 𝒒)𝑇𝒖 = (𝐠𝐫𝐚𝐝 𝒖)𝑇𝒒

since 𝐠𝐫𝐚𝐝 𝒒 = 𝟎. Thus, we have

div((𝒖 ⋅ 𝒒)𝑨) = 𝑨 (𝐠𝐫𝐚𝐝 𝒖)𝑇𝒒 + (𝒖 ⋅ 𝒒) div𝑨, = 𝑨 (𝐠𝐫𝐚𝐝 𝒖)𝑇𝒒 + ((div𝑨) ⊗ 𝒖) 𝒒.

We conclude that

∫
𝜕𝐵
(𝑨𝒏 ⊗ 𝒖) 𝒒 𝑑𝐴 = ∫

𝐵 (
𝑨 (𝐠𝐫𝐚𝐝 𝒖)𝑇𝒒 + ((div𝑨) ⊗ 𝒖) 𝒒) 𝑑𝑉 ,

which is equivalent to (84b) since 𝒒 is arbitrary. □

Remark 20. Let us take note of two special cases of (84a).

(1) If 𝒖 is any constant vector field, then 𝐠𝐫𝐚𝐝 𝒖 = 𝟎, and (84a) takes the form

𝒖 ⊗ ∫
𝐵
div𝑨 𝑑𝑉 = 𝒖 ⊗ ∫

𝜕𝐵
𝑨𝒏 𝑑𝐴,

which reduces to (83) since 𝒖 is arbitrary.

(2) If 𝑨 is the identity tensor, then div𝑨 = 𝟎, and (84a) takes the form

∫
𝐵
𝐠𝐫𝐚𝐝 𝒖 𝑑𝑉 = ∫

𝜕𝐵
𝒖 ⊗ 𝒏 𝑑𝐴.

Forming the trace of each side and noting that tr 𝐠𝐫𝐚𝐝 𝒖 = div 𝒖 and tr(𝒖 ⊗ 𝒏) =
𝒖 ⋅ 𝒏, this reduces to (82)

For future reference, let us summarize here the component forms of the previous three

theorems.

Gauss’s Theorem: ∫
𝐵
𝜙,𝑗 𝑑𝑉 = ∫

𝜕𝐵
𝜙𝑛𝑗 𝑑𝐴 (85)

The Divergence Theorem for vectors: ∫
𝐵
𝑣𝑖,𝑗 𝑑𝑉 = ∫

𝜕𝐵
𝑣𝑗𝑛𝑗 𝑑𝐴 (86)

The Divergence Theorem for tensors: ∫
𝐵
𝑎𝑖𝑗 ,𝑗 𝑑𝑉 = ∫

𝜕𝐵
𝑎𝑖𝑗𝑛𝑗 𝑑𝐴 (87)

Theorem 19 (Stokes Theorem). Let 𝑆 be a “nice” surface with a boundary curve 𝐶. Then
for a sufficiently smooth vector field 𝒗 defined in a neighborhood of 𝑆 we have

∫
𝑆
(𝐜𝐮𝐫𝐥 𝒗) ⋅ 𝒏 𝑑𝐴 = ∫

𝐶
𝒗 ⋅ 𝒕 𝑑𝑠, (88)

where 𝒏 a unit normal to 𝑆, and 𝒕 is a unit tangent to 𝐶. See page 57 of the textbook for the
details of how 𝒏 and 𝒕 are oriented.
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20. Newtonian mechanics

Newton’s law of motion, 𝒇 = 𝑚𝒂, relates the acceleration 𝒂 of a point mass 𝑚 due to

the force 𝒇 applied to it. In this section study the implications of Newton’s law regarding

the motion of system of interacting masses, and—through passing to a limit—the motion

of a continuum.

Note: In this section we suspend the summation convention. There are no
implicit summations over repeated indices!

20.1. The linear momentum. Consider a system of 𝑛 particles 𝑃𝑖 of masses 𝑚𝑖, 𝑖 =
1, 2, … , 𝑛, tracked through the position vectors 𝒓𝑖 relative to a fixed point 𝑶 in 𝔼3.

Let 𝒇𝑖 be the resultant of the forces acting on 𝑃𝑖. According to Newton’s Law of Motion

we have

𝑚𝑖
∙𝒗𝑖 = 𝒇𝑖, 𝑖 = 1, 2, … , 𝑛. (89)

The force 𝒇𝑖 may be regarded as being derived from two sources:

(1) forces acting on 𝑃𝑖 due to interaction with the other particles;

(2) forces acting on 𝑃𝑖 by agents other that the particles 𝑃𝑗 , (𝑗 ≠ 𝑖).

Forces of the first kind are called internal forces. Let 𝑭𝑖𝑗 be the force exerted on the par-

ticle 𝑃𝑖 by the particle 𝑃𝑗 . We assume that 𝑭𝑖𝑗 points in the direction 𝑃𝑖𝑃𝑗 . According to

Newton’s law of action/reaction, we have 𝑭𝑖𝑗 = −𝑭𝑗𝑖 for all 𝑖 and 𝑗 . In particular, 𝑭𝑖𝑖 = 𝟎
for all 𝑖.

Forces of the second kind are called external forces. We write 𝒇𝑖 for the resultant of the

external forces acting on 𝑃𝑖. Thus, Newton’s law of motion (89) takes the form

𝑚𝑖
∙𝒗𝑖 = 𝒇𝑖 +

𝑛

∑
𝑗=1
𝑭𝑖𝑗 , 𝑖 = 1, 2, … , 𝑛. (90)

Summing up over all particles we get

𝑛

∑
𝑖=1

𝑚𝑖
∙𝒗𝑖 =

𝑛

∑
𝑖=1
𝒇𝑖 +

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑭𝑖𝑗 ,

but since 𝑭𝑖𝑗 + 𝑭𝑗𝑖 = 𝟎, that double-sum is zero. Thus, the internal forces are eliminated

and we are left with
𝑛

∑
𝑖=1

𝑚𝑖
∙𝒗𝑖 =

𝑛

∑
𝑖=1
𝒇𝑖. (91)

20.2. The angular momentum. Continuing with the previous subsection’s system of 𝑛
particles, we take the cross product of 𝒓𝑖 with (90)

𝒓𝑖 × 𝑚𝑖
∙𝒗𝑖 = 𝒓𝑖 × 𝒇𝑖 + 𝒓𝑖 ×

𝑛

∑
𝑗=1
𝑭𝑖𝑗 ,

and sum over 𝑖:
𝑛

∑
𝑖=1
𝒓𝑖 × 𝑚𝑖

∙𝒗𝑖 =
𝑛

∑
𝑖=1
𝒓𝑖 × 𝒇𝑖 +

𝑛

∑
𝑖=1

(𝒓𝑖 ×
𝑛

∑
𝑗=1
𝑭𝑖𝑗). (92)
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The second term on the right-hand side is zero. That’s the consequence of the identity

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑎𝑖𝑗 =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=𝑖

(𝑎𝑖𝑗 + 𝑎𝑗𝑖) −
𝑛

∑
𝑖=1

𝑎𝑖𝑖,

which holds for any summand 𝑎𝑖𝑗 . In effect, it says that to add up all the entries of a square

matrix, we

(1) add up the diagonal and below-diagonal entries;

(2) add up the diagonal and above-diagonal entries;

(3) subtract the diagonal entries because they have been double-counted.

Applying that identity with 𝑎𝑖𝑗 = 𝒓𝑖 × 𝑭𝑖𝑗 , we see that

𝑛

∑
𝑖=1
𝒓𝑖 ×

𝑛

∑
𝑗=1
𝑭𝑖𝑗 =

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝒓𝑖 × 𝑭𝑖𝑗 =

𝑛

∑
𝑖=1

𝑛

∑
𝑗=𝑖

(𝒓𝑖 × 𝑭𝑖𝑗 + 𝒓𝑗 × 𝑭𝑗𝑖) −
𝑛

∑
𝑖=1
𝒓𝑖 × 𝑭𝑖𝑖

=
𝑛

∑
𝑖=1

𝑛

∑
𝑗=𝑖

(𝒓𝑖 − 𝒓𝑗 ) × 𝑭𝑖𝑗 −
𝑛

∑
𝑖=1
𝒓𝑖 × 𝑭𝑖𝑖 = 𝟎,

because (i) 𝑭𝑖𝑗 = −𝑭𝑗𝑖; (ii) 𝑭𝑖𝑖 = 𝟎; and (iii) (𝒓𝑖 −𝒓𝑗 ) × 𝑭𝑖𝑗 = 𝟎 since 𝑭𝑖𝑗 is aligned with 𝒓𝑖 −𝒓𝑗 .
Thus, equation (92) reduces to

𝑛

∑
𝑖=1
𝒓𝑖 × 𝑚𝑖

∙𝒗𝑖 =
𝑛

∑
𝑖=1
𝒓𝑖 × 𝒇𝑖. (93)

20.3. The continuum. Consider the domain 𝐵𝑡 ⊂ 𝔼3, parametrized by time 𝑡, as a rep-

resentation of the motion and deformation of a continuum. Think of 𝐵𝑡 as a collection

of infinitesimal elements, resembling the system of 𝑛 particles analyzed in the previous

subsections. We saw that the internal forces drop out of the body’s equations of motion,

therefore here we concern ourselves with the external forces.

The external forces acting on 𝐵𝑡 are classified into two types: body forces and surface
forces. Body forces act on each infinitesimal element within the body. Typically that

would be the force of gravity, measured as force per unit mass. Surface forces act on 𝐵𝑡 ’s
boundary, measured as force per unit area, called the traction. Writing 𝒃 for the body

forces, 𝒕 for tractions, and 𝜌 for the density, equations (91) and (93) take the form

∫
𝐵𝑡

∙𝒗𝜌 𝑑𝑉 = ∫
𝐵𝑡
𝒃𝜌 𝑑𝑉 + ∫

𝜕𝐵𝑡
𝒕 𝑑𝐴, (94)

∫
𝐵𝑡
𝒓 × ∙𝒗𝜌 𝑑𝑉 = ∫

𝐵𝑡
𝒓 × 𝒃𝜌 𝑑𝑉 + ∫

𝜕𝐵𝑡
𝒓 × 𝒕 𝑑𝐴, (95)

where 𝑑𝑉 and 𝑑𝐴 are the infinitesimal volume and surface elements, respectively.

Remark 21. If all fields under consideration are bounded, then from (94) we get

|||∫𝜕𝐵𝑡
𝒕 𝑑𝐴||| ≤ ∫

𝐵𝑡

||
∙𝒗𝜌 − 𝒃𝜌|| 𝑑𝑉 ≤ 𝜅(𝑡) vol(𝐵𝑡), (96)

where 𝜅(𝑡) = max𝐵𝑡 |
∙𝒗𝜌 − 𝒃𝜌|, and vol(𝐵𝑡) is the volume of 𝐵𝑡 . It follows that

|||∫𝜕𝐵𝑡
𝒕 𝑑𝐴||| → 0 as vol(𝐵𝑡) → 0. (97)
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Moreover, by dividing (96) through by the area of 𝐵𝑡 ’s boundary, area(𝜕𝐵𝑡), we see that

1
area(𝜕𝐵𝑡)

|||∫𝜕𝐵𝑡
𝒕 𝑑𝐴||| ≤

𝜅(𝑡) vol(𝐵𝑡)
area(𝜕𝐵𝑡)

,

If 𝐵𝑡 represents of a family of nested self-similar domains of representative lengths 𝛿, then

vol(𝐵𝑡) is proportional to 𝛿3 while area(𝜕𝐵𝑡) is proportional to 𝛿2. We conclude that

1
area(𝜕𝐵𝑡)

|||∫𝜕𝐵𝑡
𝒕 𝑑𝐴 ||| → 0 as 𝛿 → 0. (98)

We will need both (97) and (98) in our proof of the existence of the Cauchy stress. In

our textbook, the condition (98) is stated as an assumption, without proof, on page 80,

equation (3.1).

21. The Cauchy stress tensor

Lemma 13. Let 𝐵 be the deformed state of a body at a fixed time 𝑡. For any interior point
𝒙 ∈ 𝐵, let 𝒕(𝒙, 𝒏) be the traction vector on an arbitrary surface patch through 𝒙 having the
unit normal vector 𝒏. Then

𝒕(𝒙, −𝒏) = −𝒕(𝒙, 𝒏). (99)

Proof. Figure 5(a) shows that patch through 𝒙 as the disk 𝐷. We build a right cylinder of

height on that encloses𝐷 as shown, and write 𝑆+ and 𝑆− for the cylinder’s top and bottom

surfaces, and 𝑆ℎ for its lateral surface. Applying (97) to the cylinder, we have

∫
𝑆+
𝒕(𝝃 , 𝒏) 𝑑𝐴 + ∫

𝑆−
𝒕(𝝃 , −𝒏) 𝑑𝐴 + ∫

𝑆ℎ
𝒕(𝝃 ,𝒎) 𝑑𝐴 → 𝟎 as ℎ → 0,

where 𝒎 represents the unit outward normal at any point on the lateral surface 𝑆ℎ. As

ℎ → 0, the integral over 𝑆ℎ vanishes, while the integrals over 𝑆+ and 𝑆− converge to

integrals over the disk 𝐷, leading to

∫
𝐷(
𝒕(𝝃 , 𝒏) + 𝒕(𝝃 , −𝒏)) 𝑑𝐴 = 𝟎.

We wish to conclude that 𝒕(𝒙, 𝒏) + 𝒕(𝒙, −𝒏) = 𝟎. Indeed, if that were not the case, then

(𝒕(𝝃 , 𝒏)+𝒕(𝝃 , −𝒏)) ⋅𝒂 would be positive in a small neighborhood of 𝒙, for some vector 𝒂.

If 𝐷 is small enough to be contained entirely within that neighborhood. then the integral

above (dotted with 𝒂) will evaluate to a positive quantity, contradicting the fact that it

must be zero. □

Theorem 20 (The Cauchy Stress Theorem, Part 1). The traction tensor 𝒕(𝒙, 𝒏) of Lemma 13
is linear in 𝒏, and thus, there exists a second order tensor field 𝑺 ∶ 𝐵 → , so that

𝒕(𝒙, 𝒏) = 𝑺(𝒙)𝒏, for all 𝒙 ∈ 𝐵. (100)

The tensor 𝑺(𝒙) is called the Cauchy stress at 𝒙.

Proof. Pick a point 𝒙 in the interior of 𝐵 and pass a surface through 𝒙 with a unit normal

𝒏 in an arbitrary direction. Let 𝑇ℎ be a triangle within that surface with edge lengths

proportional to ℎ. Construct a tetrahedron with the base 𝑇ℎ and the opposite vertex at

some point, say 𝒐, as in Figure 5(b)), whose edges are parallel to a frame {𝒆1, 𝒆2, 𝒆3}. Orient

the tetrahedron so that 𝒏⋅𝒆𝑖 > 0 for 𝑖 = 1, 2, 3. Let’s write 𝑇ℎ,1, 𝑇ℎ,2, 𝑇ℎ,3 for the tetrahedron’s
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𝒏

−𝒏

ℎ

𝐷

𝑆+

𝑆−

𝑆ℎ
𝒙

𝒐 𝒙
𝒆1

𝒆2

𝒆3

𝒏

(a) (b)

Figure 5. On the left, as the height ℎ of the cylinder goes to zero, its top

and bottom surfaces converge to the disk𝐷. On the right, As the shaded

triangle triangle shrinks toward 𝒙, the entire tetrahedron shrinks to-

ward 𝒙.

faces that go through the vertex 𝒐, and note that the outer normals to these faces are −𝒆𝑖,
𝑖 = 1, 2, 3.

Applying (98) to the tetrahedron, we get

1
area(𝜕Δℎ)(∫

𝑇ℎ
𝒕(𝒏, 𝝃) 𝑑𝐴 +

𝑛

∑
𝑖=1

∫
𝑇ℎ,𝑖
𝒕(−𝒆𝑖, 𝝃 ) 𝑑𝐴) → 𝟎 as ℎ → 0. (101)

Let 𝑃𝑖 ∶ 𝑇ℎ → 𝑇ℎ,𝑖 be the orthogonal projection map of 𝑇ℎ onto 𝑇ℎ,𝑖. This projects the

area element 𝑑𝐴 of 𝑇ℎ to an elements of area (𝒏 ⋅ 𝒆𝑖)𝑇ℎ on 𝑇ℎ,𝑖, therefore an integration over

the triangle 𝑇ℎ,𝑖 may be performed on the triangle 𝑇ℎ according to

∫
𝑇ℎ,𝑖
𝒕(−𝒆𝑖, 𝝃 ) 𝑑𝐴 = ∫

𝑇ℎ
𝒕(−𝒆𝑖, 𝑃−1

𝑖 (𝝃)) (𝒏 ⋅ 𝒆𝑖)𝑑𝐴,

and thus

∫
𝑇ℎ
𝒕(𝒏, 𝝃) 𝑑𝐴 +

𝑛

∑
𝑖=1

∫
𝑇ℎ,𝑖
𝒕(−𝒆𝑖, 𝝃 ) 𝑑𝐴 = ∫

𝑇ℎ
𝒕(𝒏, 𝝃) 𝑑𝐴 +

𝑛

∑
𝑖=1

∫
𝑇ℎ
𝒕(−𝒆𝑖, 𝑃−1

𝑖 (𝝃)) (𝒏 ⋅ 𝒆𝑖) 𝑑𝐴,

= ∫
𝑇ℎ
(𝒕(𝒏, 𝝃) +

𝑛

∑
𝑖=1

(𝒏 ⋅ 𝒆𝑖)𝒕(−𝒆𝑖, 𝑃−1
𝑖 (𝝃))) 𝑑𝐴.

Furthermore, let us observe that area(𝑇ℎ,𝑖) = (𝒏 ⋅ 𝒆𝑖) area(𝑇ℎ), and therefore

area(𝜕Δℎ) = area(𝑇ℎ) +
𝑛

∑
𝑖=1

(𝒏 ⋅ 𝒆𝑖) area(𝑇ℎ) = (1 +
𝑛

∑
𝑖=1
𝒏 ⋅ 𝒆𝑖) area(𝑇ℎ) = 𝑐 area(𝑇ℎ),

where we have let 𝑐 = 1 + ∑𝑛
𝑖=1 𝒏 ⋅ 𝒆𝑖. Multiplying (101) by the constant 𝑐 we obtain

𝑐
area(𝜕Δℎ)(∫

𝑇ℎ
𝒕(𝒏, 𝝃) 𝑑𝐴 +

𝑛

∑
𝑖=1

∫
𝑇ℎ,𝑖
𝒕(−𝒆𝑖, 𝝃 ) 𝑑𝐴)

=
1

area(𝑇ℎ) ∫𝑇ℎ(
𝒕(𝒏, 𝝃) +

𝑛

∑
𝑖=1

(𝒏 ⋅ 𝒆𝑖)𝒕(−𝒆𝑖, 𝑃−1
𝑖 (𝝃))) 𝑑𝐴,
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which, according to (101) converges to zero as ℎ → 0. But as ℎ goes to zero, the tetrahe-

dron shrinks to 𝒙, and therefore by the Mean Value Theorem the integral on the right-

hand side converges to

𝒕(𝒏, 𝒙) +
𝑛

∑
𝑖=1

(𝒏 ⋅ 𝒆𝑖)𝒕(−𝒆𝑖, 𝑃−1
𝑖 (𝒙)) = 𝟎.

Since, 𝑃−1
𝑖 (𝒙) = 𝒙, we conclude that (resorting now to the summation convention):

𝒕(𝒏, 𝒙) = −(𝒏 ⋅ 𝒆𝑖) 𝒕(−𝒆𝑖, 𝒙)
by (99)

= (𝒏 ⋅ 𝒆𝑖) 𝒕(𝒆𝑖, 𝒙). = (𝒕(𝒆𝑖, 𝒙) ⊗ 𝒆𝑖)𝒏,

whereby 𝑺(𝒙) = 𝒕(𝒆𝑖, 𝒙) ⊗ 𝒆𝑖. □

Remark 22. The proof above concludes with 𝑺(𝒙) = 𝒕(𝒆𝑖, 𝒙) ⊗ 𝒆𝑖 which may give the false

impression that 𝑺(𝒙) may depend on the choice of the frame. That it is not the case is

evident from 𝒕(𝒏, 𝒙) = 𝑺(𝒙)𝒏 since neither 𝒏 nor 𝒕(𝒏, 𝒙) depend on the frame.

Theorem 21 (The Cauchy Stress Theorem, Part 2). The Cauchy tensor 𝑺(𝒙) established in
Part 1 satisfies the equation

𝜌 ∙𝒗 = div 𝑺 + 𝜌𝒃. (102)

Proof. Recall the balance of linear momentum equation (94) and substitute for 𝒕 from (100):

∫
𝐵𝑡

∙𝒗𝜌 𝑑𝑉 = ∫
𝐵𝑡
𝒃𝜌 𝑑𝑉 + ∫

𝜕𝐵𝑡
𝑺𝒏 𝑑𝐴.

Apply the Divergence Theorem (83) to replace the surface integral by a volume integral

∫
𝐵𝑡

∙𝒗𝜌 𝑑𝑉 = ∫
𝐵𝑡
𝒃𝜌 𝑑𝑉 + ∫

𝐵𝑡
div 𝑺 𝑑𝑉 ,

and then collect the terms:

∫
𝐵𝑡
(𝜌

∙𝒗 − div 𝑺 − 𝜌𝒃) 𝑑𝑉 = 𝟎.

This holds for any domain 𝐵𝑡 , and therefore the integrand is zero. □

Theorem 22 (The Cauchy Stress Theorem, Part 3). The Cauchy stress 𝑺(𝒙) established in
Part 1 is a symmetric tensor at each 𝒙, that is

𝑺(𝒙) = 𝑺(𝒙)𝑇 for all 𝒙 ∈ 𝐵. (103)

Proof. Recall the balance of angular momentum equation (95). Form the cross product of

that equation with an arbitrary constant vector 𝒂:

𝒂 × ∫
𝐵𝑡
𝒓 × ∙𝒗𝜌 𝑑𝑉 = 𝒂 × ∫

𝐵𝑡
𝒓 × 𝒃𝜌 𝑑𝑉 + 𝒂 × ∫

𝜕𝐵𝑡
𝒓 × 𝒕 𝑑𝐴,

then rearrange/regroup terms as

∫
𝐵𝑡
𝜌(𝒂 × (𝒓 × ( ∙𝒗 − 𝒃)) 𝑑𝑉 = ∫

𝜕𝐵𝑡
𝒂 × (𝒓 × 𝒕) 𝑑𝐴.

Then apply (210b)2 to expand each of the integrands:

∫
𝐵𝑡
𝜌(𝒓 ⊗ ( ∙𝒗 − 𝒃) − ( ∙𝒗 − 𝒃) ⊗ 𝒓) 𝒂 𝑑𝑉 = ∫

𝜕𝐵𝑡
(𝒓 ⊗ 𝒕 − 𝒕 ⊗ 𝒓) 𝒂 𝑑𝐴.
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This holds for all 𝒂 ∈  , therefore

∫
𝐵𝑡
𝜌(𝒓 ⊗ ( ∙𝒗 − 𝒃) − ( ∙𝒗 − 𝒃) ⊗ 𝒓) 𝑑𝑉 = ∫

𝜕𝐵𝑡
(𝒓 ⊗ 𝒕 − 𝒕 ⊗ 𝒓) 𝑑𝐴. (104)

In view of (102), the left-hand side of (104), let’s call it the LHS, reduces to

LHS = ∫
𝐵𝑡
(𝒓 ⊗ div 𝑺 − (div 𝑺) ⊗ 𝒓) 𝑑𝑉 .

As to the right-hand side of (104), we evaluate the integral of 𝒓 ⊗ 𝒕 by substituting 𝒕 = 𝑺𝒏
from (100) and then applying the Generalized Divergence Theorem 84a from page 37:

∫
𝜕𝐵𝑡
𝒓 ⊗ 𝒕 𝑑𝐴 = ∫

𝜕𝐵𝑡
𝒓 ⊗𝑺𝒏 𝑑𝐴 = ∫

𝐵𝑡
(𝒓⊗div 𝑺+ (𝐠𝐫𝐚𝐝 𝒓) 𝑺𝑇) 𝑑𝑉 = ∫

𝐵𝑡
(𝒓⊗div 𝑺+𝑺𝑇) 𝑑𝑉 ,

where in the last step we have inserted 𝐠𝐫𝐚𝐝 𝒓 = 𝑰 . Taking the transposes of all terms in

this equation we see that

∫
𝜕𝐵𝑡
𝒕 ⊗ 𝒓 𝑑𝐴 = ∫

𝐵𝑡
((div 𝑺) ⊗ 𝒓 + 𝑺) 𝑑𝑉 ,

and therefore the right-hand side of (104), let’s call it the RHS, evaluates to

RHS = ∫
𝐵𝑡
(𝒓 ⊗ div 𝑺 + 𝑺𝑇 − (div 𝑺) ⊗ 𝒓 − 𝑺) 𝑑𝑉 .

Then the equation LHS = RHS = 𝟎 simplifies to

∫
𝐵𝑡
(𝑺𝑇 − 𝑺) 𝑑𝑉 = 𝟎.

Since 𝐵𝑡 is arbitrary, it follows that 𝑺𝑇 − 𝑺 = 𝟎. □

22. The interpretation of the Cauchy stress tensor

The Cauchy stress tensor 𝑺 at a point 𝒙 within a body 𝐵 assigns to any unit vector 𝒏 a

traction vector 𝒕 = 𝑺𝒏. The traction 𝒕 measures the force per unit area acting on a plane

perpendicular to 𝒏 passing through the point 𝒙. In this section we are concerned with

a small neighborhood of 𝒙 within which the tensor may be assumed to be essentially a

constant.

Pick an arbitrary frame {𝒆1, 𝒆2, 𝒆3} and express 𝑺 in components as 𝑺 = 𝜎𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 .5
From (22) on page 11 and the symmetric of 𝑺 we know that 𝜎𝑖𝑗 = 𝒆𝑖 ⋅ 𝑺𝒆𝑗 = 𝑺𝒆𝑖 ⋅ 𝒆𝒋 . But

𝑺𝒆𝑖 is the traction on the plane perpendicular to 𝒆𝑖 through 𝒙, and the dot product of that

vector with 𝒆𝑗 is its component along 𝒆𝑗 . We conclude that 𝜎𝑖𝑗 is the is the 𝒆𝑗 component
of the traction acting on the plane perpendicular to 𝒆𝑖.

Figure 6 provides a visualization of this observation. There we see a cube positioned

so that its faces are perpendicular to the vectors of the frame {𝒆1, 𝒆2, 𝒆3}. Imagine that the

cube is so small that the stress 𝑺 is effectively constant throughout. Then the tractions

on the cube’s colored faces are 𝑺𝒆1, 𝑺𝒆2, 𝑺𝒆3, each of which have been decomposed into

vectors parallel to 𝒆1, 𝒆2, and 𝒆3, revealing the nine components 𝜎𝑖𝑗 . That said, we must

5
Here we are following the tradition of using the symbols 𝜎𝑖𝑗 for the components of 𝑺.
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𝒆1 𝒆2

𝒆3

𝑺𝒆1

𝜎11 𝜎12

𝜎13 𝑺𝒆2

𝜎21 𝜎22

𝜎23

𝑺𝒆3

𝜎31 𝜎32

𝜎33

Figure 6. The vectors 𝑺𝒆1, 𝑺𝒆2, 𝑺𝒆3 are true to-scale depictions of trac-

tions on the faces of the cube due to the stress tensor given in (106),

assuming that the 𝑺 is constant within the cube.

recall that by Theorem 22, the stress tensor is symmetric, and consequently 𝜎𝑖𝑗 = 𝜎𝑗𝑖.
Therefore, in Figure 6 we have

𝜎12 = 𝜎21, 𝜎23 = 𝜎32, 𝜎31 = 𝜎13. (105)

That figure is an accurate to-scale representation of the case where the components of 𝑺
relative to the frame {𝒆1, 𝒆2, 𝒆3} are

⎛
⎜
⎜
⎝

1.5 0.9 0.8
0.9 1.0 0.9
0.8 0.9 1.2

⎞
⎟
⎟
⎠
. (106)

Cauchy expresses the symmetry conditions (105) in his 1827 article [1] as:

Théorème II. – Si par un point quelconque d’un corps solide on mène deux
axes qui se coupent à angles droits, et si l’on projette sur l’un de ces axes la
pression ou tension supportée par un plan perpendiculaire à l’autre au point
dont il s’agit, la projection ainsi obtenue ne variera pas quand on échangera
entre eux ces mêmes axes.

English translation with help from Google Translate:

Theorem II. – If through any point of a solid body we pass two axes which
intersect at right angles, and if we project onto one of these axes the pres-
sure or tension supported by a plane perpendicular to the other at the point
in question, the projection thus obtained will be equal when these axes are
exchanged.

Remark 23. In modern notation, the theorem quoted above says that 𝒎 ⋅ 𝑺𝒏 = 𝒏 ⋅ 𝑺𝒎
for any two perpendicular vectors 𝒎 and 𝒏. Nowadays we know that 𝑺 is symmetric

and therefore 𝒗 ⋅ 𝑺𝒖 = 𝒖 ⋅ 𝑺𝒗 for any two vectors 𝒖 and 𝒗. Those vectors need not be

perpendicular!
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𝑿 𝒙

𝐵 𝐵′

Ω 𝜔

𝒙 = 𝝓(𝑿)
𝑿 = 𝝍(𝒙)

Figure 7. The deformation 𝝓(𝑿) maps the body 𝐵 ⊂ 𝔼3 to 𝐵′ ⊂ 𝔼3. The

inverse of 𝝓 is 𝝍. A neighborhood Ω of 𝑿 is mapped to a neighborhood

𝜔 of 𝒙 = 𝝓(𝑿).

23. Kinematics

A body is an open domain in 𝔼3. A deformation of the body is a mapping 𝝓 ∶ 𝐵 → 𝔼3.

We write𝑿 for a generic point in 𝐵, and 𝒙 = 𝝓(𝑿) for the image of𝑿 under the mapping.

We introduce the notation 𝐵′ = 𝝓(𝐵) for the deformed state of 𝐵. We assume that the

mapping 𝝓 is one-to-one, that is, distinct points of 𝐵 remain distinct in 𝐵′
. We also assume

that 𝝓 is continuously differentiable, and call 𝑭(𝑿) = 𝐆𝐫𝐚𝐝𝝓(𝑿) the deformation gradient ←
This comes too early;

the ‘𝐆𝐫𝐚𝐝’ notation

is defined a couple of

pages later.

at 𝑿 . We further assume that det 𝑭(𝑿) > 0 for all 𝑿 ∈ 𝐵. Finally, we call 𝒖 = 𝒙 − 𝑿 =
𝝓(𝑿) − 𝑿 the displacement of the point 𝑿 . Figure 7 depicts such a deformation.

23.1. Measures of deformation. Expanding 𝝓 into a Taylor series about a point𝑿0 ∈ 𝐵
we get

𝝓(𝑿) = 𝝓(𝑿0) + 𝑭(𝑿0) (𝑿 − 𝑿0) + 𝑂(‖𝑿 − 𝑿𝟎‖2),

and thus, we see that 𝑭(𝑿0) acts as a linear operator in a small neighborhood of 𝑿0,

stretching/distorting/rotating the material about 𝑿0.

The measure of distortion provided by 𝑭 is not perfect since it’s quite possible for 𝑭(𝑿0)
to be an orthogonal tensor which rotates but does not distort.

To provide true measure of distortion, we apply the Polar Decomposition Theorem

(page 25) to isolate the rotation part, as in 𝑭 = 𝑸𝑼 , where 𝑸 is orthogonal and 𝑼 is

symmetric and positive definite. We consider 𝑼 as the true measure of the distortion. We

recall from the discussion in Section 14 that 𝑼 2 = 𝑭 𝑇 𝑭 , and therefore calculating 𝑼 calls

for evaluating the square root of the tensor 𝑭 𝑇 𝑭 . That is somewhat a nontrivial task as

it requires the knowledge of the eigenvalues and eigenvectors of 𝑭 𝑇 𝑭 . To save ourselves

the trouble, we simply take 𝑪 = 𝑼 2
as the measure of strain instead. This carries the same

amount of information as 𝑈 but is simpler to calculate as it involves merely composing

𝑭 𝑇 with 𝑭 . The symmetric and positive definite tensor

𝑪 = 𝑭 𝑇 𝑭 , (107)

is called the right Cauchy–Green strain tensor.
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An alternative measure of distortion in provided by the left polar decomposition 𝑭 =
𝑽 𝑸 (see (53)), whereby 𝑽 2 = 𝑭𝑭 𝑇 . This leads to the definition

𝑩 = 𝑭𝑭 𝑇 , (108)

called the left Cauchy–Green strain tensor. The right Cauchy–Green strain tensor finds its

use mostly in modeling fluids, while the left Cauchy–Green strain tensor finds its uses in

modeling solids.

Remark 24. Let the deformation map 𝝓 consist of rotation and parallel translation, as in

𝝓(𝑿) = 𝒄+𝑸𝑿 , where 𝒙 is a constant vector and𝑸 is a constant orthogonal tensor. Then

𝑭 = 𝐆𝐫𝐚𝐝𝝓(𝑿) = 𝑸, and therefore

𝑪 = 𝑭 𝑇 𝑭 = 𝑸𝑇𝑸 = 𝑰.

𝑪, being an identity map, induces no distortion, as expected. We see that 𝑩 = 𝑰 for the

same reason.

23.2. Motion. The motion of a body 𝐵 is a continuous deformation 𝝓𝑡 of 𝐵 parametrized

by the time 𝑡. We call 𝐵 the body’s reference configuration, and 𝐵𝑡 = 𝝓𝑡(𝐵) its current
configuration. We assume that 𝝓0 is the identity map, that is, 𝝓0(𝑿) = 𝑿 for all 𝑿 ∈ 𝐵.

We write 𝝍𝑡 = 𝝓−1
𝑡 . Thus, if 𝒙 = 𝝓𝑡(𝑿), then 𝑿 = 𝝍𝑡(𝒙). Also

𝑿 = 𝝍𝑡(𝒙) = 𝝍𝑡(𝝓𝑡(𝑿)), 𝒙 = 𝝓𝑡(𝑿) = 𝝓𝑡(𝝍𝑡(𝒙)).

23.3. Material and spatial fields. In view of the one-to-one mapping between 𝐵 and 𝐵𝑡 ,
any time-dependent scalar-, vector- or tensor-valued field Ω(𝑿, 𝑡) defined on 𝐵, induces

a time-dependent field 𝜔(𝒙, 𝑡) on 𝐵𝑡 through

𝜔(𝒙, 𝑡) = Ω(𝑿, 𝑡), where 𝒙 = 𝝓𝑡(𝑿). (109)

A field expressed in terms of the points 𝑿 of 𝐵, such as Ω(𝑿, 𝑡), is called a material field.

A field expressed in terms of the points 𝒙 of 𝐵𝑡 , such as 𝜔(𝒙, 𝑡), is called a spatial field.

Instead of using distinct symbols such Ω and 𝜔 for the corresponding pairs of material

and special descriptions of a field, we will often find it more economical to use a single

symbol with the subscripts 𝑚 for “material” and 𝑠 for “special”. Thus, given the material

field Ω as above, the corresponding spatial field may be expressed as

Ω𝑠(𝒙, 𝑡) = Ω(𝑿, 𝑡), where 𝒙 = 𝝓𝑡(𝑿), (110)

that is,

Ω𝑠(𝝓𝑡(𝑿), 𝑡) = Ω(𝑿, 𝑡), Ω𝑠(𝒙, 𝑡) = Ω(𝝍𝑡(𝒙), 𝑡), ((110-alt)

Similarly, given the spatial field 𝜔, the corresponding material field may be expressed as

𝜔𝑚(𝑿, 𝑡) = 𝜔(𝒙, 𝑡), where 𝒙 = 𝝓𝑡(𝑿), (111)

that is,

𝜔𝑚(𝝍𝑡(𝒙), 𝑡) = 𝜔(𝒙, 𝑡), 𝜔𝑚(𝑿, 𝑡) = 𝜔(𝝓𝑡(𝑿), 𝑡). ((111-alt)

Following [7] and [2], we write 𝐆𝐫𝐚𝐝, Div, 𝐂𝐮𝐫𝐥 for the gradient, divergence, and curl

of material fields, and 𝐠𝐫𝐚𝐝, div, 𝐜𝐮𝐫𝐥 for the gradient, divergence, and curl of spatial fields.

In [5], the ‘𝐆𝐫𝐚𝐝’, ‘Div’, and ‘𝐂𝐮𝐫𝐥’ are written

∇𝑿 ∇𝑿 ⋅ ∇𝑿 ×
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while ‘𝐠𝐫𝐚𝐝’, ‘div’, and ‘𝐜𝐮𝐫𝐥’ are written

∇𝒙 ∇𝒙 ⋅ ∇𝒙 ×

Consider a material field Ω(𝑿, 𝑡) defined on the body 𝐵. For our current purposes, Ω
make be scalar-, vector-, or tensor-valued. We write

∙
Ω for the rate of change of Ω with

respect to time. That is

∙
Ω(𝑿, 𝑡) =

𝜕
𝜕𝑡
Ω(𝑿, 𝑡).

That holds no surprises. On the other hand, consider a spatial field 𝜔(𝒙, 𝑡). What is its

time derivative? The point 𝒙 moves with time, therefore it needs to be differentiated too.

We define the total time derivative of 𝝎 as

∙𝜔(𝒙, 𝑡)
||||𝒙=𝝓𝑡 (𝑿)

=
𝜕
𝜕𝑡 (

𝜔(𝝓𝑡(𝑿), 𝑡)), (112)

or equivalently, as

∙𝜔(𝒙, 𝑡) = [
𝜕
𝜕𝑡 (

𝜔(𝝓𝑡(𝑿), 𝑡))]𝑿=𝝍𝑡 (𝒙)
. ((112-alt)

As 𝝓𝑡(𝑿) tracks the motion of the point that originates at 𝑿 ,
∙𝜔 measures the rate of

change of 𝜔 as viewed by an observer who moves along with that point.

23.4. Velocity and acceleration. The point 𝑿 of the body 𝐵 undergoing the motion 𝝓𝑡
is located at 𝒙 = 𝝓𝑡(𝑿) ∈ 𝔼3 at time 𝑡. The velocity 𝑽 (𝑿, 𝑡), and the acceleration 𝑨(𝑿, 𝑡) of

that point are given by

𝑽 (𝑿, 𝑡) =
𝜕
𝜕𝑡
𝝓𝑡(𝑿), 𝑨(𝑿, 𝑡) =

𝜕2

𝜕𝑡2
𝝓𝑡(𝑿), (113)

These are expressed as material fields. The equivalent expression as spatial fields are

𝒗(𝒙, 𝑡) = 𝑽 (𝑿, 𝑡)
||||𝑿=𝝍𝑡 (𝒙)

=
𝜕
𝜕𝑡
𝝓𝑡(𝑿)

||||𝑿=𝝍𝑡 (𝒙)
, (114a)

𝒂(𝒙, 𝑡) = 𝑨(𝑿, 𝑡)
||||𝑿=𝝍𝑡 (𝒙)

=
𝜕2

𝜕𝑡2
𝝓𝑡(𝑿)

||||𝑿=𝝍𝑡 (𝒙)
. (114b)

23.5. Time derivatives.

Theorem 23. Let 𝝓𝑡 be a motion of the body 𝐵, and let 𝒗(𝒙, 𝑡) be the spatial description of
its velocity field. Consider an arbitrary scalar-valued spatial field 𝜔(𝒙, 𝑡) defined on 𝐵𝑡 . Then
the total time derivative ∙𝜔 of 𝜔 is given by

∙𝜔 =
𝜕𝜔
𝜕𝑡

+ (𝐠𝐫𝐚𝐝𝜔) ⋅ 𝒗. (115)

Proof. This is an immediate consequence of applying the chain rule of differentiation to

the definition of the total derivative in (112), and the definition of the velocity in (114a):

∙𝜔(𝒙, 𝑡) = [
𝜕
𝜕𝑡 (

𝜔(𝝓𝑡(𝑿), 𝑡))]𝑿=𝝍𝑡 (𝒙)
= 𝐠𝐫𝐚𝐝𝜔(𝒙, 𝑡) ⋅

𝜕
𝜕𝑡
𝝓𝑡(𝑿)

||||𝑿=𝝍𝑡 (𝒙)
+
𝜕𝜔
𝜕𝑡

(𝒙, 𝑡). □
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Corollary 3. Let 𝝓𝑡 be a motion of the body 𝐵, and let 𝒗(𝒙, 𝑡) be the spatial description of its
velocity field. Consider an arbitrary vector-valued spatial field 𝒘(𝒙, 𝑡) defined on 𝐵𝑡 . Then
the total time derivative ∙𝒘 of 𝒘 is given by

∙𝒘 =
𝜕𝒘
𝜕𝑡

+ (𝐠𝐫𝐚𝐝𝒘) 𝒗. (116)

In particular, the total time derivative of the the velocity field is given by

∙𝒗 =
𝜕𝒗
𝜕𝑡

+ (𝐠𝐫𝐚𝐝 𝒗) 𝒗. (117)

Proof (version 1, without indices). Pick an arbitrary constant vector 𝒂 ∈  . Applying the

result of Theorem 23 to the scalar field 𝒘 ⋅ 𝒂 we get

(𝒘 ⋅ 𝒂)∙ =
𝜕(𝒘 ⋅ 𝒂)
𝜕𝑡

+ (𝐠𝐫𝐚𝐝(𝒘 ⋅ 𝒂)) ⋅ 𝐠𝐫𝐚𝐝 𝒗

From the definition of the total time derivative in ((112-alt) we see that (𝒘 ⋅ 𝒂)∙ = ∙𝒘 ⋅ 𝒂.

Furthermore, from the formula (216) of Exercise 25 and the fact that 𝐠𝐫𝐚𝐝 𝒂 = 𝟎 we obtain

𝐠𝐫𝐚𝐝(𝒘 ⋅ 𝒂) = (𝐠𝐫𝐚𝐝𝒘)𝑇𝒂, and thus we arrive at

∙𝒘 ⋅ 𝒂 =
𝜕(𝒘)
𝜕𝑡

⋅ 𝒂 + ((𝐠𝐫𝐚𝐝𝒘)𝑇𝒂) ⋅ 𝒗
by (15)

=
𝜕(𝒘)
𝜕𝑡

⋅ 𝒂 + ((𝐠𝐫𝐚𝐝𝒘))𝒗 ⋅ 𝒂.

Assertion (116) follows since this holds for all 𝒂 ∈  . □

Proof (version 2, with indices). Let𝒘 = 𝑤𝑖 𝒆𝑖 in some arbitrary but constant frame {𝒆1, 𝒆2, 𝒆3}.
Expressing (115) in terms of components along that frame

∙𝜔 = 𝜕𝜔
𝜕𝑡 + 𝜔, 𝑗𝑣𝑗 , and applying

this to the component 𝑤𝑖, we get

∙𝑤𝑖 =
𝜕𝑤𝑖

𝜕𝑡
+ 𝑤𝑖, 𝑗𝑣𝑗 ,

and therefore

∙𝑤𝑖 𝒆𝑖 =
𝜕𝑤𝑖 𝒆𝑖
𝜕𝑡

+ 𝑤𝑖, 𝑗𝑣𝑗 𝒆𝑖.

We conclude the proof by observing that

𝑤𝑖, 𝑗𝑣𝑗 𝒆𝑖 = 𝑤𝑖, 𝑗𝑣𝑘𝛿𝑘𝑗 𝒆𝑖 = 𝑤𝑖, 𝑗𝑣𝑘 (𝒆𝑘 ⋅ 𝒆𝑗 ) 𝒆𝑖
= 𝑤𝑖, 𝑗𝑣𝑘 (𝒆𝑖 ⊗ 𝒆𝑗 ) 𝒆𝑘 = (𝑤𝑖, 𝑗 (𝒆𝑖 ⊗ 𝒆𝑗 ))(𝑣𝑘 𝒆𝑘) = (𝐠𝐫𝐚𝐝𝒘) 𝒗,

where we have made use of (65). □

23.6. The transformation of volume integrals. Considering that the mapping 𝝓𝑡 of

the reference configuration 𝐵 to the deformed configuration 𝐵𝑡 is one-to-one, any integra-

tion over 𝐵 may be expressed as an integration over 𝐵𝑡 , and vice versa. We write 𝑑𝑉𝑿 and

𝑑𝑉𝒙 for the differential volume elements in 𝐵 and 𝐵𝑡 , respectively. In terms of an arbitrary

frame {𝒆1, 𝒆2, 𝒆3}, 𝑑𝑉𝑿 is the volume of the parallelepiped formed by the vectors the three

vectors 𝑑𝑿1 = 𝑑𝑋1 𝒆1, 𝑑𝑿2 = 𝑑𝑋2 𝒆2, and 𝑑𝑿3 = 𝑑𝑋3 𝒆3, which (see Figure 1 on page 4) is

given by the scalar triple product

𝑑𝑉𝑿 = [𝑑𝑿1, 𝑑𝑿2, 𝑑𝑿3].



NOTES ON CONTINUUM MECHANICS 50

𝑑𝑿1 𝑑𝑿2

𝑑𝑿3

𝒆1
𝒆2

𝒆3

𝑑𝒙1
𝑑𝒙2

𝑑𝒙3

𝝓𝑡

Figure 8. The motion 𝝓𝑡 takes the infinitesimal volume 𝑑𝑉𝑿 element

spanned by the vectors 𝑑𝑿1, 𝑑𝑿2, 𝑑𝑿3 to the infinitesimal volume 𝑑𝑉𝒙
element spanned by the vectors 𝑑𝒙1, 𝑑𝒙2, 𝑑𝒙3.

Under the motion 𝝓𝑡 , the three vectors 𝑑𝑿1, 𝑑𝑿2, 𝑑𝑿3 are mapped to 𝑑𝒙1 = 𝑭(𝑿, 𝑡) 𝑑𝑿1,

𝑑𝒙2 = 𝑭(𝑿, 𝑡) 𝑑𝑿2, 𝑑𝒙3 = 𝑭(𝑿, 𝑡) 𝑑𝑿3, where 𝑭(𝑿, 𝑡) = 𝐠𝐫𝐚𝐝 𝝓𝑡(𝑿) as visualized in Fig-

ure 8. The volume of the deformed element it

𝑑𝑉𝒙 = [𝑭(𝑿, 𝑡) 𝑑𝑿1, 𝑭 (𝑿, 𝑡) 𝑑𝑿2, 𝑭 (𝑿, 𝑡) 𝑑𝑿3] = 𝜄3(𝑭(𝑿, 𝑡)) [𝑑𝑿1, 𝑑𝑿2, 𝑑𝑿3]

according to (16a). We conclude that 𝑑𝑉𝒙 = 𝜄3(𝑭(𝑿, 𝑡)) 𝑑𝑉𝑿 = det 𝑭(𝑿, 𝑡) 𝑑𝑉𝑿 due to the

definition of the determinant in (24c). This observation leads to

Theorem 24 (Transformation of volume integrals). Consider the motion 𝝓𝑡 of the body
𝐵, and let 𝐵𝑡 = 𝝓𝑡(𝐵) as usual, and let 𝜔(𝒙, 𝑡) be any scalar field defined on 𝐵𝑡 . For any
subdomain Ω ⊂ 𝐵, let Ω𝑡 = 𝝓𝑡(Ω). Then we have

∫
Ω𝑡

𝜔(𝒙, 𝑡) 𝑑𝑉𝒙 = ∫
Ω
𝜔(𝝓𝑡(𝑿), 𝑡) det 𝑭(𝑿, 𝑡) 𝑑𝑉𝑿 . (118)

Remark 25. The scalar field det 𝑭(𝑿, 𝑡) that enters the previous considerations is called

the Jacobian of the deformation 𝝓𝑡 . The equation 𝑑𝑉𝒙 = det 𝑭(𝑿, 𝑡) 𝑑𝑉𝑿 indicates that the

Jacobian provides a measure of the local change of volume. Thus, det 𝑭(𝑿, 𝑡) > 1 indicates

a local expansion (dilation) of volume, while det 𝑭(𝑿, 𝑡) < 1 indicates a local contraction

(compression) of volume. If the material is incompressible, then det 𝑭 = 1 throughout. In

all cases, det 𝑭 > 0 as postulated in this section’s opening paragraph.

23.7. The time derivative of an integral over a moving domain. We would be inter-

ested in calculating the derivative with respect to time of the integral on the left-hand side

of equation (118). That would amount to calculating the time derivative of its right-hand

side, and that would necessitate calculating the derivative of the Jacobian, det 𝑭(𝑿, 𝑡). We

break up the calculation into the following two lemmas.

Lemma 14. Consider the motion 𝝓𝑡 of the body 𝐵. Let 𝒗(𝒙, 𝑡) be the spatial description of its
velocity field, and let 𝑭(𝑿, 𝑡) be the material description of the deformation gradient. Then

𝜕
𝜕𝑡
𝑭(𝑿, 𝑡) = 𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡)|||𝒙=𝝓𝑡 (𝑿)

𝑭(𝑿, 𝑡). (119)
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Proof. Let us calculate

𝜕
𝜕𝑡
𝑭(𝑿, 𝑡) =

𝜕
𝜕𝑡

𝐆𝐫𝐚𝐝 𝝓𝑡(𝑿) = 𝐆𝐫𝐚𝐝
𝜕
𝜕𝑡
𝝓𝑡(𝑿) = 𝐆𝐫𝐚𝐝 𝑽 (𝑿, 𝑡)

= 𝐆𝐫𝐚𝐝(𝒗(𝝓𝑡(𝑿), 𝑡)) = 𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡)|||𝒙=𝝓𝑡 (𝑿)
𝐆𝐫𝐚𝐝𝝓𝑡(𝑿),

which is equivalent to (119) since 𝐆𝐫𝐚𝐝𝝓𝑡(𝑿) = 𝑭(𝑿, 𝑡). □

Lemma 15. Under the assumptions and notation of of the previous lemma, we have

𝜕
𝜕𝑡 (

det 𝑭(𝑿, 𝑡)) = det 𝑭(𝑿, 𝑡) div 𝒗(𝒙, 𝑡)
||||𝒙=𝝓𝑡 (𝑿)

. (120)

Proof. The formula (79-alt) on page 36 for the differentiation of a determinant tells us

𝜕
𝜕𝑡

det 𝑭(𝑿, 𝑡) = (det 𝑭(𝑿, 𝑡)) tr((
𝜕
𝜕𝑡
𝑭(𝑿, 𝑡)) 𝑭

−1(𝑿, 𝑡)).

But according to (119)

(
𝜕
𝜕𝑡
𝑭(𝑿, 𝑡)) 𝑭

−1(𝑿, 𝑡) = 𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡)|||𝒙=𝝓𝑡 (𝑿)
,

and therefore

𝜕
𝜕𝑡

det 𝑭(𝑿, 𝑡) = (det 𝑭(𝑿, 𝑡)) tr(𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡)
|||𝒙=𝝓𝑡 (𝑿)).

Recalling the definition of the divergence in (66) leads to the desired result. □

The above lemma, along with the transformation Theorem 24, lead to Reynolds Trans-
port Theorem which is an indispensable tool for applying laws of physics to continua.

Theorem 25 (Reynolds Transport Theorem). Consider the motion 𝝓𝑡 of the body 𝐵, and let
𝒗(𝒙, 𝑡) be the spatial description of its velocity field, and 𝜔(𝒙, 𝑡) be any scalar-valued spatial
field defined on 𝐵𝑡 = 𝝓𝑡(𝐵). Then, for any subdomain Ω ⊂ 𝐵 we have

𝑑
𝑑𝑡 ∫Ω𝑡

𝜔(𝒙, 𝑡) 𝑑𝑉𝒙 = ∫
Ω𝑡
(
𝜕𝜔
𝜕𝑡

+ (𝐠𝐫𝐚𝐝𝜔) ⋅ 𝒗 + 𝜔 div 𝒗) 𝑑𝑉𝒙 (121a)

= ∫
Ω𝑡
(
𝜕𝜔
𝜕𝑡

+ div(𝜔𝒗)) 𝑑𝑉𝒙 (121b)

= ∫
Ω𝑡

𝜕𝜔
𝜕𝑡

𝑑𝑉𝒙 + ∫
𝜕Ω𝑡

𝜔𝒗 ⋅ 𝒏 𝑑𝐴𝒙 (121c)

= ∫
Ω𝑡

( ∙𝜔 + 𝜔div 𝒗) 𝑑𝑉𝒙 , (121d)

where Ω𝑡 = 𝝓𝑡(Ω), 𝜕Ω𝑡 is Ω𝑡 ’s boundary, 𝒏 is the outward unit normal to 𝜕Ω𝑡 , and ∙𝜔 is the
total time derivative of 𝜔.

Proof. By the theorem of transformation of volume integrals (24) on page 50, we have

𝑑
𝑑𝑡 ∫Ω𝑡

𝜔(𝒙, 𝑡) 𝑑𝑉𝒙 =
𝑑
𝑑𝑡 ∫Ω

𝜔(𝝓𝑡(𝑿), 𝑡) det 𝑭(𝑿, 𝑡) 𝑑𝑉𝑿

= ∫
Ω [

𝜕
𝜕𝑡 (

𝜔(𝝓𝑡(𝑿), 𝑡)) det 𝑭(𝑿, 𝑡) + 𝜔(𝝓𝑡(𝑿), 𝑡)
𝜕
𝜕𝑡

det 𝑭(𝑿, 𝑡)] 𝑑𝑉𝑿 .
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Let us expand the individual terms within the square brackets. By the chain rule of dif-

ferentiation we have:

𝜕
𝜕𝑡 (

𝜔(𝝓𝑡(𝑿), 𝑡)) = 𝐠𝐫𝐚𝐝𝜔|||(𝝓𝑡 (𝑿),𝑡)
⋅
𝜕
𝜕𝑡
𝝓𝑡(𝑿) +

𝜕𝜔
𝜕𝑡

|||(𝝓𝑡 (𝑿),𝑡)

= 𝐠𝐫𝐚𝐝𝜔|||(𝝓𝑡 (𝑿),𝑡)
⋅ 𝑽 (𝑿, 𝑡) +

𝜕𝜔
𝜕𝑡

|||(𝝓𝑡 (𝑿),𝑡)
= ((𝐠𝐫𝐚𝐝𝜔) ⋅ 𝒗 +

𝜕𝜔
𝜕𝑡 )

|||(𝝓𝑡 (𝑿),𝑡)
,

and by (120) we have

𝜔(𝝓𝑡(𝑿), 𝑡)
𝜕
𝜕𝑡

det 𝑭(𝑿, 𝑡) = 𝜔(𝝓𝑡(𝑿), 𝑡) det 𝑭(𝑿, 𝑡) div 𝒗
|||(𝝓𝑡 (𝑿),𝑡)

= (𝜔 div 𝒗)|||(𝝓𝑡 (𝑿),𝑡)
det 𝑭(𝑿, 𝑡).

We conclude that

𝑑
𝑑𝑡 ∫Ω𝑡

𝜔(𝒙, 𝑡) 𝑑𝑉𝒙 = ∫
Ω(

(𝐠𝐫𝐚𝐝𝜔) ⋅ 𝒗 +
𝜕𝜔
𝜕𝑡

+ 𝜔 div 𝒗)
|||(𝝓𝑡 (𝑿),𝑡)

det 𝑭(𝑿, 𝑡) 𝑑𝑉𝑿 ,

which, by the theorem of transformation of volume, reduces to (121a). The variant (121b)

is obtained by applying the identity (212) of Exercise 21 to (121a). The variant (121c) is

obtained by applying the Divergence Theorem to (121b). The variant (121d) is obtained

from (121a) and the property of the total derivative established in Theorem 23 on page 48.

□

Remark 26. The representation (121c) of Reynolds Transport Theorem is a generalization

to three dimensions of the one-dimensional Leibniz’ differentiation formula:

𝑑
𝑑𝑡 ∫

𝑏(𝑡)

𝑎(𝑡)
𝑓 (𝑥, 𝑡) 𝑑𝑥 = ∫

𝑏(𝑡)

𝑎(𝑡)

𝜕
𝜕𝑡
𝑓 (𝑥, 𝑡) 𝑑𝑥 + 𝑓 (𝑏(𝑡), 𝑡)𝑏′(𝑡) − 𝑓 (𝑎(𝑡), 𝑡)𝑎′(𝑡).

We say the motion 𝝓𝑡 of a body 𝐵 is volume-preserving or isochoric if the volume of

any part Ω ⊂ 𝐵 remains unchanged in the course of the motion. In that regard we have:

Corollary 4. Consider the motion 𝝓𝑡 of the body 𝐵. 𝑭(𝑿, 𝑡) be the material representation
of the deformation gradient, and 𝒗(𝒙, 𝑡) be the spatial description of the velocity field. If the
motion isochoric, then det 𝑭(𝑿, 𝑡) = 1 and div 𝒗(𝒙, 𝑡) = 0 for all𝑿 ∈ 𝐵, 𝒙 ∈ 𝐵𝑡 , and all 𝑡 ≥ 0.

Proof. In the transformation of volume integral formula (118), take 𝜔(𝒙, 𝑡) ≡ 1. Then

vol(Ω) = vol(Ω𝑡) = ∫
Ω𝑡

1 𝑑𝑉𝒙 = ∫
Ω
det 𝑭(𝑿, 𝑡) 𝑑𝑉𝑿 .

Thus, ∫Ω det 𝑭(𝑿, 𝑡) 𝑑𝑉𝑿 = vol(Ω) for all Ω, and therefore det 𝑭(𝑿, 𝑡) is identically equal

to 1.

As to the Corollary’s second assertion, take 𝜔(𝒙, 𝑡) ≡ 1 in Reynolds Transport Theo-

rem. Then from (121c) for any Ω ⊂ 𝐵 we get

0 =
𝑑
𝑑𝑡

vol(Ω𝑡) =
𝑑
𝑑𝑡 ∫Ω𝑡

1 𝑑𝑉𝒙 = ∫
Ω𝑡

div 𝒗 𝑑𝑉𝒙 .

Since Ω is arbitrary, we must have div 𝒗 = 0. □
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𝑿 𝒙

𝐵 𝐵𝑡

Ω Ω𝑡

𝑵 𝒏

𝒙 = 𝝓𝑡(𝑿)
𝑿 = 𝝍𝑡(𝒙)

Figure 9. The deformation 𝝓𝑡(𝑿) maps the body 𝐵 ⊂ 𝔼3 to 𝐵𝑡 ⊂ 𝔼3
at time 𝑡. The inverse of 𝝓𝑡 at time 𝑡 is 𝝍𝑡 . An arbitrary part Ω of 𝐵 is

mapped to Ω𝑡 .

23.8. The transformation of surface integrals.

Theorem 26. Consider the motion 𝝓𝑡 of the body 𝐵, and let 𝑭(𝑿, 𝑡) be the corresponding
deformation gradient. Let 𝜔(𝒙, 𝑡), 𝒘(𝒙, 𝑡), 𝑨(𝒙, 𝑡) be spacial descriptions of arbitrary scalar,
vector, and tensor fields on 𝐵𝑡 . For any subdomain Ω ⊂ 𝐵, let 𝑵(𝑿) and 𝒏(𝒙) be the outward
unit normals to the boundaries 𝜕Ω and 𝜕Ω𝑡 , respectively. Then

∫
𝜕Ω𝑡

𝜔(𝒙, 𝑡) 𝒏(𝒙) 𝑑𝐴𝒙 = ∫
𝜕Ω
𝜔(𝝓𝑡(𝑿), 𝑡) 𝑮(𝑿, 𝑡) 𝑵(𝑿) 𝑑𝐴𝑿 , (122a)

∫
𝜕Ω𝑡

𝒘(𝒙, 𝑡) ⋅ 𝒏(𝒙) 𝑑𝐴𝒙 = ∫
𝜕Ω
𝒘(𝝓𝑡(𝑿), 𝑡) ⋅ (𝑮(𝑿, 𝑡) 𝑵(𝑿)) 𝑑𝐴𝑿 , (122b)

∫
𝜕Ω𝑡

𝑨(𝒙, 𝑡) 𝒏(𝒙) 𝑑𝐴𝒙 = ∫
𝜕Ω
𝑨(𝝓𝑡(𝑿), 𝑡) 𝑮(𝑿, 𝑡) 𝑵(𝑿) 𝑑𝐴𝑿 , (122c)

where𝑮(𝑿, 𝑡) is the second order tensor𝑮(𝑿, 𝑡) = (det 𝑭(𝑿, 𝑡)) 𝑭−𝑇 (𝑿, 𝑡). Figure 9 provides
a visualization aid.

Proof. Consider a patch  of the boundary of 𝜕Ω parametrized as 𝒙 = 𝝌(𝜉1, 𝜉2), where 𝜉1
and 𝜉2 are Cartesian coordinates in the parameter space. The infinitesimal rectangle with

sides 𝑑𝜉1 and 𝑑𝜉2 (therefore area 𝑑𝜉1𝑑𝜉2) in the parameter space is mapped to a parallel-

ogram of area 𝑑𝐴𝑿 in a tangent plane of 𝜕Ω defined by the vectors

𝜕𝝌
𝜕𝜉1

𝑑𝜉1. and

𝜕𝝌
𝜕𝜉2

𝑑𝜉2.

The cross product

𝜕𝝌
𝜕𝜉1

𝑑𝜉1 ×
𝜕𝝌
𝜕𝜉2

𝑑𝜉2 equals, in magnitude, the parallelogram’s area and

points along the unit normal 𝑵 to the boundary. Thus:

𝑵 𝑑𝐴𝑿 =
𝜕𝝌
𝜕𝜉1

𝑑𝜉1 ×
𝜕𝝌
𝜕𝜉2

𝑑𝜉2 = (
𝜕𝝌
𝜕𝜉1

×
𝜕𝝌
𝜕𝜉2)

𝑑𝜉1 𝑑𝜉2. (123)

The parametrization in terms of (𝜉1, 𝜉2) of the patch  carries over to the image 𝑡 of 
under the mapping 𝒙 = 𝝓𝑡(𝑿). The parallelogram on 𝑡 has area 𝑑𝐴𝒙 and is defined by

the tangent vectors

𝜕
𝜕𝜉1

𝝓𝑡(𝝌 (𝜉1, 𝜉2)) 𝑑𝜉1 and

𝜕
𝜕𝜉2

𝝓𝑡(𝝌 (𝜉1, 𝜉2)) 𝑑𝜉2.

The cross product of these then equals, in magnitude, to the parallelogram’s area and

points along the unit normal 𝒏 to the surface. We apply the chain rule to these and write
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𝑭(𝑿, 𝑡) = 𝐆𝐫𝐚𝐝𝝓𝑡(𝑿), as usual, to simplify the resulting expression:

𝒏 𝑑𝐴𝒙 = (
𝜕
𝜕𝜉1

𝝓𝑡(𝝌 (𝜉1, 𝜉2)) 𝑑𝜉1) × (
𝜕
𝜕𝜉2

𝝓𝑡(𝝌 (𝜉1, 𝜉2)) 𝑑𝜉2)

= (𝑭
𝜕𝝌
𝜕𝜉1

𝑑𝜉1) × (𝑭
𝜕𝝌
𝜕𝜉2

𝑑𝜉2)

= (𝑭
𝜕𝝌
𝜕𝜉1)

× (𝑭
𝜕𝝌
𝜕𝜉2)

𝑑𝜉1 𝑑𝜉2

= (det 𝑭) 𝑭−𝑇 (
𝜕𝝌
𝜕𝜉1

×
𝜕𝝌
𝜕𝜉2

) 𝑑𝜉1 𝑑𝜉2,

where in the last step we have applied the identity (211) from Exercise 19. Comparing

this with (123) we conclude that

𝒏 𝑑𝐴𝒙 = (det 𝑭) 𝑭−𝑇𝑵 𝑑𝐴𝑿 (124)

which suffices to conclude the proof. □

24. Conservation laws

24.1. The conservation of mass. Consider the motion 𝝓𝑡 of the body 𝐵, and let 𝐵𝑡 =
𝝓𝑡(𝐵) and 𝒗(𝒙, 𝑡) be the velocity field associated with the motion. Let 𝜌(𝒙, 𝑡) be the density,

i.e., mass per unit volume, of the body in the deformed state 𝐵𝑡 . We assume that total mass

of any subdomain Ω of 𝐵 remains constant during the motion, that is

𝑑
𝑑𝑡 ∫Ω𝑡

𝜌(𝒙, 𝑡) 𝑑𝑉𝒙 = 0,

where Ω𝑡 = 𝝓𝑡(Ω). Then, according to equation (121b) of Reynolds Transport Theorem

we have

∫
Ω𝑡
(
𝜕𝜌
𝜕𝑡

+ div(𝜌𝒗)) 𝑑𝑉𝒙 = 0,

This holds for any subdomain Ω𝑡 , and therefore the integrand is zero everywhere:

𝜕𝜌
𝜕𝑡

+ div(𝜌𝒗) = 0. (125)

This expresses the principle of conservation of mass in our context.

24.2. Integrals with respect to to density. An interesting, and often useful, conse-

quence of the conservation of mass equation (125) is

Theorem 27. Let 𝝓𝑡 be the motion of the body 𝐵 as before, 𝐵𝑡 = 𝝓𝑡(𝐵), and let 𝜔(𝒙, 𝑡) be
any scalar-, vector-, or tensor-valued field defined on 𝐵𝑡 . Then for any subdomain Ω𝑡 of 𝐵𝑡
we have

𝑑
𝑑𝑡 ∫Ω𝑡

𝜔(𝒙, 𝑡) 𝜌(𝒙, 𝑡) 𝑑𝑉𝒙 = ∫
Ω𝑡

∙𝜔(𝒙, 𝑡) 𝜌(𝒙, 𝑡) 𝑑𝑉𝒙 , (126)

where ∙𝜔 is the total time derivative of 𝜔.
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Figure 10. Two observers see the motion of the ball differently.

25. Frame-indifference

The axiom of material frame-indifference is a very basic tenet of continuum mechanics

although it was formally identified as such by Oldroyd only in 1950 [10]. In the 1950’s

and 1960’s the axiom was brought into the mainstream of continuum mechanics by Trues-

dell, Noll, and other researchers and became variously known as the principle of frame-
indifference, isotropy of space, material objectivity, material reference invariance. As in [5],

we will refer to it as the principle of material frame-indifference, or just frame-indifference
for short.

Two observers equipped with independently moving reference frames will see a given

motion differently; see the illustration in Figure 10. Their observations will be related

through a possibly time-dependent translation and rotation that reflects their positions

relative to each other.

To be precise, the positive vector 𝒙 of a point 𝑃 ∈ 𝔼3 viewed by one observer appears

as a position vector

𝒙∗ = 𝒒(𝑡) + 𝑸(𝑡) 𝒙 (127)

to the other, where 𝒒(𝑡) is the translation vector and 𝑸(𝑡) is an orthogonal tensor. The

motion 𝒙 = 𝝓𝑡(𝑿) of a body 𝐵 viewed by one observer appears as

𝒙∗ = 𝝓∗
𝑡 (𝑿) = 𝒒(𝑡) + 𝑸(𝑡)𝝓𝑡(𝑿) (128)

to the other. Applying the chain rule of differentiation, we see that the deformation gra-

dients

𝑭(𝑿, 𝑡) = 𝐆𝐫𝐚𝐝𝝓𝑡(𝑿), 𝑭 ∗(𝑿, 𝑡) = 𝐆𝐫𝐚𝐝𝝓∗
𝑡 (𝑿)

are related through 𝑭 ∗(𝑿, 𝑡) = 𝑸(𝑡)𝑭(𝑿, 𝑡) or

𝑭 ∗ = 𝑸𝑭, (129)

for short.

25.1. The transformation of the Cauchy–Green tensors. We may obtain the rela-

tionship between other kinematic indicators as seen by the two observers. For instance,

let

𝑭 = 𝑹𝑼 = 𝑽 𝑹, 𝑭 ∗ = 𝑹∗𝑼 ∗ = 𝑽 ∗𝑹∗
(130)

be the polar decompositions of the deformation gradients. Then from (129) and (130)1 we

see that 𝑭 ∗ = 𝑸𝑭 = 𝑸(𝑹𝑼) = (𝑸𝑹)𝑼 . Since 𝑸𝑹 is an orthogonal tensor, what we have
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here is a polar decomposition of 𝑭 ∗
. On the other hand, the polar decomposition of 𝑭 ∗

is

given as 𝑹∗𝑼 ∗
in (130)2. By the uniqueness of the polar decomposition (see Theorem 11

on page 25) we conclude that 𝑹∗ = 𝑸𝑹 and 𝑼 ∗ = 𝑼 . The right Cauchy–Green strain

tensors, as seen by the two observers, are 𝑪 = 𝑼 2
and 𝑪∗ = 𝑼 ∗2

, and therefore

𝑪∗ = 𝑪. (131)

Similarly, may may show (see Exercise 37) that the left Cauchy–Green tensors 𝑩 = 𝑽 2

and 𝑩∗ = 𝑽 ∗2
are related through

𝑩∗ = 𝑸𝑩𝑸𝑇 . (132)

25.2. The transformation of the velocity gradient and the rate of strain. The ve-

locity gradients for the two observers may be obtained from (119) as

∙
𝑭 (𝑿, 𝑡) = 𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡)|||𝒙=𝝓𝑡 (𝑿)

𝑭(𝑿, 𝑡),
∙
𝑭 ∗(𝑿, 𝑡) = 𝐠𝐫𝐚𝐝 𝒗∗(𝒙∗, 𝑡)|||𝒙∗=𝝓∗

𝑡 (𝑿)
𝑭 ∗(𝑿, 𝑡).

We substitute for 𝑭 ∗
from (129), and also for its time derivative from

∙
𝑭 ∗ = (𝑸𝑭)∙ =

∙
𝑸𝑭 + 𝑸

∙
𝑭 in the second of the two equations above, and obtain

∙
𝑸𝑭 + 𝑸

∙
𝑭 = 𝐠𝐫𝐚𝐝 𝒗∗(𝒙∗, 𝑡)|||𝒙∗=𝝓∗

𝑡 (𝑿)
𝑸𝑭,

where 𝑭 = 𝑭(𝑿, 𝑡) and𝑸 = 𝑸(𝑡). Then, substituting for

∙
𝑭 from the fist equation we arrive

at

∙
𝑸𝑭 + 𝑸 𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡)|||𝒙=𝝓𝑡 (𝑿)

𝑭 = 𝐠𝐫𝐚𝐝 𝒗∗(𝒙∗, 𝑡)|||𝒙∗=𝝓∗
𝑡 (𝑿)

𝑸𝑭,

We see that the 𝑭 cancels from the two sides. We then solve for 𝐠𝐫𝐚𝐝 𝒗∗ and thus obtain

the transformation rule for the velocity gradient:

𝐠𝐫𝐚𝐝 𝒗∗(𝒙∗, 𝑡)|||𝒙∗=𝝓∗
𝑡 (𝑿)

=
∙
𝑸𝑸𝑇 + 𝑸 𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡)|||𝒙=𝝓𝑡 (𝑿)

𝑸𝑇 . (133)

The symmetric part of 𝐠𝐫𝐚𝐝 𝒗

𝑫(𝒙, 𝑡) =
1
2(

𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡) + 𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡)𝑇) (134)

is called the rate of strain6
and plays a central role in fluid mechanics. The rate of strain

seen by the starred observer is

𝑫∗(𝒙∗, 𝑡) =
1
2(

𝐠𝐫𝐚𝐝 𝒗∗(𝒙∗, 𝑡) + 𝐠𝐫𝐚𝐝 𝒗∗(𝒙∗, 𝑡)𝑇).

Substituting from (133) we see that

𝑫∗(𝒙∗, 𝑡) =
1
2(

∙
𝑸𝑸𝑇 + 𝑸

∙
𝑸𝑇 + 𝑸(𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡) + 𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡)𝑇 )𝑸𝑇

).

But since𝑸 is orthogonal, we have𝑸𝑸𝑇 = 𝑰 , and therefore

∙
𝑸𝑸𝑇 +𝑸

∙
𝑸𝑇 = 𝟎. We conclude

that

𝑫∗(𝒙∗, 𝑡) = 𝑸(𝑡) 𝑫(𝒙, 𝑡) 𝑸(𝑡)𝑇 . (135)

6
In [5] (page 134) the rate of strain is denoted by 𝑳. In all other literature that I have checked, the rate of

strain is denoted by 𝑫.
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25.3. The transformation of stress. Consider the motion 𝝓𝑡 of a body 𝐵 and let 𝐵𝑡 =
𝝓𝑡(𝐵), and let 𝑺(𝒙, 𝑡) be the associated stress field. Thus, at any point 𝒙 ∈ 𝐵𝑡 , the traction

at 𝒙 on a plain with a unit normal 𝒏 is 𝒕 = 𝑺𝒏.

A second observer moving relative to the first one according to (128), sees that traction

as 𝒕∗ = 𝑺∗𝒏∗, where 𝒏∗ = 𝑸𝒏 and 𝒕∗ = 𝑸𝒕 = 𝑸𝑺𝒏. It follows that 𝑸𝑺𝒏 = 𝑺∗𝑸𝒏 for all 𝒏,

and therefore

𝑺∗ = 𝑸 𝑺𝑸𝑇 . (136)

25.4. The principle of material frame-indifference. The characteristics property of a

material from the point of view of continuum mechanics is its constitutive equation which

relates the stress in it to its deformation.

For instance, the stress resulting from a given deformation in a body made of steel

would generally be very different from the stress in a body of the same shape subjected

to the identical deformation, but made of rubber or water. There is a vast variety of

materials, and correspondingly there is a vast variety of constitutive equations. These

tend to be categorized into special classes, such as elastic materials, plastic materials,

fluid, gases, etc.. In all cases, the constitutive equation expresses the stress 𝑺(𝒙, 𝑡) at a

point 𝒙 at time 𝑡 in terms of the history of deformation:

𝑺(𝒙, 𝑡) =  (𝝓𝑠 ∶ 𝑠 ≤ 𝑡).

In general,  is functional in the sense that it may depend on the history of the material’s

deformation up to the current time 𝑡. In the simplest cases  depends on the current

deformation 𝝓𝑡 (elastic materials) or current time derivative

∙
𝝓𝑡 (fluids). We will study the

details of elastic materials and fluids later in these notes, but for now those distinctions

are not essential.

The principle of material frame-indifference asserts that the a material’s constitutive

equation is independent of the observer. That is, two observers viewings the motion of

a body, and acutely aware of the transformation rules (129), (131), (132), (135), and (136),

should find that stresses and deformations are related through an identical rule for both

of them.

The gist of the idea of the principle of material frame-indifference is illustrated by the

following well-known and very simple example.

The simplest elastic system, often encountered in elementary courses, is a massless

linear spring, modeled with the constitutive equation 𝐹 = 𝑘𝑥 , known as Hooke’s Law,

where 𝐹 is the force that stretches the spring, and 𝑥 is the change in the spring’s natural

length due to the application of the force 𝐹 . This constitutive equation is characterized by

a single constant, 𝑘, called Hooke’s constant. The linear dependence of 𝐹 on 𝑥 is immaterial

for example that we are going to present; a nonlinear constitutive equation 𝐹 = 𝑓 (𝑥) will

do just as well, and that’s what we will use here.

Attach a mass to one end of the spring and attach the other end to the axle of a hori-

zontal platter and spin the system with a constant angular velocity; see Figure 11(a). The

spinning spring extends by some amount, say 𝛿, due to the action of centrifugal force.
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(a) (b)

𝛿

𝛿

Figure 11. On the left, the mass-spring system spins on a horizontal

platter and the spring stretches by 𝛿. On the right, the mass-spring

system is suspended from a fixed support and the spring stretches by 𝛿.

Are the tensile forces equal in the two experiments?

In a second experiment, suspend the same mass-spring system from a fixed support

as in Figure 11(b). The spring now stretches due to gravity. Suppose that this extension

also happens to be 𝛿. It seems intuitive to conclude that the force of gravity equals to the

centrifugal force.

What is the logic behind that conclusion? It’s the principle of material frame-indifference!

Consider an observer, Alice, riding on the spinning platter. From Alice’s point of view,

the spinning spring in Figure 11(a) is stationary, and so it looks identical to the suspended

spring of Figure 11(b). The spring has been stretched by 𝛿, therefore the force acting on

it is 𝑓 (𝛿) in both cases. From the point of view of Bob, a stationary observer on the lab

floor, the spinning spring is stretched by the amount 𝛿. Bob has no force measurement

data for this experiment, but he accepts the principle of material frame-indifference, and

therefore applies the same constitutive equation to the spinning spring and, noting that

it has been stretched by 𝛿, concludes that the tensile force in it is 𝑓 (𝛿).

Admittedly, this instance of the application of the principle of material frame-indifference

is so nearly trivial that it does not inspire confidence in its utility. In the following sec-

tions, however, we will see the principle’s tremendous impact on the formulation of the

constitutive equations.

26. Elastic materials

An elastic material is one whose Cauchy stress tensor 𝑺(𝒙, 𝑡) at the point 𝒙 = 𝝓𝑡(𝑿)
is determined solely by the gradient of deformation at that point. Thus, its constitutive

equation is

𝑺(𝒙, 𝑡)||𝒙=𝝓𝑡 (𝑿) = 𝑺̂(𝑭(𝑿, 𝑡), 𝑿) (137)

for some function 𝑺̂ ∶  × 𝐵 → sym.

The explicit occurrence of 𝑿 as the second argument of 𝑺̂ in (137) allows for the con-

stitutive equation to vary from point to point. In the special case where 𝑺̂ is independent
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of the second argument, the material is said to be homogeneous. Otherwise the material

is inhomogeneous.

Most of this section’s discussion focuses on a single point 𝑿 in the body, therefore

there is no gain in emphasizing the dependence of 𝑺̂ on 𝑿 . Thus we simply write the

constitutive equation as:

𝑺 = 𝑺̂(𝑭). (138)

26.1. Frame-indifference. Recall the two observers scenario introduced in section 25.

The deformation gradients seen by the two observers are 𝑭 and 𝑭 ∗ = 𝑸𝑭 . Therefore the

stresses are 𝑺 = 𝑺̂(𝑭) and 𝑺∗ = 𝑺̂(𝑭 ∗) = 𝑺̂(𝑸𝑭). Note that both observers use the same

constitutive equation 𝑺̂ in accordance with the principle of material frame-indifference.

Thus from (136) we conclude that the constitutive equation of an elastic material subject

to frame-indifference must satisfy:

𝑺̂(𝑸𝑭) = 𝑸𝑺̂(𝑭)𝑸𝑇
for all 𝑭 ∈  and all 𝑸 ∈ +

orth
. (139)

This may be put in a more symmetric form through the following trick. Consider the

polar decomposition 𝑭 = 𝑹𝑼 of 𝑭 and let 𝑸 = 𝑹𝑇 in (139). Since 𝑸𝑭 = 𝑹𝑇𝑹𝑼 = 𝑼 , we

get 𝑺̂(𝑼 ) = 𝑹𝑇 𝑺̂(𝑭 )𝑹, or equivalently:

𝑺̂(𝑭 ) = 𝑹𝑺̂(𝑼 )𝑹𝑇 , for all 𝑭 = 𝑹𝑼 ∈ . (140)

The right Cauchy–Green strain tensor is defined through 𝑪 = 𝑭 𝑇 𝑭 = 𝑼 2
. Therefore the

preceding formula may be expressed as 𝑺̂(𝑭 ) = 𝑹𝑺̂(𝑪1/2)𝑹𝑇 . Thus, we introduce the func-

tion 𝑺̃ through

𝑺̃(𝑪) = 𝑺̂(𝑪1/2), (141)

and arrive at:

𝑺̂(𝑭 ) = 𝑹𝑺̃(𝑪)𝑹𝑇 , for all 𝑭 ∈ , (142)

where 𝑭 = 𝑹𝑼 , and 𝑪 = 𝑼 2
. In summary, the principle of frame-indifference implies that

the constitutive equation of an elastic material has to obey the identity (142).

26.2. Symmetry groups and isotropy. In this section we introduce the concepts of

symmetry group and isotropy of an elastic material. These concepts are tied to a specific

point of the material; the symmetry and isotropy properties may vary from point to point.

Suppose we rotate an elastic body 𝐵 by an orthogonal tensor 𝑸 about a point 𝒑 ∈ 𝐵. If

the material’s elastic response
7

to arbitrary experiments is indistinguishable before and

after the rotation at the point 𝒑, then we say that𝑸 a symmetry transformation of the ma-

terial 𝒑; see Figure 12. For instance, the ordinary salt, sodium chloride, is normally found

in crystalline form, consisting of cubic crystals. Rotating a sample of salt by 90 degrees

about an axis perpendicular to the crystal faces, or by 120 degrees about an axis along

a diagonal of the crystals, results in a material which is mechanically indistinguishable

from the original. Therefore those rotations are symmetry transformations of salt crys-

tals. In contrast, the ordinary rubber’s behavior is insensitive to orientation, therefore

any rotation is a symmetry transformation.

7
That is, stress induced by a deformation.
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𝒑

Figure 12. The body has been rotated about a point 𝒑 by a an orthog-

onal tensor 𝑸. If the elastic behavior of the rotated material is indistin-

guishable from that of the non-rotated one at the point 𝒑, then 𝑸 is a

symmetry transformation at 𝒑.

To quantify the effect of a symmetry transformation, let us consider an elastic body 𝐵,

and without loss of generality, let’s pick the rotation center 𝒑 to be the origin. We subject

𝐵 to two experiments as follows.

In the first experiment we subject 𝐵 to a deformation 𝝓. Thus, every point 𝑿 ∈ 
moves to 𝒙 = 𝝓(𝑿). The gradient of deformation is 𝑭(𝑿) = 𝐆𝐫𝐚𝐝𝝓(𝑿).

In the second experiment, we rotate 𝐵 about the origin through an orthogonal tensor

𝑸 ∈ +
orth

and then apply the deformation 𝝓. A point 𝑿 moves to 𝑸𝑿 due to the rota-

tion, and then it moves to 𝒙 = 𝝓(𝑸𝑿) due to the application of 𝝓. The gradient of the

deformation is

𝑭̃ (𝑿) = 𝐆𝐫𝐚𝐝𝝓|||𝑸𝑿 𝐆𝐫𝐚𝐝(𝑸𝑿) = 𝐆𝐫𝐚𝐝𝝓|||𝑸𝑿𝑸 = 𝑭(𝑸𝑿)𝑸.

We conclude that 𝑭̃ (𝟎) = 𝑭(𝟎)𝑸. If 𝑸 is a symmetry transformation of the material

point at the origin, then the stress at the origin due to the deformation gradients 𝑭(𝟎) and

𝑭(𝟎)𝑸 should be identical, that is, 𝑺̂(𝑭(𝟎)𝑸)= 𝑺̂(𝑭(𝟎)), for all deformations 𝝓, where 𝑺̂ is

the constitutive function of the material at the origin. Since𝝓 is arbitrary, the deformation

gradient 𝑭(𝟎) is arbitrary tensor in +
. Furthermore, since there is nothing special about

the point selected as the origin, our findings applies to any point in 𝐵. We summarize this

as:

𝑺̂(𝑭𝑸) = 𝑺̂(𝑭) for all 𝑭 ∈ +
. (143)

The set of all symmetry transformation of a material at a point𝒑 is called the material’s

symmetry group at 𝒑. Generally, a material’s symmetry group is a subgroup of the proper

orthogonal group, +
orth

, but if the symmetry group is the entire +
orth

, the material is said

to be isotropic8
at 𝒑. Thus, a material is isotropic at a point 𝒑 if

𝑺̂(𝑭𝑸, 𝒑) = 𝑺̂(𝑭 , 𝒑) for all 𝑭 ∈ +
and all 𝑸 ∈ +

orth
. (144)

8
From the Greek isos=“equal” and tropikos=“related to turn”.
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26.3. Combining frame-indifference and isotropy. We have seen that the principle

of frame-indifference implies that and elastic material’s constitutive function, 𝑺̂, must

satisfy the condition (139) or the equivalent (142). If, additionally, the material is isotropic,

then the constitutive equation must satisfy the condition (144). The following proposition

explores the consequences of these. Isotropic tensor-valued function were defined in

section 16.2 on page 31.

Proposition 8. Suppose that the elastic material is isotropic. Then the functions 𝑺̂ and 𝑺̃
defined in (138) and (141) are isotropic, that is, for any rotation 𝑸 we have:

𝑸𝑺̂(𝑭)𝑸𝑇 = 𝑺̂(𝑸𝑭𝑸𝑇 ) for all 𝑭 ∈ , (145)

𝑸𝑺̃(𝑪)𝑸𝑇 = 𝑺̃(𝑸𝑪𝑸𝑇 ) for all 𝑪 ∈ +
sym. (146)

Proof. The identity (139), which expresses the frame-indifference of the stress, holds for

all choices of 𝑭 ∈  and rotations 𝑸. Thus we may replace 𝑭 by 𝑭𝑸𝑇
in it. This gives

𝑺̂(𝑸𝑭𝑸𝑇 ) = 𝑸𝑺̂(𝑭𝑸𝑇 )𝑸𝑇
. However 𝑺̂(𝑭𝑸𝑇 ) = 𝑺̂(𝑭) by the isotropy condition (144). This

proves (145).

To prove (146), pick an arbitrary positive-definite 𝑪 ∈ +
sym

, and let 𝑼 ∈ +
sym

be its

unique square root, that is, 𝑪 = 𝑼 2
. Then, according to the definition (141), for any

rotation 𝑸 we have:

𝑸𝑺̃(𝑪)𝑸𝑇 = 𝑸𝑺̂(𝑼 )𝑸𝑇
(by (141))

= 𝑺̂(𝑸𝑼𝑸𝑇 ) (by (145))

= 𝑺̃((𝑸𝑼𝑸𝑇 )2) (by (141))

= 𝑺̃(𝑸𝑼 2𝑸𝑇 )

= 𝑺̃(𝑸𝑪𝑸𝑇 ).

□

Corollary 5. Under the assumptions of the preceding proposition we have:

𝑺̂(𝑭 ) = 𝑺̃(𝑩)

where 𝑩 = 𝑭𝑭 𝑇 is the left Cauchy–Green strain tensor.

Proof. Consider the polar decomposition 𝑭 = 𝑹𝑼 . We have:

𝑩 = 𝑭𝑭 𝑇 = (𝑹𝑼)(𝑹𝑼 )𝑇 = (𝑹𝑼)(𝑼𝑹) = 𝑹𝑼 2𝑹 = 𝑹𝑪𝑹,

therefore

𝑺̂(𝑭 ) = 𝑹𝑺̃(𝑪)𝑹𝑇 (by (142))

= 𝑺̃(𝑹𝑪𝑹𝑇 ) (by (146))

= 𝑺̃(𝑩).

□

Theorem 28. The constitutive equations of an isotropic elastic material is necessarily of the
form;

𝑺 = 𝑺̂(𝑭) = 𝑺̃(𝑩) = 𝛼0𝑰 + 𝛼1𝑩 + 𝛼2𝑩2, (147a)
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where 𝑭 is the deformation gradient, 𝑩 = 𝑭𝑭 𝑇 is the left Cauchy–Green strain tensor, and the
𝛼𝑖, 𝑖 = 0, 1, 2, are scalar-valued isotropic functions of 𝑩, that is, they depend on 𝑩’s principal
invariants 𝜄1(𝑩), 𝜄2(𝑩), 𝜄3(𝑩).

Proof. According to (146), 𝑺̃ is an isotropic function over +
sym

. Then (147a) is an immedi-

ate consequence of Theorem 13 on page 31. □

Remark 27. The constitutive equation (147a) is not as simple as it may seem at first glance.

Its coefficients are functions of 𝑩’s invariants, therefore the fully expressed form of the

equation is

𝑺 = 𝑺̂(𝑭) = 𝑺̃(𝑩)

= 𝛼0(𝜄1(𝑩), 𝜄2(𝑩), 𝜄3(𝑩))𝑰 + 𝛼1(𝜄1(𝑩), 𝜄2(𝑩), 𝜄3(𝑩))𝑩 + 𝛼2(𝜄1(𝑩), 𝜄2(𝑩), 𝜄3(𝑩))𝑩
2.

Corollary 6. The constitutive equation (147a) may be expressed equivalently as:

𝑺 = 𝛽0𝑰 + 𝛽1𝑩 + 𝛽2𝑩−1, (147b)

where 𝑩 is as before, and where the scalar-valued coefficients 𝛽𝑖, 𝑖 = 0, 1, 2, depend on𝑩’s
principal invariants 𝜄1(𝑩), 𝜄2(𝑩), 𝜄3(𝑩).

Proof. According to the Caley-Hamilton theorem, 𝑩 satisfies its own characteristic equa-

tion, that is:

𝑩3 − 𝜄1(𝑩)𝑩2 + 𝜄2(𝑩)𝑩 + 𝜄3(𝑩)𝑰 = 𝟎.

Multiplying through by 𝑩−1
we get:

𝑩2 − 𝜄1(𝑩)𝑩 + 𝜄2(𝑩)𝑰 + 𝜄3(𝑩)𝑩−𝟏 = 𝟎.

Thus, we may eliminate 𝑩2
in (147a) in favor of 𝑩−1

:

𝑺 = 𝛼0𝑰 + 𝛼1𝑩 + 𝛼2𝑩2

= 𝛼0𝑰 + 𝛼1𝑩 + 𝛼2(𝜄1𝑩 − 𝜄2𝑰 − 𝜄3𝑩−𝟏)
= (𝛼0 − 𝛼2𝜄2)𝑰 + (𝛼1 − 𝛼2𝜄1)𝑩 − 𝛼2𝜄3𝑩−1.

□

27. Elasticity: Simple shear

A homogeneous elastic cube is placed in the Cartesian coordinate system with its faces

parallel to the coordinate planes, as in Figure 13(a). Tractions are applied to the cube’s

surfaces to deform it into Figure 13(b) according to 𝒙 = 𝝓(𝑿) defined by

𝑥1 = 𝑋1 + 𝑐𝑋2,
𝑥2 = 𝑋2,
𝑥3 = 𝑋3,

where 𝑐 = tan 𝜃 is the angle of inclination of the deformed cube.
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𝑥1𝑥3

𝑥2

(b)

𝑥1

𝑥2

(c)

𝑥1

𝑥2

𝜃

(b)

Figure 13. Subfigure (a) shows the deformation of the cube in a simple

homogeneous shear in the 𝑥1 direction. Subfigures (b) and (c) show the

cube’s before and after configurations with the 𝑥3 axis pointing towards

the viewer.

The components of the deformation gradient 𝑭 are 𝐹𝑖𝑗 = 𝜙𝑖, 𝑗 :

𝑭 =
⎛
⎜
⎜
⎝

1 𝑐 0
0 1 0
0 0 1

⎞
⎟
⎟
⎠
,

and therefore the left Cauchy–Green tensor and its inverse are

𝑩 = 𝑭𝑭 𝑇 =
⎛
⎜
⎜
⎝

1 + 𝑐2 𝑐 0
𝑐 1 0
0 0 1

⎞
⎟
⎟
⎠
, 𝑩−1 =

⎛
⎜
⎜
⎝

1 −𝑐 0
−𝑐 1 + 𝑐2 0
0 0 1

⎞
⎟
⎟
⎠
.

The characteristic polynomial of 𝑩 is

det(𝜆𝑰 − 𝑩) = 𝜆3 − (3 + 𝑐2)𝜆2 + (3 + 𝑐2)𝜆 − 1,

therefore 𝑩’s invariants are

𝜄1(𝑩) = 3 + 𝑐2, 𝜄2(𝑩) = 3 + 𝑐2, 𝜄3(𝑩) = 1.

Then from (147b) we get

𝑺 = 𝛽0(𝑐2)𝑰 + 𝛽1(𝑐2)𝑩 + 𝛽2(𝑐2)𝑩−1,

or in components:

⎛
⎜
⎜
⎝

𝑆11 𝑆12 𝑆13
𝑆21 𝑆22 𝑆23
𝑆31 𝑆32 𝑆33

⎞
⎟
⎟
⎠
= 𝛽0

⎛
⎜
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎟
⎠
+ 𝛽1

⎛
⎜
⎜
⎝

1 + 𝑐2 𝑐 0
𝑐 1 0
0 0 1

⎞
⎟
⎟
⎠
+ 𝛽2

⎛
⎜
⎜
⎝

1 −𝑐 0
−𝑐 1 + 𝑐2 0
0 0 1

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝛽0 + 𝛽1 + 𝛽2 + 𝑐2𝛽1 (𝛽1 − 𝛽2)𝑐 0
(𝛽1 − 𝛽2)𝑐 𝛽0 + 𝛽1 + 𝛽2 + 𝑐2𝛽2 0

0 0 𝛽0 + 𝛽1 + 𝛽2.

⎞
⎟
⎟
⎠

From

𝑆11 − 𝑆22 = 𝑐2(𝛽1 − 𝛽2), 𝑆12 = (𝛽1 − 𝛽2)𝑐
we conclude that

𝑆11 − 𝑆22 = 𝑐𝑆12.
This universal relationship between the stress components holds for any shearing exper-

iment, independent of the type of elastic material.
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28. Fluids

An fluid is a material whose Cauchy stress tensor 𝑺(𝒙, 𝑡) is determined solely by the

gradient of the velocity 𝒗(𝒙, 𝑡):

𝑺(𝒙, 𝑡) = 𝑺̂(𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡)). (148)

We begin with the analysis of the restrictions that frame-indifference places on the con-

stitutive function 𝑺̂.

Consider a fluid body 𝐵 and a deformation 𝝓𝑡 ∶ 𝐵 × [0,∞) → 𝐵𝑡 ⊂ 𝔼3 defined by

𝝓𝑡(𝑿) = 𝑿0 + 𝑒𝑨𝑡(𝑿 − 𝑿0) (149)

for an arbitrarily fixed point𝑿0 ∈ 𝔼3 and an arbitrary constant tensor𝑨 ∈ . Let us study

the properties of this deformation. We have:

𝝓0(𝑿) = 𝑿, 𝐆𝐫𝐚𝐝𝝓𝑡(𝑿) = 𝑒𝑨𝑡 ,
∙
𝝓𝑡(𝑿) = 𝑨𝑒𝑨𝑡(𝑿 − 𝑿0), 𝐆𝐫𝐚𝐝

∙
𝝓𝑡(𝑿) = 𝑨𝑒𝑨𝑡 .

(150)

Let 𝒗(𝒙, 𝑡) be the corresponding spatial velocity field, that is,

𝒗(𝒙, 𝑡) =
∙
𝝓𝑡(𝑿), where 𝒙 = 𝝓𝑡(𝑿).

Applying 𝐆𝐫𝐚𝐝 to this, we get via the chain rule

𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡) 𝐆𝐫𝐚𝐝 𝝓𝑡(𝑿) = 𝐆𝐫𝐚𝐝
∙
𝝓𝑡(𝑿), where 𝒙 = 𝝓𝑡(𝑿).

Substituting for 𝐆𝐫𝐚𝐝𝝓𝑡 and 𝐆𝐫𝐚𝐝
∙
𝝓𝑡 from (150), this becomes 𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡)𝑒𝑨𝑡 = 𝑨𝑒𝑨𝑡

which simplifies to:

𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡) = 𝑨. (151)

This reveals the purpose of introducing that particular motion in (149)—we are subjecting

the fluid to a motion with a prescribed velocity gradient.

Now consider two frames moving relative to each other, as in Section 25, whose mo-

tions are related through the transformation (127) on page 55. The gradient of velocity in

the starred frame is given in (133). Substituting for 𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡) from (151), we get

𝐠𝐫𝐚𝐝 𝒗∗(𝒙∗, 𝑡) =
∙
𝑸𝑸𝑇 + 𝑸𝑨𝑸𝑇 . (152)

Let us observe that the tensor

∙
𝑸(𝑡)𝑸(𝑡)𝑇 that appears above is skew-symmetric. This is

because 𝑸(𝑡)𝑸(𝑡)𝑇 = 𝑰 , therefore

∙
𝑸(𝑡)𝑸(𝑡)𝑇 + 𝑸(𝑡)

∙
𝑸(𝑡)𝑇 = 𝟎.

From the constitutive equation (148) and the calculation in (152) we see that the stress

in the starred frame is given by:
9

𝑺∗ = 𝑺̂(𝐠𝐫𝐚𝐝 𝒗∗) = 𝑺̂(𝑸𝑨𝑸𝑇 +
∙
𝑸𝑸𝑇 )

Therefore, according to the transformation of stress in (136) on page 57, we get:

𝑺̂(𝑸𝑨𝑸𝑇 +
∙
𝑸𝑸𝑇 ) = 𝑸𝑺̂(𝑨)𝑸𝑇

for all 𝑨 ∈  and all 𝑸 ∈ +
orth

. (153)

9
Note that both observers apply the same constitutive function, 𝑺̂, to calculate stress. That’s frame-

invariance!
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Let us split 𝑨 into symmetric and skew-symmetric parts 𝑨 = 𝑫 + 𝑾 , where:

𝑫 =
1
2
(𝑨 + 𝑨𝑇 ), 𝑾 =

1
2
(𝑨 − 𝑨𝑇 ).

Now, let 𝑸(𝑡) = 𝑒−𝑾 𝑡
. Then 𝑸(𝑡)𝑇 = 𝑒−𝑾 𝑇 𝑡 = 𝑒𝑾 𝑡

. We note that the 𝑸(𝑡)𝑸(𝑡)𝑇 = 𝑰 , and

therefore 𝑸(𝑡) is orthogonal. Furthermore, note that

∙
𝑸(𝑡) = −𝑾 𝑒−𝑾 𝑡

, and in particular,

𝑸(0) = 𝑰 and

∙
𝑸(0) = −𝑾 . Substituting this choice of 𝑸(𝑡) in (153) and evaluating the

result at 𝑡 = 0 we see that 𝑺̂(𝑨 − 𝑾 ) = 𝑺̂(𝑨). But since 𝑨 − 𝑾 = 𝑫, we conclude that:

𝑺̂(𝑨) = 𝑺̂(𝑫), for all 𝑨 ∈ ,
that is, 𝑺̂(𝑨) depends only on the symmetric part of 𝑨.

Going back to (153), we replace the arguments of 𝑺̂ on both sides by their symmetric

parts. The argument on the left hand side reduces to 𝑸𝑫𝑸𝑇
since

∙
𝑸(𝑡)𝑸(𝑡)𝑇 is skew-

symmetric as noted above. We conclude that:

𝑺̂(𝑸𝑫𝑸𝑇 ) = 𝑸𝑺̂(𝑫)𝑸𝑇
for all 𝑫 ∈ sym and all 𝑸 ∈ +

orth
,

and thus, 𝑺̂ ∶ sym → sym is an isotropic function in the sense defined in Section 16.

Then according to Theorem 13 we have:

𝑺 = 𝑺̂(𝐠𝐫𝐚𝐝 𝒗) = 𝑺̂(𝑫) = 𝛼0𝑰 +𝛼1𝑫+𝛼2𝑫2, where 𝑫 =
1
2(

𝐠𝐫𝐚𝐝 𝒗 + (𝐠𝐫𝐚𝐝 𝒗)𝑇 ), (154)

and where the scalar coefficients 𝛼𝑖, 𝑖 = 0, 1, 2, are functions of the invariants of 𝑫.

Remark 28. Although this result bears some resemblance to the constitutive equation (147a)

for elastic materials, note that (147a) was obtained under the assumption of the isotropy

of the material while we made no assumption on isotropy in deriving (154).

29. Internal constraints

Up to this point in these notes, we have considered materials that are capable of under-

going arbitrary motions 𝝓𝑡 as long as the mapping 𝝓𝑡 is one-to-one and the deformation

gradient 𝑭(𝑿, 𝑡) = 𝐆𝐫𝐚𝐝𝝓𝑡(𝑿) is such that det 𝑭(𝑿, 𝑡) > 0 at all 𝑿 and 𝑡. Realistic models

of some materials, however, call for further restrictions on the class of deformations that

they can sustain. The most prevalent of these are incompressible materials which are only

capable of motions that do not change volume locally. We know that the deformation gra-

dient 𝑭(𝑿, 𝑡) expresses expansion/contraction factor of volume at the point 𝑿 , therefore

the motion of an incompressible material necessarily satisfies the additional constraint of

det 𝑭(𝑿, 𝑡) = 1.

Other types of constraints are possible. For instance, automobile tires have nylon or

steel cords embedded within rubber to stabilize the ride and enhance durability. As an-

other example, a sheet of fabric can be be deformed easily in many ways, but the threads

that make up the fabric are practically unstretchable.

The limitation of a material to deform in certain ways is called that material’s internal
constraint.10

The internal constraint is expressed as 𝜁 (𝑭) = 0, where 𝜁 is a scalar-valued

10
A material may have more than one type of constraint, for instance it may be incompressible and at the

same time be unstretchable along embedded fibers. To simplify the exposition, here we limit the discussion

single constraints.
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function of the deformation gradient 𝑭 . The frame-invariance of the constrain implies

that

𝜁 (𝑸𝑭) = 𝜁 (𝑭) for all 𝑭 ∈ +
and 𝑸 ∈ +

orth
.

This may be simplified by replacing 𝑭 by the right polar decomposition 𝑹𝑼 , and picking

𝑸 = 𝑹𝑇 , whence

𝜁 (𝑭) = 𝜁 (𝑸𝑭) = 𝜁 (𝑹𝑇𝑹𝑼) = 𝜁 (𝑼 ) = 𝜁 (𝑪1/2) def= 𝜆(𝑪),

where 𝑪 is the right Cauchy–Green strain tensor. We conclude that the most general

internal constraint has the form

𝜆(𝑪) = 0. (155)

A deforming body resits forces that attempt to violate its internal constraint by devel-

oping internal reaction forces exhibited by a stress𝑵 which we call the constraint reaction
stress, or just reaction stress for short. It can be shown (but we won’t do this right now)

that the reaction stress 𝑵 and the rate of strain 𝑫 (see (134) on page 56) are orthogonal

in the scalar product of of the space  of second order tensors (see (26) on page 14), that

is

𝑵∶𝑫 = 0. (156)

This, along with (155), enables us to characterize 𝑵 . We state this as

Theorem 29. The the constraint reaction stress 𝑵 of a material with the internal con-
straint (155) is related to the deformation gradient 𝑭 through

𝑵 = 𝛼𝑭 𝜆𝑪 𝑭 𝑇 , (157)

where 𝛼 is a scalar, 𝜆𝑪 = 𝐷𝜆(𝑪) is the derivative of 𝜆, and 𝑪 is the right Cauchy–Green
tensor corresponding to 𝑭 .

Proof. Let 𝑪 = 𝑐𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 be the component representation of 𝑪 in some frame {𝒆1, 𝒆2, 𝒆3}.
We apply the chain rule of differentiation to calculate the time derivative of 𝜆(𝑪):

∙
𝜆(𝑪) =

𝜕𝜆(𝑐𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 )
𝜕𝑐𝑖𝑗

∙𝑐𝑖𝑗 .

According to (77) on page 35, the factors
𝜕𝜆(𝑐𝑖𝑗 𝒆𝑖⊗𝒆𝑗 )

𝜕𝑐𝑖𝑗
in the equation above are the compo-

nents of the tensor 𝜆𝑪 that expresses the derivative of 𝜆(𝑪). The factors
∙𝑐𝑖𝑗 are clearly the

components of the tensor

∙
𝑪. Then by (27), the time derivative of 𝜆 may be expressed as

∙
𝜆(𝑪) = 𝜆𝑪∶

∙
𝑪. (158)

In Exercise 39 you will show that

∙
𝑪 = 2𝑭 𝑇𝑫𝑭 , where 𝑫 is the rate of strain. Therefore

∙
𝜆(𝑪) = 2𝜆𝑪∶𝑭 𝑇𝑫𝑭

by (26)

= 2 tr((𝑭
𝑇𝑫𝑭)𝑇𝜆𝑪) = 2 tr(𝑭

𝑇𝑫𝑭𝜆𝑪) = 2 tr((𝑭
𝑇𝑫)(𝑭𝜆𝑪))

Exer (12)= 2 tr((𝑭𝜆𝑪)(𝑭
𝑇𝑫)) = 2 tr((𝑭𝜆𝑪𝑭

𝑇 )𝑫)
by (26)

= 2(𝑭𝜆𝑪𝑭 𝑇 )∶𝑫.

It follows that the constraint 𝜆(𝑪) = 0 is equivalent to the statement that the tensors

𝑭𝜆𝑪𝑭 𝑇 and 𝑫 are orthogonal in the inner product of the space of second order tensors .

But according to (156), the reaction stress 𝑵 is also orthogonal to 𝑫. Since this holds for

all strain rates 𝑫, it follows that 𝑵 is a multiple of 𝑭𝜆𝑪𝑭 𝑇 . □

Corollary 7. The constraint reaction stress 𝑵 of an incompressible material is a multiple of
identity, that is, 𝑵 = −𝑝𝑰 . The factor 𝑝 manifests itself as pressure.
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Proof. The deformation gradient 𝑭 of a motion that preserves the local volume satisfies

det 𝑭 = 1, therefore det 𝑪 = det(𝑭 𝑇 𝑭) = 1. Thus, according to (155), the function 𝜆 is

given by

𝜆(𝑪) = det 𝑪 − 1.

Then by (79) on page 36 we have

∙
𝜆(𝑪) = (det 𝑪) tr(𝑪−1 ∙

𝑪) = (det 𝑪) 𝑪−1∶
∙
𝑪 = 𝑪−1∶

∙
𝑪

since det 𝑪 = 1. By comparison with (158), we conclude that

𝜆𝑪 = 𝑪−1 = (𝑭 𝑇 𝑭)−1 = 𝑭−1𝑭−𝑇 ,

whereby (157) reduces to

𝑵 = 𝛼𝑭𝑭−1𝑭−𝑇 𝑭 𝑇 = 𝛼𝑰.

The corollary’s assertion follows by setting 𝛼 = −𝑝. □

29.1. Incompressible isotropic elastic materials. In equations (147) we have the gen-

eral forms of constitutive equations for (unconstrained) isotropic elastic materials. The

left Cauchy–Green strain tensor 𝑩 in those equations can be any symmetric positive def-

inite tensor. If the material is incompressible, however, then the possible deformations

are limited to those with det 𝑩 = 1 and the resulting stress has an added pressure term

−𝑝𝑰 according to Corollary 7. The pressure term merges with the 𝛼0𝑰 or 𝛽𝑰 terms in those

equations and results in the following constitutive equations for incompressible isotropic

elastic materials:

𝑺 = −𝑝𝑰 + 𝛼1𝑩 + 𝛼2𝑩2, (159a)

𝑺 = −𝑝𝑰 + 𝛽1𝑩 + 𝛽2𝑩−1, (159b)

where 𝛼1, 𝛼2, 𝛽1, 𝛽2 are functions of the invariants 𝜄1(𝑩) and 𝜄2(𝑩) only, since 𝜄3(𝑩) =
det 𝑩 = 1.

29.2. Incompressible fluids. in equation (154) we have the general form of the consti-

tutive equation for a general (unconstrained) fluid. The strain rate tensor 𝑫 can be any

symmetric tensor. If the fluid is incompressible, however, then the possible motions are

limited to those with divergence-free velocities, i.e., div 𝒗 = 0 (see Corollary 4 on page 52)

and the resulting stress has an added pressure term −𝑝𝑰 according to Corollary 7. The

pressure term merges with the 𝛼0𝑰 in (154) and results in the following constitutive equa-

tions for incompressible fluids:

𝑺 = −𝑝𝑰 + 𝛼1𝑫 + 𝛼2𝑫2, (160)

where 𝛼1 and 𝛼2, are functions of the invariants 𝜄2(𝑫) and 𝜄3(𝑫) only, since

𝜄1(𝑫) = tr 𝑫 =
1
2(

tr 𝐠𝐫𝐚𝐝 𝒗 + tr(𝐠𝐫𝐚𝐝 𝒗)𝑇) = div 𝒗 = 0.

Incompressible materials obeying the constitutive equation (160) are known as Reiner–
Rivlin fluids, named after Markus Reiner and Ronald Rivlin who independently arrived at

that representation in the 1940s.
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29.3. Newtonian fluids and the Navier-Stokes equations. The special case of (160)

where 𝛼1 = 2𝜇 is a constant and 𝛼2 = 0, corresponds to what are called Newtonian fluids.
All other fluids are called non-Newtonian. Thus, the constitutive equation of a Newtonian

fluid is

𝑺 = −𝑝𝑰 + 2𝜇𝑫. (161)

The coefficient 𝜇 which is the sole characteristic of a Newtonian fluid is called the fluid’s

viscosity.
11

Let us calculate the divergence of 𝑺. The divergence of the pressure term −𝑝𝑰
may be calculated by applying the result of Exercise 24, whereby

div(−𝑝𝑰) = 𝑰 𝐠𝐫𝐚𝐝(−𝑝) − 𝑝 𝐠𝐫𝐚𝐝 𝑰 = − 𝐠𝐫𝐚𝐝 𝑝.

As to the divergence of 𝑫, we recall the definition of the Laplacian Δ𝒗 = div 𝐠𝐫𝐚𝐝 𝒗 of

a vector field in (72). Additionally, in Exercise 26 you will show that div((𝐠𝐫𝐚𝐝 𝒗)𝑇 ) =
𝐠𝐫𝐚𝐝 div 𝒗. Therefore

div𝑫 =
1
2(

div(𝐠𝐫𝐚𝐝 𝒗) + div((𝐠𝐫𝐚𝐝 𝒗)𝑇 )) =
1
2(

Δ𝒗 + 𝐠𝐫𝐚𝐝 div 𝒗) =
1
2
Δ𝒗,

where the last step is due to div 𝒗 = 0. We conclude that

div 𝑺 = 𝜇Δ𝒗 − 𝐠𝐫𝐚𝐝 𝑝,

and therefore, the equation of motion (102) results in

𝜌 ∙𝒗 = 𝜇Δ𝒗 − 𝐠𝐫𝐚𝐝 𝑝 + 𝜌𝒃,

where
∙𝒗 is the material derivative of the velocity field 𝒗. This may be expressed in terms

of spatial derivatives according to (117) on page 49. We conclude that the equations of

motion of an Newtonian fluid are

𝜌(
𝜕𝒗
𝜕𝑡

+ (𝐠𝐫𝐚𝐝 𝒗)𝒗) = 𝜇Δ𝒗 − 𝐠𝐫𝐚𝐝 𝑝 + 𝜌𝒃, (162a)

div 𝒗 = 0. (162b)

This is the well-known Navier–Stokes system of equations of the motion of a Newtonian

fluid. In the three-dimensional space, the vector equation (162a) and the scalar equa-

tion (162b) constitute a set of four equations in the four unknowns consisting of the three

components of the velocity vector 𝒗 and the scalar pressure 𝑝.

30. Fluids: Simple shear

Consider the steady-state shearing motion of Reiner–Rivlin fluid in the Cartesian co-

ordinate system according to 𝒙 = 𝝓𝑡(𝑿) defined by

𝑥1 = 𝑋1 + 𝑐𝑋2𝑡,
𝑥2 = 𝑋2,
𝑥3 = 𝑋3,

where 𝑐 is a constant. This is intended to model the shearing of a fluid filling the gap

between the parallel places 𝑥2 = 0 and 𝑥2 = ℎ, where the lower plate is stationary while

the upper plate slides in the 𝑥1 direction with steady velocity 𝑈 . See Figure 14. From

the description of the equations of motion above it follows that 𝑐 = 𝑈/ℎ. The material

11
One of the earliest statements regarding viscosity, i.e., internal friction in fluids, occurs in Book II of New-

ton’s Principia, where in the modeling of fluids as continuous media, he hypothesizes: “the resistance arising

from the want of slipperiness in the parts of a fluid is, other things being equal, proportional to the velocity

with which the parts of the fluid separate one another.” (Passage quoted from page 447 of Truesdell [23].).
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𝑥1

𝑥2

𝑈

𝒏
𝒕

Figure 14. The top plate slides horizontally at a steady speed 𝑈 , while

the bottom plate is stationary, shearing the fluid that fills the space be-

tween the two. The traction 𝒕 on the top place is not necessarily hori-

zontal.

representation of the velocity vector 𝑽 = 𝜕
𝜕𝑡𝝓𝑓 relative to the Cartesian coordinates is

𝑽 (𝑿𝟏, 𝑿𝟐, 𝑿𝟑) = ⟨𝑐𝑋2, 0, 0⟩. But 𝑥2 = 𝑋2, and therefore the spatial representation of the

velocity field is 𝒗(𝒙𝟏, 𝒙𝟐, 𝒙𝟑) = ⟨𝑐𝑥2, 0, 0⟩. The we calculate the velocity gradient, the rate

of strain, and its square

𝐠𝐫𝐚𝐝 𝒗 =
⎛
⎜
⎜
⎝

0 𝑐 0
0 0 0
0 0 0

⎞
⎟
⎟
⎠
, 𝑫 =

𝑐
2

⎛
⎜
⎜
⎝

0 1 0
1 0 0
0 0 0

⎞
⎟
⎟
⎠
, 𝑫2 =

𝑐2

4

⎛
⎜
⎜
⎝

1 0 0
0 1 0
0 0 0

⎞
⎟
⎟
⎠
.

We see that 𝜄1(𝑫) = tr 𝑫 = 0, which indicates that the motion is isochoric, and 𝜄3(𝑫) =
det 𝑫 = 0. Moreover, we have tr(𝑫2) = 𝑐2/2, and therefore, by applying (24b) we get

𝜄2(𝑫) =
1
2((

tr 𝑫)
2 − tr(𝑫2)) = −

𝑐2

4
.

It follows that the coefficients 𝛼1 and 𝛼2 in (160) are functions of 𝑐2, and therefore the

matrix representation of the stress tensor is given by

𝑺 = −𝑝
⎛
⎜
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎟
⎠
+ 𝛼1(𝑐2)

𝑐
2

⎛
⎜
⎜
⎝

0 1 0
1 0 0
0 0 0

⎞
⎟
⎟
⎠
+ 𝛼2(𝑐2)

𝑐2

4

⎛
⎜
⎜
⎝

1 0 0
0 1 0
0 0 0

⎞
⎟
⎟
⎠
.

Letting 𝜅1 = 𝛼1(𝑐2) 𝑐2 and 𝜅2 = 𝛼2(𝑐2) 𝑐
2

4 , this takes the form

𝑺 = −𝑝
⎛
⎜
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎟
⎠
+
⎛
⎜
⎜
⎝

𝜅2 𝜅1 0
𝜅1 𝜅2 0
0 0 0

⎞
⎟
⎟
⎠
.

Note that 𝜅1 is an odd function of 𝑐 while 𝜅2 is an even function of 𝑐.

Remark 29. If the pressure 𝑝 is constant throughout the fluid, the stress calculated above

is constant (both in space and time), and therefore the equation of motion (102) is satisfied

with zero body force.

Remark 30. The normal vector to the sliding plate is 𝒏 = ⟨0, 1, 0⟩, therefore the traction

on the plate is

𝒕 = 𝑺𝒏 =
⎛
⎜
⎜
⎝

𝜅1
−𝑝 + 𝜅2

0

⎞
⎟
⎟
⎠
.
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The traction’s 𝑥1 component, 𝜅1, is necessary to overcome the fluid’s viscosity and main-

tain the plate’s rightward motion. The traction’s 𝑥2 component, −𝑝 + 𝜅2, is an interesting

feature. It indicates that a vertical force (beyond what is necessary to counteract the

pressure) is needed to keep the plate at a constant elevation. That extra force, 𝜅2, which is

entirely due to the third term in the Reiner–Rivlin constitutive equation, is notably absent

in the case of a Newtonian fluid.
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31. Fluids: Poiseuille flow

In the classical Poiseuille
12

flow, a Newtonian fluid is pushed down

a long pipe of circular cross-section. The motion, described through

the Navier–Stokes equations, leads to a parabolic velocity profile, a

pressure that’s constant over the tube’s cross-sections, and drops lin-

early along the tube’s axis. At the tube’s outlet, the fluid’s pressure

equals atmospheric pressure, and the exiting fluid jet continues its

motion while maintaining its cylindrical shape.

Merrington in the 1943 article [9] referring to “certain anomalous

liquids” such as rubber solutions, pointed to a distinct swelling at the

outflow of a tube through which a pressurized non-Newtonian fluid

is forced to move. The adjacent photograph, illustrating the phenom-

enon, is taken from that article. The article does not attempt to pro-

vide quantitative justification for the phenomenon. The swelling is

ascribed to the release of certain elastic strains developed under the

pressure in the fluid.

Rathna’s 1960 article [11] shows that the swelling can be explained in the context of

Reiner–Rivlin fluids. In this section we will present a special case of her calculations in a

self-contained form.

31.1. The formulation of the problem. Consider a steady flow of an incompressible

Reiner–Rivlin fluid, whose constitutive equation is given in (160), through a vertical tube

of radius 𝑅. We install a cylindrical (𝑟, 𝜃, 𝑧) coordinate system with the 𝑧 axis aligned with

the tube’s axis and pointing up, and where 𝑟 measures the perpendicular distance from

that axis. We assume axial symmetry, and therefore none of the variables depends on the

angular coordinate 𝜃. We look for motion with the velocity 𝒗 = ⟨𝑢𝑟 , 𝑢𝜃, 𝑢𝑧⟩ parallel to the

𝑧 axis. The velocity components in the (𝑟, 𝜃, 𝑧) coordinates are

𝑢𝑟 = 0, 𝑢𝜃 = 0, 𝑢𝑧 = 𝜙(𝑟),

where, as we will find out, 𝑢𝑧 is negative as the fluid moves downward. With the help of

the formulas in Appending A, we calculate

𝐠𝐫𝐚𝐝 𝒗 =
⎛
⎜
⎜
⎝

0 0 0
0 0 0

𝜙′(𝑟) 0 0

⎞
⎟
⎟
⎠
,

where a prime indicates derivative with respect to 𝑟 . Then the rate of strain 𝑫 and its

square are:

𝑫 =
1
2
𝜙′(𝑟)

⎛
⎜
⎜
⎝

0 0 1
0 0 0
1 0 0

⎞
⎟
⎟
⎠
, 𝑫2 =

1
4
𝜙′(𝑟)2

⎛
⎜
⎜
⎝

1 0 0
0 0 0
0 0 1

⎞
⎟
⎟
⎠
.

We note that tr 𝐠𝐫𝐚𝐝 𝒗 = div 𝒗 = 0, indicating that the flow is isochoric, as it should be

in an incompressible fluids. The principal invariants of 𝑫 are 𝜄1(𝑫) = tr 𝑫 = 0, 𝜄3(𝑫) =
det 𝑫 = 0, and with the help of equation (24b)

𝜄2(𝑫) =
1
2((

tr 𝑫)
2 − tr(𝑫2)) = −

1
4
𝜙′(𝑟)2.

12
Pronounced Poa’-zo-ee- e

.
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It follows that the coefficients 𝛼1 and 𝛼2 in the constitutive equation (160) are functions

of 𝜙′(𝑟)2, and therefore the stress is

𝑺 = −𝑝(𝑟, 𝑧)
⎛
⎜
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎟
⎠
+
1
2
𝜙′(𝑟)𝛼1(𝜙′(𝑟)2)

⎛
⎜
⎜
⎝

0 0 1
0 0 0
1 0 0

⎞
⎟
⎟
⎠
+
1
4
𝜙′(𝑟)2𝛼2(𝜙′(𝑟)2)

⎛
⎜
⎜
⎝

1 0 0
0 0 0
0 0 1

⎞
⎟
⎟
⎠
.

To simplify the notation, we introduce

𝜅1(𝑟) =
1
2
𝜙′(𝑟) 𝛼1(𝜙′(𝑟)2), 𝜅2(𝑟) =

1
4
𝜙′(𝑟)2 𝛼2(𝜙′(𝑟)2), (163)

whereby

𝑺 = −𝑝(𝑟, 𝑧)
⎛
⎜
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎟
⎠
+
⎛
⎜
⎜
⎝

𝜅2(𝑟) 0 𝜅1(𝑟)
0 0 0

𝜅1(𝑟) 0 𝜅2(𝑟)

⎞
⎟
⎟
⎠
. (164)

Then we apply the formulas (232) and (233) to calculate

(𝐠𝐫𝐚𝐝 𝒗)𝒗 =
⎛
⎜
⎜
⎜
⎝

0
0
0

⎞
⎟
⎟
⎟
⎠

, div 𝑺 = −
⎛
⎜
⎜
⎜
⎝

𝜕𝑝
𝜕𝑟

0
𝜕𝑝
𝜕𝑧

⎞
⎟
⎟
⎟
⎠

+
⎛
⎜
⎜
⎜
⎝

𝜅′2 + 1
𝑟 𝜅2

0
𝜅′1 + 1

𝑟 𝜅1

⎞
⎟
⎟
⎟
⎠

.

Then, observing that 𝜅′ + 1
𝑟 𝜅 = 1

𝑟 (𝑟𝜅)
′
, the equation of motion (102) takes the form

0 = −
𝜕
𝜕𝑟
𝑝(𝑟, 𝑧) +

1
𝑟 (
𝑟𝜅2)

′
(165a)

0 = 0, (165b)

0 = −
𝜕
𝜕𝑧
𝑝(𝑟, 𝑧) +

1
𝑟 (
𝑟𝜅1)

′ − 𝜌𝑔, (165c)

where 𝜌 is the fluid’s (constant) density, and 𝑔 is the gravitational acceleration.

Now we proceed to solve this set of partial differential equations. Differentiating (165a)

with respect to 𝑧 and (165c) with respect to 𝑟 and subtracting the results we obtain

(
1
𝑟 (𝑟𝜅1)

′
)
′
= 0, whence

1
𝑟 (
𝑟𝜅1)

′ = 𝑐, (166)

for some constant 𝑐. Then (𝑟𝜅1)
′ = 𝑐𝑟 , and therefore 𝑟𝜅1 = 𝑐

2 𝑟
2 + 𝑐, where 𝑐 is another

constant. Evaluating this at 𝑟 = 0 we see that 𝑐 = 0. We conclude that

𝜅1(𝑟) =
𝑐
2
𝑟. (167)

Plugging this into (165c), we see that the equation reduces to
𝜕
𝜕𝑧𝑝(𝑟, 𝑧) = 𝑐 − 𝜌𝑔 , and

therefore

𝑝(𝑟, 𝑧) = (𝑐 − 𝜌𝑔)𝑧 + 𝑓 (𝑟) (168)

for some function 𝑓 (𝑟). Then according to (165a) we have

𝑓 ′(𝑟) =
1
𝑟 (
𝑟𝜅2)

′. (169)
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31.2. Introducing the details of the constitutive equation. This is as far as we can

go without specifying the details of the fluid’s properties. To continue, let us choose

𝛼1(𝜉) = 𝑐1𝜉𝑛, 𝛼2(𝜉) = 𝑐2,

where 𝑛, 𝑐1, and 𝑐2 are positive constants.
13

Recalling the definitions of 𝜅1 and 𝜅2 in (163)

𝜙′(𝑟)𝛼1(𝜙′2(𝑟)) = 𝑐𝑟 , we have

𝜅1(𝑟) =
1
2
𝜙′(𝑟)𝑐1(𝜙′(𝑟)2)

𝑛 =
𝑐1
2
𝜙′(𝑟)2𝑛+1, (170a)

𝜅2(𝑟) =
𝑐2
4
𝜙′(𝑟)2. (170b)

In particular, from (167) and (170a) we get
𝑐
2 𝑟 =

𝑐1
2 𝜙

′(𝑟)2𝑛+1, whence 𝜙′(𝑟)2𝑛+1 = 𝑐
𝑐1
𝑟 which

we rewrite as

𝜙′(𝑟) = 𝐴𝑟𝑚−1, (171)

where we have set

𝑚 = 1 +
1

2𝑛 + 1
, 𝐴 = (

𝑐
𝑐1)

𝑚−1
.

Integrating (171) we get 𝜙(𝑟) = 𝐴
𝑚 𝑟

𝑚 +𝐾 . The constant of integration, 𝐾 is determined by

imposing the no-slip boundary condition 𝜙(𝑅) = 0. We conclude that

𝜙(𝑟) = −
𝐴
𝑚
(𝑅𝑚 − 𝑟𝑚). (172)

Recalling that 𝜙(𝑟) is the vertical component of the velocity, we see that the velocity is

negative, and therefore the fluid moves downward, as intended.

Inserting for 𝜙′(𝑟) from (171) into (170b), we get

𝜅2(𝑟) =
𝑐2
4
𝐴2𝑟2(𝑚−1), (173)

and therefore, in view of (169) we have

𝑓 ′(𝑟) =
(2𝑚 − 1)𝑐2

4
𝐴2𝑟2𝑚−3,

which leads to

𝑓 (𝑟) =
(2𝑚 − 1)𝑐2
8(𝑚 − 1)

𝐴2𝑟2(𝑚−1) + 𝐾, (174)

and then, from (168)

𝑝(𝑟, 𝑧) =
(2𝑚 − 1)𝑐2
8(𝑚 − 1)

𝐴2𝑟2(𝑚−1) + (𝑐 − 𝜌𝑔)𝑧 + 𝐾. (175)

The integration constant 𝐾 is to be determined.

13
The parameter 𝛼2 need not be a constant. The more general case of 𝛼2(𝜉) = 𝑐0 + 𝑐1𝜉 + 𝑐2𝜉2 + ⋯ is treated

in [11].
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31.3. The stress components. Having determined expressions for 𝑝(𝑟, 𝑧) in (175) and

𝜅1(𝑟) and 𝜅2(𝑟2) in (167) and (173), we evaluate the components of stress in (164) and

obtain:

𝑆𝑟𝑟 = 𝑆𝑧𝑧 = −𝑝(𝑟, 𝑧) + 𝜅2(𝑟) = −
𝑐2

8(𝑚 − 1)
𝐴2𝑟2(𝑚−1) − (𝑐 − 𝜌𝑔)𝑧 − 𝐾, (176a)

𝑆𝜃𝜃 = −𝑝(𝑟, 𝑧) = −
(2𝑚 − 1)𝑐2
8(𝑚 − 1)

𝐴2𝑟2(𝑚−1) − (𝑐 − 𝜌𝑔)𝑧 − 𝐾, (176b)

𝑆𝑟𝑧 = 𝑆𝑧𝑟 = 𝜅1(𝑟) =
𝑐
2
𝑟, (176c)

𝑆𝑟𝜃 = 𝑆𝜃𝑟 = 𝑆𝜃𝑧 = 𝑆𝑧𝜃 = 0. (176d)

In particular, the traction at the pipe’s outlet, where the outward unit normal is 𝒏 =
⟨0, 0, −1⟩, is determined from 𝒕 = 𝑺𝒏 = ⟨−𝑆𝑟𝑟 , 0, −𝑆𝑧𝑧⟩.

Remark 31. It is significant to note that the vertical component of the traction, that is 𝑆𝑧𝑧 ,
calculated in (176a), generally varies with 𝑟 . This is a characteristic of non-Newtonian

fluids. The constitutive equation’s𝐷2
term is absent in a Newtonian fluid, therefore 𝑐2 = 0,

and the 𝑟-dependent term in (176a) drops out.

If 𝑝0 is the atmospheric pressure, then the force exerted by the atmosphere on the

pipe’s exit is 𝜋𝑅2𝑝0. This is counteracted by the (variable) normal traction on the fluid’s

surface at the exit. The balance of forces is expressed through

∫
2𝜋

0
∫

𝑅

0
𝑆𝑧𝑧 𝑟 𝑑𝑟 𝑑𝜃 = −𝜋𝑅2𝑝0.

Plugging 𝑆𝑧𝑧 from (176a) into this, setting 𝑧 = 0, and carrying out the integration, we

obtain the value of 𝐾 :

𝐾 = −𝑝0 −
𝑐2

8𝑚(𝑚 − 1)
𝐴2𝑅2(𝑚−1),

and thus we arrive at the final representation for

𝑆𝑟𝑟 = 𝑆𝑧𝑧 =
𝑐2

8(𝑚 − 1)
𝐴2

(
1
𝑚
𝑅2(𝑚−1) − 𝑟2(𝑚−1)) − (𝑐 − 𝜌𝑔)𝑧 + 𝑝0. (177)

31.4. Why does the fluid swell at the exit? The 𝑆𝑟𝑟 calculated in (177) is the normal

traction, that is, pressure, that the fluid exerts on the tube’s walls. Note that 𝑆𝑟𝑟 varies

with 𝑧. At the outlet we we have 𝑧 = 0, and on the wall we have 𝑟 = 𝑅, therefore pressure

exerted on the tube’s walls, let’s call it 𝑃 , is

𝑃 = 𝑆𝑟𝑟 ||𝑧=0,𝑟=𝑅 = 𝑝0 −
𝑐2
8𝑚

𝐴2𝑅2(𝑚−1).

and therefore

𝑃 − 𝑝0 = −
𝑐2
8𝑚

𝐴2𝑅2(𝑚−1).

I must have made a sign error somewhere, because this is supposed to be

𝑃 − 𝑝0 =
𝑐2
8𝑚

𝐴2𝑅2(𝑚−1).

The excess, 𝑃 − 𝑝0, over the atmospheric pressure causes the swelling of the fluid as

observed in Merringon’s experiment [9]. The excess is proportional to 𝑐2. In a Newtonian

fluid, where we have 𝑐2 = 0, there is no such swelling. Rathna [11] remarks that the

Merringon’s explanation of the cause of swelling as being due to elastic effects is not
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warranted. In this section we have seen that Merringon’s effect can be explained solely

in the context of non-Newtonian fluids.

31.5. The mass flux. The mass flux (mass of fluid passing through the tube per unit time)

is

𝑀 = −∫
2𝜋

0
∫

𝑅

0
𝜌𝜙(𝑟) 𝑟 𝑑𝑟 𝑑𝜃 =

𝜋𝜌𝐴𝑅𝑚+2

𝑚 + 2
.

Following Rathna [11], we introduce

Γ =
𝑀

𝜌𝜋𝑅2 =
𝐴

𝑚 + 2
𝑅𝑚,

which measures the volume of fluid passing through a unit cross-section of the tube, per

unit time. We see that

(
Γ
𝑅)

2

=
1

(𝑚 + 2)2
𝐴2𝑅2(𝑚−1),

and therefore the excess pressure at the exit may be expressed as

𝑃 − 𝑝0 =
(𝑚 + 1)2𝑐2

8𝑚 (
Γ
𝑅)

2

.

We repeat Rathna’s conclusion that the excess pressure, and therefore the amount of

swelling, increases with higher flux and smaller pipe radius.

32. Fluids: Couette flow

This section on the Couette flow of non-Newtonian fluids is based on parts of Serrin’s

article [22]. The intent is to explain the Weissenberg effect [24] which, among other things

highlights the tendency of a non-Newtonian fluid to climb a spinning rod immersed in it.

As in Serrin’s work, we take the fluid’s constitutive equation as 𝑺 = −𝑝𝑰 + 𝛼1𝑫 +
𝛼2𝑫𝟐

, where 𝛼1 and 𝛼2 are positive constants. Rathna [11] and Rathna and Bhatnagar [12]

generalize the calculation to a fluids where 𝛼1 and 𝛼2 are certain functions of the second

invariant 𝜄2(𝑫).

32.1. Solving the equations of motion. In the cylindrical coordinates (𝑟, 𝜃, 𝑧) with the

𝑧 axis pointing up, consider the concentric cylinders 𝑟 = 𝑟1 and 𝑟 = 𝑟2, 𝑧 ≥ 0, where

𝑟1 < 𝑟2. The space between the cylinders is filled with an incompressible fluid of prescribed

volume 𝑉 . The inner and outer cylinders are rotated at constant angular velocities 𝜔1 and

𝜔2, respectively. We wish to study the fluid’s motion at steady-state.

Let us look for a solution where the velocity field is 𝒗(𝑟, 𝜃, 𝑧) = 𝑟𝜔(𝑟)𝒆𝜃, that is, fluid

particles at distance 𝑟 from the rotation axis move about the axis in horizontal circular

paths at a steady angular velocity 𝜔(𝑟). Then according to (227), the velocity gradient,

expressed in the cylindrical coordinates, is

𝐠𝐫𝐚𝐝 𝒗 =
⎛
⎜
⎜
⎝

0 −𝜔(𝑟) 0
(𝑟𝜔(𝑟))

′ 0 0
0 0 0

⎞
⎟
⎟
⎠
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and therefore the rate of strain 𝐷, and its square are

𝑫 =
1
2

⎛
⎜
⎜
⎝

0 𝑟𝜔′(𝑟) 0
𝑟𝜔′(𝑟) 0 0
0 0 0

⎞
⎟
⎟
⎠
, 𝑫2 =

1
4

⎛
⎜
⎜
⎝

𝑟2𝜔′(𝑟)2 0 0
0 𝑟2𝜔′(𝑟)2 0
0 0 0

⎞
⎟
⎟
⎠
.

We see that

𝜄1(𝑫) = tr 𝑫 = 0, 𝜄2(𝑫) =
1
2[

(tr 𝑫)2 − tr𝑫2] = −𝑓 𝑟𝑎𝑐14𝑟2𝜔′(𝑟)2, 𝜄3(𝑫) = det 𝑫 = 0

Since div 𝒗 = tr 𝑫 = 0, the velocity field 𝒗 is consistent with the incompressibility con-

straint. Moreover, we note that

(𝐠𝐫𝐚𝐝 𝒗)𝒗 =
⎛
⎜
⎜
⎝

−𝑟𝜔(𝑟)2
0
0

⎞
⎟
⎟
⎠
.

Applying the constitutive equation 𝑺 = −𝑝𝑰 + 𝛼1𝑫 + 𝛼2𝑫2
, assuming 𝛼1 and 𝛼2 are

constants, we calculate the stress

𝑺 = −𝑝(𝑟, 𝜃, 𝑧)
⎛
⎜
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎟
⎠
+
1
2
𝛼1

⎛
⎜
⎜
⎝

0 𝑟𝜔′(𝑟) 0
𝑟𝜔′(𝑟) 0 0
0 0 0

⎞
⎟
⎟
⎠

+
1
4
𝛼2

⎛
⎜
⎜
⎝

𝑟2𝜔′(𝑟)2 0 0
0 𝑟2𝜔′(𝑟)2 0
0 0 0

⎞
⎟
⎟
⎠
. (178)

Then we apply the formula (233) to calculate the divergence of 𝑺:

div 𝑺 =

⎛
⎜
⎜
⎜
⎜
⎝

− 𝜕𝑝
𝜕𝑟 + 𝛼2(

1
4 𝑟

2𝜔′(𝑟)2)
′

− 1
𝑟
𝜕𝑝
𝜕𝑟 + 𝛼1 1

𝑟2(
1
2 𝑟

3𝜔′(𝑟))
′

− 𝜕𝑝
𝜕𝑧

⎞
⎟
⎟
⎟
⎟
⎠

,

We substitute these into the equation of motion 𝜌(𝐠𝐫𝐚𝐝 𝒗)𝒗 = div 𝑺 + 𝜌𝒃, where the force

per unit mass is 𝒃 = −𝑔𝒆𝑧 . We get:

−𝜌𝑟𝜔(𝑟)2 = −
𝜕𝑝
𝜕𝑟

+ 𝛼2(
1
4
𝑟2𝜔′(𝑟)2)

′
, (179a)

0 = −
1
𝑟
𝜕𝑝
𝜕𝜃

+ 𝛼1
1
𝑟2(

1
2
𝑟3𝜔′(𝑟))

′
, (179b)

0 = −
𝜕𝑝
𝜕𝑧

− 𝜌𝑔. (179c)

From (179c) we see that 𝑝(𝑟, 𝜃, 𝑧) = −𝜌𝑔𝑧 + 𝑓 (𝑟, 𝜃) where 𝑓 (𝑟, 𝜃) is to be determined.

Substituting this into (179b) leads to

𝜕
𝜕𝜃
𝑓 (𝑟, 𝜃) = 𝛼1

1
𝑟 (

1
2
𝑟3𝜔′(𝑟))

′
,

and therefore

𝑓 (𝑟, 𝜃) = 𝛼1
1
𝑟 (

1
2
𝑟3𝜔′(𝑟))

′
𝜃 + ℎ(𝑟),
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where ℎ(𝑟) is to be determined. We note, however, that what we have obtained indicates

that 𝑓 (𝑟, 𝜃) increases linearly in 𝜃, and therefore it cannot be 2𝜋-periodic, as it should. We

conclude that the coefficient of 𝜃 is zero, that is

𝑓 (𝑟, 𝜃) = ℎ(𝑟), 𝛼1
1
𝑟 (

1
2
𝑟3𝜔′(𝑟))

′
= 0,

and therefore
1
2 𝑟

3𝜔′(𝑟) = 𝐴 = a constant. It follows that 𝜔′(𝑟) = 2𝐴𝑟−3, and therefore

𝜔(𝑟) = −𝐴𝑟−2 + 𝐵,

where 𝐵 is another constant.

The constants𝐴 and𝐵may be determined by applying the boundary conditions𝜔(𝑟1) =
𝜔1 and 𝜔(𝑟2) = 𝜔2. We get

𝐴 =
𝜔2 − 𝜔1

𝑟22 − 𝑟21
𝑟21 𝑟

2
2 , 𝐵 =

𝑟22𝜔2 − 𝑟21𝜔1

𝑟22 − 𝑟21
. (180)

We plug the expression for 𝜔(𝑟) and 𝑝(𝑟, 𝜃, 𝑧) = −𝜌𝑔𝑧 + ℎ(𝑟) into (179a) and obtain

ℎ′(𝑟) = 𝜌𝑟(𝐵 − 𝐴𝑟−2)
2
− 4𝛼2𝐴2𝑟−5,

whence

ℎ(𝑟) =
1
2
𝜌𝐵2𝑟2 − 𝜌𝐴𝐵 ln 𝑟 −

1
2
𝜌𝐴2𝑟−2 + 𝛼2𝐴2𝑟−4 + 𝐶

for some constant 𝐶. Thus, we arrive at

𝑝(𝑟, 𝜃, 𝑧) = −𝜌𝑔𝑧 + ℎ(𝑟).

32.2. The analysis of the free surface. The pressure on the fluid’s open surface is the

atmospheric pressure 𝑝0. Letting 𝑝 = 𝑝0 in the preceding equation gives the equation of

the height of the fluid’s free surface 𝑧 as a function of 𝑟 :

𝑧(𝑟) =
1
𝜌𝑔 (

ℎ(𝑟) − 𝑝0).

Then we calculate the slope of the free surface 𝑧′(𝑟) = 1
𝜌𝑔 ℎ

′(𝑟). For convenience, we

rearrange previously calculated ℎ′(𝑟) and express this as

𝑧′(𝑟) =
𝐴2

𝑔𝑟5 [
𝑟2(1 −

𝐵
𝐴
𝑟2)

2

−
4𝛼2
𝜌 ]

. (181)

The 𝛼2 that enters in this expression is what defined the fluid’s non-Newtonian character.

When 𝛼2 is zero, the fluid in Newtonian. We see that effect of 𝛼2 in the equation above

is to reduce the slope of the free surface. To gain a better understanding, let us consider

two special cases.

Case I : The inner cylinder stationary, that is, 𝜔1 = 0, while 𝜔2 > 0. Plugging 𝜔1 = 0
in (180) we see that 𝐵/𝐴 = 1/𝑟21 , and therefore (181) takes the form

𝑧′(𝑟)
||||𝜔1=0

=
𝐴2

𝑔𝑟5 [
𝑟2(1 −

𝑟2

𝑟21 )

2

−
4𝛼2
𝜌 ]

.

We see that in the case of a Newtonian fluid, that is, 𝛼2 = 0, we have 𝑧′(𝑟1) = 0 and

𝑧′(𝑟2) > 0, and the fluid’s free surface takes the shape depicted in Figure 15(a).
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𝜔1 = 0
𝜔2 > 0

(a) (b) (c)

𝜔1 > 0
𝜔2 = 0

(d) (e) (f)

Figure 15. In the first row we have a Couette flow where the inner

cylinder is stationary while the outer one rotates. The free surface of a

Newtonian fluid (subfigure (a)) contacts the inner cylinder horizontally.

In a non-Newtonian fluid, the fluid climbs up the inner cylinder (sub-

figures (b) and (c)). The angle of contact with the outer cylinder may

be positive (b) or negative (c). In the second row we have a Couette

flow where the outer cylinder is stationary while the inner one rotates.

In a Newtonian fluid (subfigure (d)) the fluid is repelled from the inner

cylinder. In a non-Newtonian fluid, the fluid may be repelled from (sub-

figure (e)) or climb up (subfigure (f)) the inner cylinder.

In the case a non-Newtonian fluid, that is 𝛼2 > 0, we see that 𝑧′(𝑟1) < 0, indicating

the that fluid climbs the inner cylinder. The slope at the outer cylinder may be positive

or negative, depending on the parameter values. Figures 15(b) and 15(c) depict the two

possibilities.

Case II : The outer cylinder stationary, that is, 𝜔2 = 0, while 𝜔1 > 0. Plugging 𝜔2 = 0
in (180) we see that 𝐵/𝐴 = 1/𝑟22 , and therefore (181) takes the form

𝑧′(𝑟)
||||𝜔2=0

=
𝐴2

𝑔𝑟5 [
𝑟2(1 −

𝑟2

𝑟22 )

2

−
4𝛼2
𝜌 ]

.

We see that in the case of a Newtonian fluid, that is, 𝛼2 = 0, we have 𝑧′(𝑟1) > 0 and

𝑧′(𝑟2) = 0, and the fluid’s free surface takes the shape depicted in Figure 15(d).

In the case a non-Newtonian fluid, that is 𝛼2 > 0, the value of 𝑧′(𝑟1) may be positive or

negative, depending on the parameter values. The fluid will climb up the inner cylinder

if 𝑧′(𝑟1) < 0, that is,

𝑧′(𝑟1)
||||𝜔2=0

=
𝐴2

𝑔𝑟51 [
𝑟21(1 −

𝑟21
𝑟22 )

2

−
4𝛼2
𝜌 ]

< 0,

or equivalently,

𝑟1(1 −
𝑟21
𝑟22 )

< 2
√
𝛼2
𝜌
,
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which holds if 𝑟1 is sufficiently small. If 𝑟1 ≪ 𝑟2, this reduces to the particularly simple

criterion

𝑟1 < 2
√
𝛼2
𝜌
.

Figures 15(e) and 15(f) depict the two possibilities.

32.3. What is wrong with the previous analysis? We began the previous subsection

by stating that

The pressure on the fluid’s open surface is the atmospheric pressure 𝑝0.
Letting 𝑝 = 𝑝0 in the preceding equation gives the equation of the height

of the fluid’s free surface 𝑧 as a function of 𝑟 .

That statement is not true. The correct statement is that at a point of the free surface

with the outward unit normal 𝒏, we should have−𝑝0𝒏 = 𝑺𝒏. To analyze the consequences

of this, let the free surface be given by the equation 𝑧 = 𝜙(𝑟). Then 𝒏 = 𝑐⟨−𝜙′(𝑟), 0, 1⟩,

with 𝑐 = 1/
√
1 + 𝜙′(𝑟)2, is the outward unit normal to the free surface, expressed in

components along the cylindrical coordinate system. In view of the expression (178) cal-

culated for the stress tensor, the equation −𝑝0𝒏 = 𝑺𝒏 takes the form

⎛
⎜
⎜
⎜
⎝

(−𝑝 + 1
4𝛼2𝑟

2𝜔′(𝑟)2)(−𝜙
′(𝑟))

(
1
2𝛼1𝑟𝜔

′(𝑟))(−𝜙
′(𝑟))

𝑝

⎞
⎟
⎟
⎟
⎠

= −𝑝0
⎛
⎜
⎜
⎝

−𝜙′(𝑟)
0
1

⎞
⎟
⎟
⎠
.

Since 𝜙′(𝑟) and 𝜔′(𝑟) are not identically zero, the middle equation requires that 𝛼1 = 0.

The third equation requires that 𝑝 = 𝑝0, and therefore the first equation reduces to 𝛼2 = 0.

Thus, we have reached an impasse. No fluid satisfies the balance of tractions on the free

surface!

Where have we gone wrong? The problem lies at the very initial assumption that the

velocity field is of the form 𝒗(𝑟, 𝜃, 𝑧) = 𝑟𝜔(𝑟)𝒆𝜃. This subsection’s calculation indicates

that that assumption is untenable if the fluid has free surface open to the atmosphere. In

that connection, Serrin [22] remarks that “as long as the free surface remains relatively

horizontal (i.e. at relatively low speeds of rotation) the discrepancy should not be serious”.

Unfortunately in practically all experimental results that demonstrate the Weissenberg ef-

fect, the fluid climbs dramatically up the inner cylinder, rendering the “relatively horizon-

tal” assumption inapplicable. The articles [11, 12] make no mention of this calculation’s

limitation at all. Let us note that the issue raised here is not specific to non-Newtonian

fluids. The problem persists even in the case of Newtonian fluids.

The proper determination of the fluid’s free surface requires the analysis of a velocity

field of the form 𝒗(𝑟, 𝑧) = 𝜂(𝑟, 𝑧)𝒆𝑟 +𝑟𝜔(𝑟, 𝑧)𝒆𝜃+𝜁 (𝑟, 𝑧)𝒆𝑧 . Even in the case of a Newtonian

fluid where 𝛼1 = 2𝜇 and 𝛼2 = 0, the equations of motion would be a nontrivial system
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PDEs

𝜌(𝜂𝜂𝑟 + 𝜁𝜂𝑧 − 𝑟𝜔2
) = 𝜇(2(

1
𝑟 (
𝑟𝜂)𝑟)𝑟

+ 𝜂𝑧𝑧 + 𝜁𝑟𝑧) − 𝑝𝑟 ,

𝜌(
1
𝑟
(𝑟2𝜔)𝑟𝜂 + 𝑟𝜔𝑧𝜁) = 𝜇(

1
𝑟2
(𝑟3𝜔𝑟 )𝑟 + 𝑟𝜔𝑧𝑧),

𝜌(𝜂𝜁𝑟 + 𝜁 𝜁𝑧) = 𝜇(
1
𝑟 (
𝑟𝜁𝑟 + 𝑟𝜂𝑧)𝑟 + 2𝜁𝑧𝑧 + 𝜂𝑟𝑧) − 𝑝𝑧 − 𝜌𝑔,

1
𝑟
(𝑟𝜂)𝑟 + 𝜁𝑧 = 0,

where an 𝑟 or 𝑧 subscript indicates a derivative with respect to that variable. The first

three equations are the equations of motion, while the last equation expresses the incom-

pressibility constraint div 𝒗 = 0. This system of four couple PDEs in the four unknowns 𝜂,
𝜔, 𝜁 , 𝑝, is to be solved numerically with techniques applicable to free boundary problems.

See Cuvelier and Schulkes [4] for a survey of such methods, and Zhang and Babuška [25]

regarding convergence and error estimates for a very simple free boundary problem.

33. Elasticity: The spinning cylinder problem

This section is based on pages 158–160 of Chapter 4 of [2]. Also see Green and Zerna [6],

page 100.

Consider an incompressible and isotropic elastic body in the form of a cylinder of

length 𝐿 and radius 𝑅 in its undeformed configuration, and made of a Mooney rubber14

whose constitutive equation is

𝑺 = 𝑺̂(𝑭) = −𝑝𝑰 + [𝛼 + 𝛽 𝜄1(𝑩)]𝑩 − 𝛽𝑩2,

where 𝛼 and 𝛽 are positive constants, and 𝑝 is the pressure due to the constraint reaction

stress.

Figure 16 depicts the spinning cylinder. We install a frame {𝒆1, 𝒆2, 𝒆3} so that 𝒆1 is

aligned with the cylinder’s axis. We spin the cylinder about 𝒆1 at a constant angular

velocity𝜔while keeping the frame stationary, and allow the motion to reach steady-state.

The cylinder will expand (become fatter) in the radial direction due to centrifugal forces

and shrink in the axial direction in order to maintain a constant volume, as the material

is incompressible. Let 𝜆𝐿 be the cylinder’s length while spinning. Then the radius will be

𝜆−1/2𝑅. We wish to calculate the measure of deformation, 𝜆, as a function of the angular

velocity of the spin, 𝜔.

We begin with describing the motion 𝝓𝑡 . A material point at the location 𝑿 = 𝑋1𝒆1 +
𝑋2𝒆2 + 𝑋3𝒆3 goes to 𝒙 = 𝝓𝑡(𝑿) where 𝒙 = 𝑥1𝒆1 + 𝑥2𝒆2 + 𝑥3𝒆3 is given by

𝑥1 = 𝜆𝑋1,

𝑥2 = 𝜆−1/2(𝑋2 cos 𝜔𝑡 − 𝑋3 sin 𝜔𝑡),

𝑥3 = 𝜆−1/2(𝑋2 sin 𝜔𝑡 + 𝑋3 cos 𝜔𝑡).

(182)

We see that the deformation 𝝓𝑡(𝑿) is linear in 𝑿 , and therefore it may be expressed as a

tensor, say 𝑴(𝑡), acting on 𝑿 , as in 𝝓𝑡(𝑿) = 𝑴(𝑡) 𝑿 . Either by inspecting the equations

14
Named after Melvin Mooney who was among the early investigators of modern continuum mechanics.
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𝒆1 𝒆2

𝒆3 𝜔

𝒙1 𝒙1

Figure 16. At the top, the rubber cylinder spinning about the 𝒆1 axis

with angular velocity 𝜔. On the bottom left, the dotted rectangle is the

silhouette of the undeformed cylinder, while the filled region depicts

the barreled shape of the spinning body when no surface tractions are

applied. On the bottom right, self-equilibrated tractions, indicated by

their distribution profiles, applied to the spinning cylinder’s bases, force

it into a cylindrical shape.

above, or by a direct appeal to the representation of the rotation tensor in (45a), we get

𝑴(𝑡) = 𝜆𝒆1 ⊗ 𝒆1 + 𝜆−1/2(𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3) cos 𝜔𝑡 − 𝜆−1/2(𝒆2 ⊗ 𝒆3 − 𝒆3 ⊗ 𝒆2) sin 𝜔𝑡.

Then, since 𝐆𝐫𝐚𝐝𝑿 = 𝑰 , we have 𝑭(𝑿) = 𝐆𝐫𝐚𝐝𝝓𝑡(𝑿) = 𝑴(𝑡), and therefore

𝑩 = 𝑭𝑭 𝑇 = 𝜆2𝒆1 ⊗ 𝒆1 + 𝜆−1𝒆2 ⊗ 𝒆2 + 𝜆−1𝒆3 ⊗ 𝒆3.

According to the Spectral Representation Theorem, the coefficients 𝜆2, 𝜆−1, 𝜆−1 are the

eigenvalues of 𝑩, and therefore, by (31a) we conclude that 𝜄1(𝑩) = 𝜆2+2𝜆−1. We substitute

this, along with the expression calculated for 𝑩, into Mooney’s constitutive equation and

obtain

𝑺 = (−𝑝 + 𝛼𝜆−1 + 𝛽(𝜆2 + 2𝜆−1)) 𝑰 + (𝛼 + 𝛽𝜆−1)(𝜆2 − 𝜆−1) 𝒆1 ⊗ 𝒆1.
The only spatial variable here is 𝑝 = 𝑝(𝒙). Therefore we have

div 𝑺 = −𝐠𝐫𝐚𝐝 𝑝 = −
𝜕𝑝
𝜕𝑥1

𝒆1 −
𝜕𝑝
𝜕𝑥2

𝒆2 −
𝜕𝑝
𝜕𝑥3

𝒆3.

With the goal of applying the equation of motion (102), we calculate the acceleration by

differentiating each of the equations (182) twice with respect to 𝑡. We get

𝑥̈1 = 0, 𝑥̈2 = −𝜔2𝑥2, 𝑥̈3 = −𝜔2𝑥3,

and therefore 𝒙̈ = −𝜔2(𝑥2𝒆2 + 𝑥3𝒆3), and the equation of motion (102) in the absence of

body forces reduces to

𝜕𝑝
𝜕𝑥1

= 0,
𝜕𝑝
𝜕𝑥2

= 𝜌𝜔2𝑥2,
𝜕𝑝
𝜕𝑥3

= 𝜌𝜔2𝑥3, (183)

which may be readily integrated (Exercise 42) to yield

𝑝 =
1
2
𝜌𝜔2𝑟2 + 𝑐(𝑡), (184)
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where 𝑟 = (𝑥22 + 𝑥23 )1/2 is the distance of the point 𝒙 from the cylinder’s axis, and 𝑐(𝑡) is

to be determined.

Let 𝒏 be a outward unit normal vector at an arbitrary point on the cylinder’s curved

surface. The traction at that point is

𝒕 = 𝑺𝒏 = [(−𝑝 + 𝛼𝜆−1 + 𝛽(𝜆2 + 2𝜆−1)) 𝑰 + (𝛼 + 𝛽𝜆−1)(𝜆2 − 𝜆−1) 𝒆1 ⊗ 𝒆1]𝒏

= (−𝑝 + 𝛼𝜆−1 + 𝛽(𝜆2 + 2𝜆−1))𝒏

since (𝒆1⊗𝒆1)𝒏 = 𝟎 due to 𝒏 being perpendicular to 𝒆1. If the boundary of the cylinder is

free of obstructions, as we have implicitly assumed it is, then the traction on the boundary

is zero, leading to

−𝑝 + 𝛼𝜆−1 + 𝛽(𝜆2 + 2𝜆−1) = 0 at 𝑟 = 𝜆−1/2𝑅,

as 𝜆−1/2𝑅 is the radius of the spinning cylinder as noted earlier. Plugging this in (184)

determines the unknown expression 𝑐(𝑡):

𝑐(𝑡) = 𝛼𝜆−1 + 𝛽(𝜆2 + 2𝜆−1) −
1
2
𝜌𝜔2𝜆−1𝑅.

With 𝑐(𝑡) thus determined, the expression for 𝑝 in (184) takes the form

𝑝 =
1
2
𝜌𝜔2𝑟2 + 𝛼𝜆−1 + 𝛽(𝜆2 + 2𝜆−1) −

1
2
𝜌𝜔2𝜆−1𝑅.

=
1
2
𝜌𝜔2(𝑟2 − 𝜆−1𝑅) + 𝛼𝜆−1 + 𝛽(𝜆2 + 2𝜆−1).

Next, let us look at the tractions on the cylinder’s flat faces. On the face with the unit

normal 𝒆1, the traction is

𝒕 = 𝑺𝒆1 = [−𝑝 + 𝛼𝜆−1 + 𝛽(𝜆2 + 2𝜆−1) + (𝛼 + 𝛽𝜆−1)(𝜆2 − 𝜆−1)]𝒆1,

which, upon substitution of the expression for the pressure calculated earlier, takes the

form

𝒕 = [−
1
2
𝜌𝜔2(𝑟2 − 𝜆−1𝑅) + (𝛼 + 𝛽𝜆−1)(𝜆2 − 𝜆−1)]𝒆1.

We see that the traction on this face varies with 𝑟 . Thus, unlike the case with the cylinder’s

curved surface, having zero traction there is infeasible. That is, in order to maintain a flat

face at the cylinder’s ends, we need to press against it just the right way. Equivalently,

if we leave the cylinder’s ends free, they won’t remain flat; they will bulge inward or

outward.

So suppose we intend to keep the cylinder’s faces flat by exerting just the right amount

of tractions on them. Moreover, we wish to do this in such a way that the resultant force

applied to each face is zero. This is expressed as

2𝜋 ∫
𝜆−1/2𝑅

0 [−
1
2
𝜌𝜔2(𝑟2 − 𝜆−1𝑅) + (𝛼 + 𝛽𝜆−1)(𝜆2 − 𝜆−1)] 𝑟 𝑑𝑟 = 0.

Carrying out the integration we arrive at the quartic equation

𝑞(𝜆) ≡ 𝛼𝜆4 + 𝛽𝜆3 − (𝛼 −
1
4
𝜌𝜔2𝑅2

)𝜆 − 𝛽 = 0.

We see that 𝑞(0) = −𝛽 and 𝑞(1) = 1
4𝜌𝜔

2𝑅2
. That sign change indicates that there is a root

𝜆 = 𝜆𝜔 between 0 and 1. We mark the root by a subscript 𝜔 to emphasize the dependence
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of that root on the angular velocity 𝜔. We claim that 𝜆𝜔 is the only positive root of that

equation. Indeed, a quartic equation has either no real roots, or two real roots, or four

real roots (counting multiplicities). We have already established the existence of one real

root. That leaves the possibility of having either two real roots or four real roots. We

know that the quartic’s zeroth degree term, −𝛽, equals the product of its roots. That

being negative means that if the quartic has only two real roots, then one is positive and

one is negative, and we are done. If it has four real roots, then either one is positive and

three are negative, which means we are done, or one is negative and three are positive,

which requires further analysis.

If the quartic has three positive roots, then it must have an inflection point at some

positive 𝜆. The inflection points are readily obtained by calculating 𝑞′′(𝜆) = 6𝜆(2𝛼𝜆 + 𝛽).
We see that the only inflection points are at 𝜆 = 0 and 𝜆 = − 𝛽

2𝛼 , eliminating the possibility

of three positive roots.

To summarize: The quartic equation 𝑞(𝜆) = 0 has a unique positive root 𝜆 = 𝜆𝜔 where

0 < 𝜆𝜔 < 1. The root is determined in terms of the material parameters 𝛼, 𝛽, 𝜌, the

cylinder’s pre-deformation radius 𝑅, and the angular velocity of the spin, 𝜔. The length

of the spinning cylinder shrinks to 𝜆𝜔𝑅 and the radius expands to 𝜆−1/2𝜔 𝑅.

34. Elasticity: Twisting a cylinder

The previous section’s rubber cylinder is subjected to another experiment. As before,

it has length 𝐿 and radius 𝑅 in its undeformed configuration. We set up an 𝑋𝑌𝑍 Cartesian

coordinate system so that the 𝑍 axis coincides with the cylinder’s axis, and the cylinder’s

bases are at 𝑍 = 0 and 𝑍 = 𝐿.

We deform the cylinder so that a point at (𝑋, 𝑌 , 𝑍) goes to the point (𝑥, 𝑦, 𝑧) according

to

𝑥 = 𝑋 cos 𝜏𝑍 − 𝑌 sin 𝜏𝑍,
𝑦 = 𝑋 sin 𝜏𝑍 + 𝑌 cos 𝜏𝑍,
𝑧 = 𝑍.

(185)

In words, we twist the cylinder about its axis so that each 𝑍 = 𝑐 section, which is a

disk of radius 𝑅, remains at 𝑍 = 𝑐 and retains its shape and size, but rotates about the

𝑍 axis by an angle 𝜏𝑍 , that is, proportional to that section’s distance from the cylinder’s

base. We wish to do this by applying tractions to the cylinder’s bases while keeping the

cylinder’s curved surface traction-free. Is that possible?

The answer is yes. We will calculate the traction needed to accomplish that. Figure 17

depicts the cylinder before and after the deformation.

Unlike the case in the previous section, this deformation is not linear in (𝑋, 𝑌 , 𝑍), and

therefore the previous approach does not apply. We calculate the deformation gradient

𝑭 = 𝑭(𝑋, 𝑌 , 𝑍) directly by differentiating (185). We get:

𝑭 =
⎛
⎜
⎜
⎝

cos 𝜏𝑍 − sin 𝜏𝑍 −𝜏(𝑋 sin 𝜏𝑍 + 𝑌 cos 𝜏𝑍)
sin 𝜏𝑍 cos 𝜏𝑍 𝜏(𝑋 cos 𝜏𝑍 − 𝑌 sin 𝜏𝑍)

0 0 1

⎞
⎟
⎟
⎠
=
⎛
⎜
⎜
⎝

cos 𝜏𝑍 − sin 𝜏𝑍 −𝜏𝑦
sin 𝜏𝑍 cos 𝜏𝑍 𝜏𝑥

0 0 1

⎞
⎟
⎟
⎠
.
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0
𝑅 𝑟

− 1
2𝜏

2𝛼𝑅2

−𝜏2𝛽𝑅2

Figure 17. From the left: The first two figures depict the cylinder before

and after twisting. The third and forth figures shows the horizontal and

vertical components of the traction applied to the cylinder’s top.

We see that det 𝑭 = 1, therefore the deformation postulated in (185) is consistent with the

material’s incompressibility.

We calculate the left Cauchy–Green strain tensor 𝑩 = 𝑭𝑭 𝑇

𝑩 =
⎛
⎜
⎜
⎝

1 + 𝜏2𝑦2 −𝜏2𝑥𝑦 −𝜏𝑦
−𝜏2𝑥𝑦 1 + 𝜏2𝑥2 𝜏𝑥
−𝜏𝑦 𝜏𝑥 1

⎞
⎟
⎟
⎠
,

and

𝑩𝟐 =
⎛
⎜
⎜
⎝

1 + 𝜏2(3 + 𝜏2𝑟2)𝑦2 −𝜏2(3 + 𝜏2𝑟2)𝑥𝑦 −𝜏(2 + 𝜏2𝑟2)𝑦
−𝜏2(3 + 𝜏2𝑟2)𝑥𝑦 1 + 𝜏2(3 + 𝜏2𝑟2)𝑥2 𝜏(2 + 𝜏2𝑟2)𝑥
−𝜏(2 + 𝜏2𝑟2)𝑦 𝜏(2 + 𝜏2𝑟2)𝑥 1 + 𝜏2𝑟2

⎞
⎟
⎟
⎠
,

where we have let 𝑟 =
√
𝑥2 + 𝑦2 =

√
𝑋 2 + 𝑌 2. We also note that

𝜄1(𝑩) = tr 𝑩 = 3 + 𝜏2𝑟2.

Plugging these into the constitutive equation 𝑺 = −𝑝𝑰 + (𝛼 + 𝛽𝜄1(𝑩))𝑩 − 𝛽𝑩2
, we get

𝑺 =
⎛
⎜
⎜
⎝

−𝑝 + 𝛼 + 2𝛽 + 𝜏2(𝛼𝑦2 + 𝛽𝑟2) −𝛼𝜏2𝑥𝑦 −(𝛼 + 𝛽)𝜏𝑦
−𝛼𝜏2𝑥𝑦 −𝑝 + 𝛼 + 2𝛽 + 𝜏2(𝛼𝑥2 + 𝛽𝑟2) (𝛼 + 𝛽)𝜏𝑥

−(𝛼 + 𝛽)𝜏𝑦 (𝛼 + 𝛽)𝜏𝑥 −𝑝 + 𝛼 + 2𝛽

⎞
⎟
⎟
⎠
. (186)

Then we calculate

div 𝑺 =
⎛
⎜
⎜
⎜
⎝

− 𝜕𝑝
𝜕𝑥 + (2𝛽 − 𝛼)𝜏2𝑥

− 𝜕𝑝
𝜕𝑦 + (2𝛽 − 𝛼)𝜏2𝑦

− 𝜕𝑝
𝜕𝑧

⎞
⎟
⎟
⎟
⎠

,

and apply the equilibrium equation div 𝑺 = 𝟎 to get

−
𝜕𝑝
𝜕𝑥

+ (2𝛽 − 𝛼)𝜏2𝑥 = 0, −
𝜕𝑝
𝜕𝑦

+ (2𝛽 − 𝛼)𝜏2𝑦 = 0, −
𝜕𝑝
𝜕𝑧

= 0.

Upon integrating these equations we obtain

𝑝 =
1
2
(2𝛽 − 𝛼)𝜏2𝑟2 + 𝑐, (187)

where the constant 𝑐 is to be determined.

Going back to the expression for 𝑺, we evaluate the traction on the curved surface of

the cylinder at the point 𝑥 = 𝑅, 𝑦 = 0, 𝑧 = 0 where the outward unit normal vector is
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𝒏 = ⟨1, 0, 0⟩. We get

𝒕 = 𝑺𝒏 = (−𝑝 + 𝛼 + 2𝛽 + 𝛽𝜏2𝑅2) 𝒏.
which shows that the traction, is perpendicular to the surface. By the problem’s symme-

try, the traction would be perpendicular to the curved surface everywhere, and will have

the same magnitude. The assumption that the curved surface is traction-free leads to

−𝑝 + 𝛼 + 2𝛽 + 𝛽𝜏2𝑅2 = 0,

or, substituting for 𝑝 from (187)

1
2
(2𝛽 − 𝛼)𝜏2𝑟2 + 𝑐 + 𝛼 + 2𝛽 + 𝛽𝜏2𝑅2 = 0,

which we solve for 𝑐 and then substitute the result back into (187) to obtain

𝑝 = 𝛼 + 2𝛽 +
1
2
𝜏2(𝛼(𝑅

2 − 𝑟2) + 2𝛽𝑟2).

Having thus obtained the pressure, we substitute it in (186) to obtain the finalized

expression for 𝑺.

That enables us to calculate the tractions on the cylinder’s base which are needed to

maintain the cylinder’s deformed shape. The outward unit normal on the top face is

𝒏 = ⟨0, 0, 1⟩, and therefore the traction there is

𝒕 = 𝑺𝒏 =
⎛
⎜
⎜
⎝

−(𝛼 + 𝛽)𝜏𝑦
(𝛼 + 𝛽)𝜏𝑥

−𝑝 + 𝛼 + 2𝛽

⎞
⎟
⎟
⎠
=
⎛
⎜
⎜
⎜
⎝

−(𝛼 + 𝛽)𝜏𝑦
(𝛼 + 𝛽)𝜏𝑥

− 1
2𝜏

2
(𝛼(𝑅

2 − 𝑟2) + 2𝛽𝑟2)

⎞
⎟
⎟
⎟
⎠

.

The horizontal component of the traction, that is, the vector ⟨−(𝛼 + 𝛽)𝜏𝑦, (𝛼 + 𝛽)𝜏𝑥, 0⟩, is

perpendicular to the position vector ⟨𝑥, 𝑦, 𝑧⟩, and its magnitude is (𝛼+𝛽)𝜏𝑟 . This exerts the

torque that twists the cylinder. The vertical component,
1
2𝜏

2
(𝛼(𝑅

2−𝑟2)+2𝛽𝑟2), is presses

against the cylinder’s top to keep it from bulging out. This is strictly a nonlinear elasticity

effect. In the classical linear elasticity, which deals with infinitesimal deformations only,

normal tractions are absent. We leave it for an exercise to show that the resultant torque

is

𝑇 =
(𝛼 + 𝛽)𝜏

2𝜋
𝐴2,

where 𝐴 is the area of the cylinder’s base.

Remark 32. The problem was introduced and solved in Rivlin [16] through rather ad hoc

methods. He developed the solution further in [19] and [17]. In an earlier paper [13]

he presents laboratory results of experiments performed on actual rubbers. The solution

adopted here is close to that in [17] and it was suggested by Exercise 14 on page 164 of [2].

This is a rather odd method, as it uses Cartesian coordinates to solve a problem with cylin-

drical geometry. It is fortunate that things work out as they do in this instance, but it’s

not a general approach to such problems. A general approach to solving large deforma-

tion of elastic materials is developed in Green and Zerna [6]. They solve the problem of

the twisting of a cylinder an illustration of the power of the tensor calculus of curvilinear

coordinates which they introduce in great detail in the first chapter. Ideally that’s the

right approach to solving this problem but it requires some investment in learning the

machinery of tensor calculus which we avoid in these notes.
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𝐵 𝐵𝑡

Ω 𝜔

𝑵

𝑷(𝑿, 𝒕) 𝑵(𝑿)

𝒏
𝑺(𝒙, 𝑡) 𝒏(𝒙)

𝒙 = 𝝓𝑡(𝑿)

𝑿 𝒙

Figure 18. The tractions at 𝑿 and 𝒙 are 𝑷(𝑿, 𝑡) 𝑵(𝑿) and 𝑺(𝒙, 𝑡) 𝒏(𝒙),
where 𝑷 is the Piola–Kirchhoff stress tensor and 𝑺 is the Cauchy stress

tensor. The traction vectors 𝑷 𝑵 and 𝑺 𝒏 are parallel but generally of dif-

ferent lengths due to the local stretching/contraction of the area. If 𝑑𝐴𝑿
and 𝑑𝐴𝒙 are corresponding area elements at 𝑿 and 𝒙, then 𝑷 𝑵 𝑑𝐴𝑿 =
𝑺 𝒏 𝑑𝐴𝒙 .

35. Elasticity: The Piola–Kirchhoff stress tensor

The Cauchy stress measures contact force per unit area in the deformed configuration.

That’s rather inconvenient in formulating many boundary value problems in elasticity

since the deformed configuration may be unknown ahead of the time. The Piola–Kirchhoff
stress introduced in this section sidesteps that difficulty since it measures contact force

per unit area in the reference configuration. Figure 18 illustrates the idea. A part Ω of the

body 𝐵𝑡 is mapped to 𝜔 under the deformation 𝝓𝑡 . A point 𝑿 on the boundary 𝜕Ω of Ω is

mapped to a point 𝒙 on the boundary 𝜕𝜔 of 𝜔. The outward unit normals to 𝜕Ω and 𝜕𝜔
at 𝑿 and 𝒙 are 𝑵 and 𝒏, respectively. The boundary traction at 𝒙 is 𝑺(𝑥, 𝑡)𝒏(𝒙) where 𝑺 is

the Cauchy stress tensor. From the transformation of surface integral formula (122c) we

know that

∫
𝜕𝜔
𝑺(𝒙, 𝑡) 𝒏(𝒙) 𝑑𝐴𝒙 = ∫

𝜕Ω
(det 𝑭(𝑿, 𝑡)) 𝑺(𝝓𝑡(𝑿), 𝑡) 𝑭−𝑇 (𝑿, 𝑡) 𝑵(𝑿) 𝑑𝐴𝑿 .

Motivated by this, we introduce the Piola–Kirchhoff stress 𝑷(𝑿, 𝑡) via

𝑷(𝑿, 𝑡) = (det 𝑭(𝑿, 𝑡)) 𝑺(𝝓𝑡(𝑿), 𝑡) 𝑭−𝑇 (𝑿, 𝑡), (188a)

or written compactly

𝑷 = (det 𝑭) 𝑺 𝑭−𝑇 , (188b)

whereby the integration formula above takes the form

∫
𝜕𝜔
𝑺(𝒙, 𝑡) 𝒏(𝒙) 𝑑𝐴𝒙 = ∫

𝜕Ω
𝑷(𝑿, 𝑡) 𝑵(𝑿) 𝑑𝐴𝑿 .

Therefore, the force 𝑺𝒏 𝑑𝐴𝒙 acting on a surface element of size 𝑑𝐴𝒙 in the deformed con-

figuration may be expressed as 𝑷𝑵 𝑑𝐴𝑿 in the reference configuration. Note that the

vectors 𝑺𝒏 and 𝑷𝑵 are parallel but generally of different lengths since the area elements

𝑑𝐴𝒙 and 𝑑𝐴𝑿 are not necessarily equal due to the stretching of the material.

In (147a) we have a representation of the most general constitutive equation for an

isotropic elastic material. To express that equation in terms of the Piola–Kirchhoff stress
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tensor, we note that

𝑩𝑭−𝑇 = 𝑭𝑭 𝑇 𝑭−𝑇 = 𝑭,
and

𝑩2𝑭−𝑇 = 𝑩(𝑩𝑭−𝑇 ) = 𝑩𝑭.
Therefore from (147a) and (188b) we get

𝑷 = (det 𝑭)(𝛼0𝑭−𝑇 + 𝛼1𝑭 + 𝛼2𝑩𝑭),

where the 𝛼𝑖, 𝑖 = 0, 1, 2, are scalar-valued isotropic functions of 𝑩, as before. The equiva-

lent formula corresponding to the alternative representation (147b) is

𝑷 = (det 𝑭)(𝛽0𝑭−𝑇 + 𝛽1𝑭 + 𝛽2 (𝑭 𝑇𝑩)−1).

The equation of motion (102) on page 43 is expressed in in terms of the Cauchy stress

𝑺 defined in spatial coordinates over the deformed configuration Ω𝑡 = 𝝓𝑡(Ω). We wish

to obtain the equivalent equation of motion expressed in material coordinates over the

reference configuration Ω. We already know how to transform the stress. Let us look at

the transformation of the body force which appears as 𝜌𝒃 in (102)

Theorem 30. The equations of motion expressed in material coordinates are

𝜌0
∙
𝑽 = Div 𝑷 + 𝜌0𝒃, (189a)

𝑷𝑭 𝑇 = 𝑭𝑷𝑇 . (189b)

Proof. To do. . . □

36. Elasticity: Homogeneous deformations of a cube

This section is based on the original work of Rivlin [15,18] and has been influenced by

the presentation in Gurtin [8].

Consider a homogeneous, isotropic, incompressible elastic material defined through

the constitutive equation

𝑺̂(𝑭 ) = −𝑝𝑰 + 𝛽𝑩, (190)

where 𝑺 is the Cauchy stress, where 𝑩 = 𝑭𝑭 𝑇 is the left Cauchy–Green strain tensor,

and 𝛽 is a positive constant. This is a very special case of the general constitutive equa-

tion (159b).

Then then corresponding Piola–Kirchhoff stress tensor, defined in (188b), is given by

𝑷 = −𝑝𝑭−𝑇 + 𝛽𝑭 . (191)

Consider a cube is made of such a material and placed in the Cartesian coordinate sys-

tem so that its faces are parallel to the coordinates planes. We apply three pairs of uni-

formly distributed equal and opposite dead forces acting perpendicularly to cube’s faces.

The “dead force” adjective indicates that the force acting on a face remains the same as

the cube deforms and the face’s area changes. In other words, the surface traction 𝒕 = 𝑺𝒏
as measured in the deformed configuration varies depending on how the cube deforms,

but the surface traction 𝒕 = 𝑷𝒏 as measured in the undeformed configuration remains

fixed, regardless of how the cube deforms. We write 𝜂𝛽 for the magnitude of the traction
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𝒕 = 𝑷𝒏, viewing the dimensionless factor 𝜂 as a measure of the applied force. A positive

𝜂 expresses tension, while a negative 𝜂 expresses compression.

We wish to investigate the possible deformations of the cube under such loads. We

limit our search to homogeneous deformations, leaving open the question of whether

other types of deformation may be possible. Thus, we present the Piola–Kirchhoff stress

and the deformation gradient, relative to the coordinate system, as

𝑷 =
⎛
⎜
⎜
⎝

𝜂𝛽 0 0
0 𝜂𝛽 0
0 0 𝜂𝛽

⎞
⎟
⎟
⎠
, 𝑭 =

⎛
⎜
⎜
⎝

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎞
⎟
⎟
⎠
,

where 𝜆𝑘 > 0 for 𝑘 = 1, 2, 3. Plugging these into (191) we get

⎛
⎜
⎜
⎝

𝜂𝛽 0 0
0 𝜂𝛽 0
0 0 𝜂𝛽

⎞
⎟
⎟
⎠
= −𝑝

⎛
⎜
⎜
⎝

1/𝜆1 0 0
0 1/𝜆2 0
0 0 1/𝜆3

⎞
⎟
⎟
⎠
+ 𝛽

⎛
⎜
⎜
⎝

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎞
⎟
⎟
⎠
,

and therefore 𝜂𝛽 = −𝑝/𝜆𝑘 + 𝛽𝜆𝑘 , 𝑘 = 1, 2, 3, that is, 𝑝 = 𝛽(𝜆2𝑘 − 𝜂𝜆𝑘). It follows that

𝜂(𝜆𝑖 − 𝜆𝑗 ) = 𝜆2𝑖 − 𝜆2𝑗 for all 𝑖, 𝑗 ∈ {1, 2, 3},

or, in expanded form:

𝜂(𝜆1 − 𝜆2) = (𝜆1 − 𝜆2)(𝜆1 + 𝜆2) (192a)

𝜂(𝜆2 − 𝜆3) = (𝜆2 − 𝜆3)(𝜆2 + 𝜆3) (192b)

𝜂(𝜆3 − 𝜆1) = (𝜆3 − 𝜆1)(𝜆3 + 𝜆1). (192c)

Additionally, the incompressibility constraint det 𝑭 = 1 imposes the condition

𝜆1𝜆2𝜆3 = 1. (192d)

Thus, our quest reduces to finding one or more solutions to the system of four equations

in (192) for the three unknowns 𝜆1, 𝜆2, 𝜆3 in terms of 𝜂. The choice 𝜆1 = 𝜆2 = 𝜆3 = 1
and arbitrary 𝜂 certainly satisfy these equations. In other words, the undeformed cube

is a solution for arbitrary load values 𝜂, positive or negative. To go beyond that trivial

solution, we observe that our system of four equations is equivalent to

{
𝜆1 = 𝜆2 or 𝜆1 + 𝜆2 = 𝜂

}
and

{
𝜆2 = 𝜆3 or 𝜆2 + 𝜆3 = 𝜂

}

and

{
𝜆3 = 𝜆1 or 𝜆3 + 𝜆1 = 𝜂

}
and 𝜆1𝜆2𝜆3 = 1. (193)

In Exercise 47 you will show that (193) cannot hold if 𝜆1, 𝜆2, 𝜆3 are all distinct. Therefore

here we focus our attention on the case where 𝜆1 = 𝜆2 ≠ 𝜆3, and write 𝜆 for 𝜆3 to simplify

the notation. Then the first phrase of (193) is satisfied, the second and third phrases reduce

to 𝜆+𝜆1 = 𝜂, and the fourth phrase reduces to 𝜆21𝜆 = 1. Eliminating 𝜆1 between the latter

two equations leads to 𝜙(𝜆) def= (𝜂 − 𝜆)2𝜆 − 1 = 0. The solution of the problem hinges on

finding the roots of this cubic.

We have 𝜙′(𝜆) = 3𝜆2 − 4𝜂𝜆 + 𝜂2 = (𝜆 − 𝜂)(3𝜆 − 𝜂), and therefore the critical points

of 𝜙 are at 𝜂/3 and 𝜂. We also have 𝜙′′(𝜂/3) = −2𝜂 < 0 and 𝜙′′(𝜂) = 2𝜂 > 0, indicating

that the critical points at 𝜙 are at 𝜂/3 and 𝜂 are a local maximum and a local minimum,

respectively. Equipped with the further observation that 𝜙(−∞) = −∞, 𝜙(+∞) = +∞,

and 𝜙(0) = 𝜙(𝜂) = −1, we are in a position to sketch the representative graphics of 𝜙 in

Figure 19.
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𝜆

𝜙(𝜆)

−1

1
3𝜂 𝜂

𝜆

𝜙(𝜆)

−1
1
3𝜂

𝜂 𝜆

𝜙(𝜆)

−1
1
3𝜂

𝜂

Figure 19. The graphs of 𝜙(𝜆), from left to right, corresponding to 𝜂 =
1.6 < 𝜂cr, 𝜂 = 1.89 ≈ 𝜂cr, 𝜂 = 2.1 > 𝜂cr show the cases where we have

zero roots, one root, and two roots in the interval 0 < 𝜆 < 𝜂.

The vertical location of the graph’s local maximum, the “hump”, may fall below, at, or

above the horizontal axis, depending on the value of the parameter 𝜂. In those three cases,

the function 𝜙 has one, or two, or three roots, respectively, as we seen the Figure 19. The

middle graph, which corresponds to the case when the hump touches the horizontal axis,

is obtained when 𝜙(𝜂/3) = 4
27𝜂

3 − 1 = 0, that is 𝜂 = 𝜂cr

def= (
27
4 )

1/3
.

Since 𝜙(𝜂) < 0 and 𝜙(+∞) = +∞, there is always a root of 𝜙 with 𝜆 > 𝜂 but that root

is of no interest in our context since 𝜆 + 𝜆1 = 𝜂 would imply that 𝜆1 < 0. Other roots, if

any, would lie in the interval (0, 𝜂) and would be admissible. The number of such roots,

and consequently the number of solutions, depends on the value of 𝜂:

if 𝜂 < 𝜂cr, then there are no solution,
if 𝜂 = 𝜂cr, then there is one solution,
if 𝜂 > 𝜂cr, then there are two solutions.

The preceding analysis was carried out under the assumption that 𝜆1 = 𝜆2 ≠ 𝜆3. By

cyclic permutation of the indices we obtain solutions that favor the 𝑥1 or 𝑥2 directions,

thus leading to a collection of as many as seven solutions of the type we have been search-

ing for. We summarize this as follows:

∙ 𝜆1 = 𝜆2 = 𝜆3 = 1 is a solution (the “trivial” solution) for all 𝜂;
∙ if 𝜂 < 𝜂cr, then there are no other solutions;

∙ if 𝜂 = 𝜂cr, then there are three solution in addition to the trivial one;

∙ if 𝜂 > 𝜂cr, then there are six solution in addition to the trivial one.

Figure 20 depicts representative sequence of the cube’s deformations. Subfigure (a) is

the undeformed configuration of the cube, which also corresponds to the trivial solution

noted above. For load values 𝜂 < 𝜂cr, that’s all we get. As soon as the load 𝜂 surpasses 𝜂cr ≈
1.89, the cube snaps to the configuration shown in subfigure (b). This can happen in any

of the three coordinate directions, therefore subfigure (b), as well of each of the remaining

subfigures, represents one of the three possibilities. Subfigures (c) and (d) depict the two

possible deformation for 𝜂 = 1.92 > 𝜂cr, corresponding to the two roots of 𝜙. Subfigures (e)

and (f) depict yet another such pair corresponding to a larger load 𝜂 = 2.3 > 𝜂cr.

Remark 33. The preceding analysis indicates that the system of four equations (192) in

the three unknowns 𝜆1, 𝜆2, 𝜆3, is consistent despite the mismatch between the number

equations and the number of unknowns. In fact, by applying Viète’s formula for solving
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(a) (b)

(c) (d)

(e) (f)

Figure 20. (a): the undeformed cube; (b): the cube snaps to this con-

figuration when 𝜂 = 𝜂cr ≈ 1.89; (c) and (d): the two solutions when

𝜂 = 1.92; (e) and (f): the two solutions when 𝜂 = 2.3;

cubics, we readily obtain a symbolic expression for the three roots of the cubic equation

𝜙(𝜆) = (𝜂 − 𝜆)2𝜆 − 1 = 0:

𝜆 =
2
3
𝜂[1 + cos(

2𝜋𝑘
3

+
1
3
arccos 𝜁)], where 𝑘 = −1, 0, 1, and 𝜁 =

27
2𝜂3

− 1.
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Figure 21. The solid lines depict the three roots of the equation (𝜂 −
𝜆)2𝜆 − 1 = 0 plotted against 𝜂. The roots plotted in red and green lie

below the line 𝜆 = 𝜂, plotted in dashed magenta. The root plotted in

blue lies above that line and is not of interest in the context of our ap-

plication. The leftmost point of the red and green graphs is at 𝜂 = 𝜂cr ≈
1.89.

We will have real roots if −1 ≤ 𝜁 ≤ 1, which is equivalent to 𝜂 ≥ 𝜂cr. The root corre-

sponding to 𝑘 = 0 is grater than 𝜂, which, as was remarked earlier, is inadmissible in the

context of this elasticity problem. The roots produced by to 𝑘 = ±1 lie between 0 and 𝜂
and are admissible. Figure 21 shows the graphs of the three roots versus 𝜂.

Remark 34. Not all solutions obtained in this section are stable. Unstable solutions may be

practically impossible to produce in experiments. Rivlin’s article [20] contains a survey

of the literature on the stability issue up to 1974, and provides a concise summary of the

results, as follows.

The trivial solution, that is, the one with 𝜆1 = 𝜆2 = 𝜆3, exists for all 𝜂. The trivial

solution is unstable if 𝜂 < 0 (compression) or 𝜂 > 2. It is stable for 0 < 𝜂 < 2.

As we have seen, non-trivial solutions exist if 𝜂 > 𝜂cr. In that case the cubic 𝜙(𝜆) has

three roots. The root that is greater than 𝜂 is inadmissible as we have noted before. Let

us name the smaller of the remaining two roots 𝜆(1), and the other one 𝜆(2). Referring to

Figure 19, we see that

0 < 𝜆(1) <
1
3
𝜂 < 𝜆(2) < 𝜂.

Rivlin proves that the deformations corresponding to 𝜆(1) are stable and those corre-

sponding to 𝜆(2) are unstable. Therefore, the configurations (c) and (e) in Figure 20 are

stable, while (d) and (f) are unstable.

Remark 35. The problem discussed in this section was introduced in Rivlin [14]. In [15] he

analyzed the more general problem where the force pairs applied to cube’s faces are not

necessarily of equal magnitudes. In [18] he extended the analysis of [14] to Mooney-Rivlin
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materials. The stability of the solutions discussed in these articles is in the limited context

of stability relative to infinitesimal superimposed deformations along the coordinate axes.

The analysis under the stronger criterion of stability relative to arbitrary infinitesimal

superimposed deformations is done in [20].

37. Elasticity: Hyperelastic materials

Material based on [7, 8]

Definitions from page 65 of Green & Zerna: Mooney material: 𝑊 = 𝐶1(𝐼1−3)+𝐶2(𝐼2−3);
Neo-Hookean material: when 𝐶2 = 0.

38. Linear Elasticity

The theory of linear elasticity was developed in the early to mid 1800s by Cauchy,

Poisson, Navier, and many other contributors. The goal of this section is introduce the

basic ideas of linear elasticity and to relate these to the general theory of elasticity that

we have studied up to this point in these lecture notes.

As we shall see, linear elasticity is not a special case of the general theory of elasticity.

Rather, in a sense that we will make precise, linear elasticity is a linear approximation
to the general theory. As such, we should be aware that not everything that we have

learned about the general theory is applicable to this approximation. The most glaring

discrepancy is that constitutive equations of linear elasticity are not frame-invariant.

Historically, “theory of elasticity” has meant “theory of linear elasticity” and the gen-

eral theory of the previous sections is referred to as the “theory of nonlinear elasticity”.

Nevertheless, we shall continue referring to the general theory as “elasticity”, and refer

to the linearized version as “linear elasticity”.

This section’s presentation is a blend of the presentation on pages 288–302 of Gonzalez

and Stuart [5], and Gurtin [7].

38.1. Fourth order tensors. Up to this point in these lecture notes, we have used the

word tensor to refer to second order tensors. These are linear mappings from  to  . We

wrote  for the linear space of the second order tensors, and introduced a scalar product

𝑨∶𝑩 on . In this section it will be necessary to study linear mappings from  to . These

are called fourth order tensors.

Following the tradition in linear elasticity, we will indicate the application of the fourth

order tensor G on the second order tensor𝑯 by placing𝑯 in square brackets, as in G[𝑯].

Consider the fourth order tensor G, and let 𝑻 = G[𝑯]. Writing 𝑯 = ℎ𝑘𝑙𝒆𝑘 ⊗ 𝒆𝑙 and

𝑻 = 𝑡𝑖𝑗𝒆𝑘 ⊗ 𝒆𝑙 relative to a frame {𝒆1, 𝒆2, 𝒆3} in  , we have

𝑡𝑖𝑗 = 𝒆𝑖 ⋅ 𝑻 𝒆𝑗 = 𝒆𝑖 ⋅ G[𝑯]𝒆𝑗 = 𝒆𝑖 ⋅ G[ℎ𝑘𝑙𝒆𝑘 ⊗ 𝒆𝑙]𝒆𝑗 = 𝒆𝑖 ⋅ G[𝒆𝑘 ⊗ 𝒆𝑙]𝒆𝑗 ℎ𝑘𝑙
We define the components of G relative to the {𝒆1, 𝒆2, 𝒆3} frame as

𝐺𝑖𝑗𝑘𝑙 = 𝒆𝑖 ⋅ G[𝒆𝑘 ⊗ 𝒆𝑙]𝒆𝑗 ,
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whereby the component representation of 𝑻 = G[𝑯] is expressed as

𝑡𝑖𝑗 = 𝐺𝑖𝑗𝑘𝑙ℎ𝑘𝑙 .

Thus, a fourth order tensor G is determined by the 81 components 𝐺𝑖𝑗𝑘𝑙 relative to a frame.

38.2. More on derivatives. Consider a generally nonlinear function 𝑮 ∶  → . We

say 𝑮 is differentiable at 𝑭 if there exists a fourth order tensor 𝑮′
such that

15

lim
‖𝑯‖→0

‖‖𝑮(𝑭 + 𝑯) − 𝑮(𝑭) − 𝑮′(𝑭)[𝑯]‖‖
‖𝑯‖

= 0, (194)

and we refer to 𝑮′(𝑭) as the derivative of 𝑮 at 𝑭 . If such a 𝑮′(𝑭) exists, then it is unique.

If there is no such 𝑮′(𝑭), then one says that 𝑮 is not differentiable at 𝑭 . In what follows,

we will tacitly assume that our functions are differentiable wherever necessary.

Remark 36. The definition of the derivative in (194) implies that

𝑮′(𝑭)[𝑯] =
𝑑
𝑑𝜖
𝑮(𝑭 + 𝜖𝑯)

||||𝜖=0
. (195)

Theorem 31. Let 𝑮 ∶  →  be isotropic. Then

𝑸𝑮′(𝑭)[𝑯]𝑸𝑇 = 𝑮′(𝑸𝑭𝑸𝑇 )[𝑸𝑯𝑸𝑇 ]. for all 𝑯 ∈  and all 𝑸 ∈ orth. (196)

Proof. Lengthy proof, page 237 of Gurtin [7], to be added later □

38.3. The elasticity tensor. Let 𝑷 = 𝑷̂(𝑭) be the constitutive equation at a generic point

𝒑 of an elastic material, expressed in terms of the Piola-Kirchhoff stress tensor 𝑷. When

dealing with linear elasticity, we will assume that the stress in the undeformed material

is zero, that is, 𝑷̂(𝑰) = 𝟎. The derivative 𝑷̂′(𝑭) evaluated at 𝑭 = 𝑰 is called the material’s

elasticity tensor at 𝒑. We write

C = 𝑷̂′(𝑰).

Proposition 9. Let 𝑺 = 𝑺̂(𝑭) be the constitutive equation of the elastic material expressed
in terms of the Cauchy stress tensor. Then C = 𝑺̂′(𝑰). That is, the elasticity tensor could have
been equally defined as the derivative of the Cauchy stress evaluated at 𝑭 = 𝑰 .

Proof. From the definition of the Piola-Kirchhoff tensor in (188b) we have

𝑷̂(𝑭)𝑭 𝑇 = (det 𝑭) 𝑺̂(𝑭)

Differentiating this with the help of the product rule, for any 𝑯 ∈  we get

𝑷̂′(𝑭)[𝑯] 𝑭 𝑇 + 𝑷̂(𝑭)𝑯 𝑇 = (det 𝑭)′[𝑯] 𝑺̂(𝑭) + (det 𝑭) 𝑺̂′(𝑭)[𝑯]

Substituting (det 𝑭)′ = (det 𝑭)𝑭−𝑇
according to (78), and then evaluating the result at

𝑭 = 𝑰 , we obtain

𝑷̂′(𝑰)[𝑯] 𝑰 𝑇 + 𝑷̂(𝑰)𝑯 𝑇 = (det 𝑰)𝑰−𝑇 [𝑯] 𝑺̂(𝑰) + (det 𝑰) 𝑺̂′(𝑰)[𝑯],

which, due to the assumption 𝑷̂(𝑰) = 𝑺̂(𝑰) = 𝟎, reduces to

𝑷̂′(𝑰)[𝑯] = 𝑺̂′(𝑰)[𝑯] for all 𝑯 ∈ . □

15
This definition of the derivative generalizes to nonlinear mapping on Banach spaces. In that context, 𝑮′

is called the Fréchet derivative of 𝑮.
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Proposition 10 (Properties of the elasticity tensor). We have

(1) C[𝑯] ∈ sym for all 𝑯 ∈ ;
(2) C[𝑾 ] = 𝟎 for all 𝑾 ∈ skew.

Proof. Form (195) we have

C[𝑯] = 𝑺̂′(𝑰)[𝑯] =
𝑑
𝑑𝜖
𝑺̂(𝑰 + 𝜖𝑯)

||||𝜖=0
.

But 𝑺̂(𝑭 ∈ sym for every 𝑭 ∈ . It follows that C[𝑯] ∈ sym for all 𝑯 ∈ , thus proving

part (1) of the proposition.

As to part (2), pick any 𝑾 ∈ skew, and let 𝑸(𝑡) = 𝑒𝑾 𝑡
. We have seen (where?) that

𝑸(𝑡) ∈ orth. Then plugging this 𝑸 in the frame-invariance requirement (139), we get

𝑺̂(𝑸(𝑡)𝑭) = 𝑸(𝑡)𝑺̂(𝑭)𝑸(𝑡)𝑇 ,

which, upon the substitution 𝑭 = 𝑰 , and recalling 𝑺̂(𝑰) = 𝟎, reduces to 𝑺̂(𝑸(𝑡)) = 𝟎.

Differentiating this with respected to 𝑡 we obtain 𝑺̂′(𝑸(𝑡))[
∙
𝑸(𝑡)] = 𝟎. In particular, at

𝑡 = 0 we have 𝑺̂′(𝑸(0))[
∙
𝑸(0)] = 𝟎. But 𝑸(0) = 𝑰 , and

∙
𝑸(0) = 𝑾 . We conclude that

𝑺̂′(𝑰)[𝑾 ] = 𝟎, that is, C[𝑾 ] = 𝟎. □

Pick any 𝑯 ∈  let

𝑬 =
1
2(
𝑯 + 𝑯 𝑇 ), 𝑾 =

1
2(
𝑯 − 𝑯 𝑇 ).

Then 𝑬 ∈ sym and 𝑾 ∈ skew, and 𝑯 = 𝑬 + 𝑾 . From Proposition 10 and the linearity

of C it follows that C[𝐻] = C[𝑬 + 𝑾 ] = C[𝑬], that is, the values of C are completely

determined by its restriction to sym. From now on, we will regard C as a linear mapping

of sym to sym.

Proposition 11. Suppose the elastic material is isotropic. Then

𝑸 C[𝑯]𝑸𝑇 = C[𝑸𝑯𝑸𝑇 ] for all 𝑯 ∈  and all 𝑸 ∈ orth, (197)

that is, C is an isotropic function.

Proof.

𝑸 C[𝑯]𝑸𝑇 = 𝑸 𝑺̂′(𝑰)[𝑯]𝑸𝑇 by (196)

= 𝑺̂′(𝑸𝑰𝑸𝑇 )[𝑸𝑯𝑸𝑇 ] = 𝑺̂′(𝑰)[𝑸𝑯𝑸𝑇 ] = C[𝑸𝑯𝑸𝑇 ].

□

Theorem 32. Suppose that G ∶ sym → sym is linear and isotropic. Then, there exist scalar
constants 𝜇 and 𝜆 such that

G[𝑬] = 2𝜇𝑬 + 𝜆(tr 𝑬) 𝑰 for all 𝑬 ∈ sym. (198)

Proof. According to Theorem 13 (page 31), any (not necessarily linear) isotropic function

on sym is of the form

𝑮(𝑬) = 𝛼0𝑰 + 𝛼1𝑬 + 𝛼2𝑬2 for all 𝑬 ∈ sym
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where the coefficients 𝛼0, 𝛼1, 𝛼2 are scalar-valued functions of the invariants of 𝑬:

𝜄1(𝑬) = tr 𝑬, 𝜄2(𝑬) =
1
2(

(tr 𝑬)2 − tr(𝑬2)), 𝜄3(𝑬) = det 𝑬.

But in the current case, 𝑮 is also linear, and therefore the choices of 𝜄𝑖 are limited to

𝛼0 = 𝑐0 tr 𝑬 + 𝑐1, 𝛼1 = 𝑐2, 𝛼2 = 0,

where 𝑐0, 𝑐1, and 𝑐2 are scalar constants. This reduces the representation of 𝑮 to

G[𝑬] = (𝑐0 tr 𝑬 + 𝑐1) 𝑰 + 𝑐2 𝑬 for all 𝑬 ∈ sym.

The linearity of G implies that G(𝟎) = 𝟎, and therefore 𝑐1 = 0. The theorem’s assertion

follows by setting 𝑐0 = 𝜆 and 𝑐2 = 2𝜇. □

Corollary 8. The elasticity tensor C of an isotropic material has the form

C[𝑬] = 2𝜇𝑬 + 𝜆(tr 𝑬) 𝑰 for all 𝑬 ∈ sym. (199)

The coefficients 𝜇 and 𝜆 are called the material’s Lamé moduli.16

Viewing the elasticity tensor C as a linear operator from  to , we say that C is
symmetric if it is self-adjoint, that is,

𝑨∶C[𝑩] = 𝑩∶C[𝑨] for all 𝑨, 𝑩 ∈ ,
where the colon is the scalar product on  defined in Section 7.

According to Proposition 10, C[𝑾 ] = 𝟎 for all skew-symmetric tensors 𝑾 . Therefore

C as an operator on  cannot be positive definite. We have seen, however, that C is

completely defined by its restriction to sym, therefore we call C positive definite if

𝑬∶C[𝑬] > 0 for all nonzero 𝑬 ∈ sym. (200)

In the same vein, C is said to be strongly elliptic if

𝑯∶C[𝑯] > 0 for all 𝑯 = 𝒂 ⊗ 𝒃, where 𝒂, 𝒃 ∈  . (201)

We will leave of for an exercise to show that if C is positive definite, then it is strongly

elliptic (but not vice versa.)

Proposition 12. If the material is isotropic, then C is symmetric.

Proof. Pick any 𝑬,𝑯 ∈ sym. We know that 𝑯∶𝑰 = tr𝑯 . Therefore

𝑯∶C[𝑬] = 2𝜇𝑯∶𝑬 + 𝜆(tr 𝑬)(tr 𝑯),

which is symmetric in 𝑬 and 𝑯 . Therefore

𝑯∶C[𝑬] = 𝑬∶C[𝑯],

proving that C is symmetric. □

Theorem 33. If the material is isotropic, then C is positive definite if and only if

𝜇 > 0, 2𝜇 + 3𝜆 > 0, (202)

and C is strongly elliptic if and only if

𝜇 > 0, 2𝜇 + 𝜆 > 0. (203)

16
If the material in inhomogeneous, the Lamé moduli may vary from point to point.



NOTES ON CONTINUUM MECHANICS 96

Proof. Suppose (202) holds. Pick any 𝑬 ∈ sym, let 𝛼 = 1
3 tr 𝑬, and define 𝑬0 = 𝑬 − 𝛼𝑰 .

Since tr 𝑰 = 3, we see that tr 𝑬0 = 0, and therefore

𝑬 = 𝑬0 + 𝛼𝑰, tr 𝑬 = 3𝛼, 𝑬0∶𝑰 = 0.

Now we calculate

𝑬∶C[𝑬] = 2𝜇𝑬∶𝑬 + 𝜆(tr 𝑬)2 = 2𝜇(𝑬0 + 𝛼𝑰)∶(𝑬0 + 𝛼𝑰) + (3𝛼)2𝜆

= 2𝜇(‖𝑬0‖2 + 3𝛼2) + 9𝛼2𝜆 = 2𝜇‖𝑬0‖2 + 3𝛼2(2𝜇 + 3𝜆),

which shows that C is positive definite. The remaining proofs are left as exercises. □

Let us return to the constitutive equation 𝑷 = 𝑷̂(𝑭) of the general elasticity, where 𝑭
is the deformation gradient and 𝑷 is the Piola–Kirchhoff stress tensor. Given the defor-

mation 𝒙 = 𝝓𝑡(𝑿), the vector 𝒖 = 𝒙 − 𝑿 expresses the displacement of the point 𝑿 . We

define 𝑯 = 𝐆𝐫𝐚𝐝 𝒖 = 𝑭 − 𝑰 . Linear elasticity is concerned with deformations where 𝑯 is

small. In view of the definition of the elasticity tensor C, we have

𝑺̂(𝑭 ) = 𝑺̂(𝑰) + C[𝑭 − 𝑰] + 𝑜(‖𝑭 − 𝑰‖2) = C[𝑯] + 𝑜(‖𝑯‖2)

Letting

𝑬 =
1
2(
𝑯 + 𝑯 𝑇 )

we have

𝑺 = C[𝑬] + 𝑜(‖𝑯‖2)

In linear elasticity we drop the 𝑜(‖𝑯‖2) term above, and express the constitutive equa-

tion as

𝑺 = C[𝑬], 𝑬 =
1
2(

𝐠𝐫𝐚𝐝 𝒖 + (𝐠𝐫𝐚𝐝 𝒖)𝑇 ).

The the equation of motion takes the form

𝜌𝒖̈ = div 𝑺 + 𝜌𝒃.

If the material is isotropic, then 𝑺 is given by (199). Moreover, if the material is homoge-

neous, that is, the Lamé moduli are constants, then

div 𝑺 = 2𝜇 div 𝑬 + 𝜆 div((tr 𝑬)𝑰) = 𝜇 div(𝐠𝐫𝐚𝐝 𝒖 + (𝐠𝐫𝐚𝐝 𝒖)𝑇 ) + 𝜆 𝐠𝐫𝐚𝐝 tr 𝑬
= 𝜇Δ𝒖 + (𝜆 + 𝜇) 𝐠𝐫𝐚𝐝 div 𝒖,

and therefore the equation of motion becomes

𝜌𝒖̈ = 𝜇Δ𝒖 + (𝜆 + 𝜇) 𝐠𝐫𝐚𝐝 div 𝒖 + 𝜌𝒃. (204)

Remark 37. It can be shown that the initial value problems corresponding to (204) are

well-posed systems of hyperbolic PDEs if C is strongly elliptic, that is, 𝜇 > 0 and 2𝜇+𝜆 > 0.

In static equilibrium, the equation of motion (204) reduces to

𝜇Δ𝒖 + (𝜆 + 𝜇) 𝐠𝐫𝐚𝐝 div 𝒖 + 𝜌𝒃 = 𝟎. (205)

Remark 38. It can be shown that boundary value problems corresponding to (205) are

well-posed systems of elliptic PDEs if C is positive definite, that is, 𝜇 > 0 and 2𝜇+3𝜆 > 0.
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38.4. Waves in isotropic linear elastic materials. In this section we consider isotropic

elastic materials, therefore the equation of motion is (204).

A displacement field of the form

𝒖(𝒙, 𝑡) = 𝒂 sin(𝒙 ⋅ 𝒏 − 𝑐𝑡) (206)

is called a sinusoidal progressive wave traveling in the direction 𝒏 at velocity 𝑐 with am-

plitude 𝒂. If 𝒂 and 𝒏 are collinear, we say that the wave is longitudinal. If 𝒂 and 𝒏 are

perpendicular, we say that the wave is transverse.

We plug the displacement field (206) into the equation of motion (204) to see what

conclusions we may derive from it. Applying the result of Exercise 22 and the chain rule,

we see that

𝐠𝐫𝐚𝐝 𝒖 = 𝒂 ⊗ 𝒏 cos(𝒙 ⋅ 𝒏 − 𝑐𝑡),
and therefore

div 𝒖 = tr 𝐠𝐫𝐚𝐝 𝒖 = 𝒂 ⋅ 𝒏 cos(𝒙 ⋅ 𝒏 − 𝑐𝑡), 𝐜𝐮𝐫𝐥 𝒖 = 𝒏 × 𝒂 cos(𝒙 ⋅ 𝒏 − 𝑐𝑡).

If (206) is a longitudinal wave, then 𝒂 and 𝒏 are collinear, and therefore 𝒏 × 𝒂 = 𝟎, and

consequently 𝐜𝐮𝐫𝐥 𝒖 = 𝟎. If (206) is a transverse wave, then 𝒂 and 𝒏 are perpendicular,

and therefore 𝒂 ⋅ 𝒏 = 0, and consequently div 𝒖 = 0.

Furthermore, it can be shown (Exercise 50) that

Δ𝒖 def= div 𝐠𝐫𝐚𝐝 𝒖 = −𝒂 sin(𝒙 ⋅ 𝒏 − 𝑐𝑡), (207a)

𝐠𝐫𝐚𝐝 div 𝒖 = −(𝒂 ⋅ 𝒏) 𝒏 sin(𝒙 ⋅ 𝒏 − 𝑐𝑡) = −(𝒏 ⊗ 𝒏) 𝒂 sin(𝒙 ⋅ 𝒏 − 𝑐𝑡), (207b)

𝒖̈ = −𝑐2𝒂 sin(𝒙 ⋅ 𝒏 − 𝑐𝑡). (207c)

Plugging these into (204), with the body force 𝒃 set to zero, we arrive at

𝜌𝑐2𝒂 = 𝜇𝒂 + (𝜆 + 𝜇)(𝒏 ⊗ 𝒏)𝒂,

or equivalently,

1
𝜌 [
𝜇𝑰 + (𝜆 + 𝜇)𝒏 ⊗ 𝒏] 𝒂 = 𝑐2𝒂.

That motivates the introduction of the acoustic tensor 𝑨(𝒏):

𝑨(𝒏) =
1
𝜌 [
𝜇𝑰 + (𝜆 + 𝜇)𝒏 ⊗ 𝒏] =

𝜆 + 2𝜇
𝜌

𝒏 ⊗ 𝒏 +
𝜇
𝜌
(𝑰 − 𝒏 ⊗ 𝒏), (208)

whereby the equation of motion reduces to

𝑨(𝒏)𝒂 = 𝑐2𝒂, (209)

and thus, 𝑐2 is an eigenvalue of 𝑨(𝒏), and 𝒂 is the corresponding eigenvector.

Evidently the expression on the right-hand side of (208) is the spectral decomposition

of 𝑨(𝑛). We see that

∙ (𝜆 + 2𝜇)/𝜌 is an eigenvalue, and the corresponding eigenvector is 𝒏. Therefore a

longitudinal wave travels at the speed 𝑐 =
√
(𝜆 + 2𝜇)/𝜌;

∙ 𝜇/𝜌 is an eigenvalue, and the corresponding eigenvector is orthogonal to𝒏. There-

fore a transverse wave travels at the speed 𝑐 =
√
𝜇/𝜌.

Note that these speeds are real if C is strongly elliptic.
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39. Exercises

1. The proof of Proposition 2 shows that

[𝒖, 𝒗, 𝒘] = −[𝒗, 𝒖, 𝒘], [𝒖, 𝒗, 𝒘] = −[𝒖, 𝒘, 𝒗]

for all vectors 𝒖, 𝒗, 𝒘. Conclude that the scalar triple product is invariant under cyclic

permutations, that is

[𝒖, 𝒗, 𝒘] = [𝒗, 𝒘, 𝒖], [𝒖, 𝒗, 𝒘] = [𝒘, 𝒖, 𝒗].

2. Prove (16b) and verify that 𝜄2(𝑨) is given by (19b).

3. Prove (16c) and verify that 𝜄3(𝑨) is given by (19c).

4. Verify (21d).

5. Verify (21e).

6. Verify (21f).

7. Verify (21h).

8. Verify (21i).

9. Complete the proof of Corollary 1 by showing that the set of tensors  defined in (23)

is linearly independent. Hint: Show that 𝛼𝑖𝑗𝒆𝑖⊗𝒆𝑗 = 𝟎 implies that the coefficients 𝛼𝑖𝑗 are

zero.

10. Show that the basis  defined in (23) is orthonormal with respect to the scalar prod-

uct (26).

11. Show that 𝑰 = 𝒆𝑖 ⊗ 𝒆𝑖.

12. Show that tr 𝑨𝑇 = tr𝑨 and tr(𝑨𝑩) = tr(𝑩𝑨) for all 𝑨, 𝑩 ∈ .

13. If 𝑾 is skew-symmetric, show that

𝜄1(𝑾 ) = 0, 𝜄2(𝑾 ) = ‖𝒘‖2, 𝜄3(𝑾 ) = 0,

where 𝒘 is 𝑾 ’s axial vector. Hint: Let {𝒆1, 𝒆2, 𝒆3} be a right-handed frame where 𝒆1 is an

eigenvector of𝑾 . We know that 𝒘 = 𝜔𝒆1 and𝑾𝒆1 = 𝟎. Apply (37) to calculate Calculate

𝑾𝒆2 and 𝑾𝒆3. Then apply (19) to calculate the principal invariants.

14. Derive the equations (48).

15. For any 𝑨 ∈ , show that 𝑨𝑇𝑨 is symmetric and positive semi-definite. Moreover, if

𝑨 is invertible, show that𝑨𝑇𝑨 is positive definite. Hint: A tensor𝑨 is invertible if𝑨𝒖 = 𝟎
implies that 𝒖 = 𝟎.

16. For any 𝑨 ∈ , show that 𝑨𝑨𝑇
is symmetric and positive semi-definite. Moreover,

if 𝑨 is invertible, show that 𝑨𝑨𝑇
is positive definite. Hint: You may refer the following

without proof in your solution. A tensor 𝑨 is invertible if 𝑨𝑇𝒖 = 𝟎 implies that 𝒖 = 𝟎.

This is a consequence of the facts that a tensor is invertible if its determinant is nonzero,

and det𝑨 = det𝑨𝑇
for any tensor 𝑨.

17. Show that the identities (40a) and (40b) may be expressed as

(𝒖 × 𝒗) × 𝒂 = (𝒗 ⊗ 𝒖 − 𝒖 ⊗ 𝒗) 𝒂, (210a)

𝒂 × (𝒖 × 𝒗) = (𝒖 ⊗ 𝒗 − 𝒗 ⊗ 𝒖) 𝒂. (210b)

Note that (210a) says that 𝒖×𝒗 is the axial vector of the skew-symmetric tensor 𝒗⊗𝒖−𝒖⊗𝒗.
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18. Let 𝑸(𝑡) be an orthogonal tensor that depends on time 𝑡, and let

∙
𝑸 be its derivative.

Show that 𝑾 =
∙
𝑸𝑇𝑸 is skew-symmetric.

19. Show that for any invertible tensor 𝑨 and any pair of vectors 𝒖, 𝒗, we have

(𝑨𝒖) × (𝑨𝒗) = (det 𝑨)𝑨−𝑇 (𝒖 × 𝒗). (211)

20. Show that the basis in (23) is orthonormal with respect to the scalar product defined

in (26).

21. Consider the scalar field 𝜙 and the vector field 𝒗. Use the index notation to show that

div(𝜙𝒗) = (𝐠𝐫𝐚𝐝 𝜙) ⋅ 𝒗 + 𝜙 div 𝒗. (212)

22. Consider the scalar field 𝜙 and the vector field 𝒗. Use the index notation to show that

𝐠𝐫𝐚𝐝(𝜙𝒗) = 𝒗 ⊗ 𝐠𝐫𝐚𝐝 𝜙 + 𝜙 𝐠𝐫𝐚𝐝 𝒗. (213)

23. Consider the vector fields 𝒖 and 𝒗. Use the index notation to show that

div(𝒖 ⊗ 𝒗) = (𝐠𝐫𝐚𝐝 𝒖) 𝒗 + 𝒖 div 𝒗. (214)

24. Consider the scalar field 𝜙 and the tensor field 𝑨. Show that

div(𝜙𝑨) = 𝑨𝐠𝐫𝐚𝐝 𝜙 + 𝜙 div𝑨. (215)

Suggestion: Expand the left-hand and right-hand sides into components and verify that

the two sides are the same.

25. Show that the following identity holds for any pair of vector fields 𝒖, 𝒗:

𝐠𝐫𝐚𝐝(𝒖 ⋅ 𝒗) = (𝐠𝐫𝐚𝐝 𝒖)𝑇 𝒗 + (𝐠𝐫𝐚𝐝 𝒗)𝑇𝒖. (216)

Suggestion: Express 𝒖 and 𝒗 in components as in Sections 17.1 and 17.2, and then evaluate

the left- and right-hand sides separately to show that they are identical.

26. Show that for any vector field 𝒗 we have

div((𝐠𝐫𝐚𝐝 𝒗)𝑇 ) = 𝐠𝐫𝐚𝐝(div 𝒗).

27. Show that for any tensor field 𝑺 and vector field 𝒖, we have

div(𝑺𝑇 𝒗) = (div 𝑺) ⋅ 𝒗 + 𝑺∶ 𝐠𝐫𝐚𝐝 𝒗.

(This is essentially the same as the problem 2.11(b) on page 67 of [5].)

28 (Signorini’s Theorem). Consider a body 𝐵 in equilibrium under the stress field 𝑺 and

the body force field 𝒃, that is, div 𝑺 + 𝜌𝒃 = 𝟎. Show that

∫
𝐵
𝑺 𝑑𝑉 = ∫

𝐵
𝜌𝒃 ⊗ 𝒙 𝑑𝑉 + ∫

𝜕𝐵
(𝑺𝒏) ⊗ 𝒙 𝑑𝐴, (217)

where 𝒙 is the variable of integration, and 𝒏 is the outward unit normal to the boundary of

𝐵. This result is commonly presented in terms of the the average stress
–𝑺 = 1

vol(𝐵) ∫𝐵 𝑺 𝑑𝑉
as:

–𝑺 =
1

vol(𝐵)[ ∫𝐵
𝜌𝒃 ⊗ 𝒙 𝑑𝑉 + ∫

𝜕𝐵
(𝑺𝒏) ⊗ 𝒙 𝑑𝐴]. (218)

Hint: Show that for any constant vector 𝒂 we have ((𝑺𝒏) ⊗ 𝒙) 𝒂 = ((𝒂 ⋅ 𝒙) 𝑺)𝒏, and

therefore

∫
𝜕𝐵
((𝑺𝒏) ⊗ 𝒙) 𝒂 𝑑𝐴 = ∫

𝐵
div((𝒂 ⋅ 𝒙) 𝑺) 𝑑𝑉 .

Then expand div((𝒂 ⋅ 𝒙) 𝑺) by applying (215).
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Ω1

Ω2

Γ1

Γ2

pressure = 𝜋1

pressure = 𝜋2

𝐵

Figure 22. (Exercise 29) The domain 𝐵 = Ω1\Ω1 is pressurized by 𝜋1
and 𝜋2 from the inside and the outside.

29. Consider two closed surfaces Γ1 and Γ2 enclosing the domains Ω1 and Ω2 in 𝔼3, where

Ω1 ⊂ Ω2 as in Figure 22. let 𝐵 = Ω2\Ω1, that is, the region between those two surfaces,

represent a body at rest, subject to uniform pressures 𝜋1 and 𝜋2 applied to its boundary

surfaces Γ1 and Γ2, and no body forces. Apply Signorini’s Theorem (Exercise 28) to show

that the average stress
–𝑺 within 𝐵 is given by

–𝑺 = −
𝜋2𝑣2 − 𝜋1𝑣1
𝑣2 − 𝑣1

𝑰 ,

where 𝑣1 and 𝑣2 are the volumes of Ω1 and Ω2, and 𝑰 is the identity tensor. Thus, the

average stress is a pressure of the amount
𝜋2𝑣2−𝜋1𝑣1
𝑣2−𝑣1

.

Hint: Apply (218) to an arbitrary 𝒂 ∈  , and then convert the resulting surface integrals

to volume integrals via Gauss’s theorem (page 37).

30. The Reynolds Transport Theorem 25 on page 51 applies to scalar fields 𝜔(𝒙, 𝑡). Show

the the following counterpart of (121b) holds for vector fields 𝒘(𝒙, 𝑡):
𝑑
𝑑𝑡 ∫Ω𝑡

𝒘(𝒙, 𝑡) 𝑑𝑉𝒙 = ∫
Ω𝑡
(
𝜕𝒘
𝜕𝑡

+ div(𝒘 ⊗ 𝒗)) 𝑑𝑉𝒙 .

Hint: Apply (121b) to 𝒘 ⋅ 𝒂, where 𝒂 is an arbitrary constant vector.

Note: This identity is not needed anywhere in these notes but it makes for a good exercise.

31. Prove Part 2 of Wang’s Lemma (page 28).

32. Prove Lemma 8 on page 29.

33. Prove Lemma 10 on page 29.

34. A function 𝜙 ∶  → ℝ is said to be isotropic if

𝜙(𝑸𝒗) = 𝜙(𝒗) for all 𝒗 ∈  and 𝑸 ∈ orth.

Show that 𝜙 is isotropic if and only if there exists a function 𝜙̂ ∶ ℝ → ℝ so that 𝜙(𝒗) =
𝜙̂(‖𝒗‖) for all 𝒗 ∈  .

Hint: Show that if ‖𝒖‖ = ‖𝒖′‖, then 𝜙(𝒖) = 𝜙(𝒖′). One way of doing this is to pick frames

{𝒆1, 𝒆2, 𝒆3} and {𝒆′1, 𝒆′2, 𝒆′3} so that 𝒖 = 𝛼𝒆1 and 𝒖′ = 𝛼𝒆′1, and then let 𝑸 be the orthogonal

tensor that rotates the frame {𝒆1, 𝒆2, 𝒆3} to frame {𝒆′1, 𝒆′2, 𝒆′3} as in Lemma 5 on page 28.

35. A function 𝜙 ∶  ×  → ℝ is said to be isotropic if

𝜙(𝑸𝒖,𝑸𝒗) = 𝜙(𝒖, 𝒗) for all 𝒖, 𝒗 ∈  and 𝑸 ∈ orth. (219)
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Show that 𝜙 is isotropic if and only if there exists a function 𝜙̂ ∶ ℝ3 → ℝ so that

𝜙(𝒖, 𝒗) = 𝜙̂(‖𝒖‖, 𝒖 ⋅ 𝒗, ‖𝒗‖). (220)

Hint: Consider two pairs of vectors, (𝒖, 𝒗) and (𝒖′, 𝒗′), so that ‖𝒖′‖ = ‖𝒖‖, 𝒖′ ⋅ 𝒗′ = 𝒖 ⋅ 𝒗,

and ‖𝒗′‖ = ‖𝒗‖. Install frames {𝒆1, 𝒆2, 𝒆3} and {𝒆′1, 𝒆′2, 𝒆′3} as in the hint to Exercise 34, and

conclude that 𝜙(𝒖′, 𝒗′) = 𝜙(𝒖, 𝒗).

36. A function 𝒉 ∶  →  is said to be isotropic if

𝒉(𝑸𝒗) = 𝑸𝒉(𝒗) for all 𝒗 ∈  and 𝑸 ∈ orth.

Show that 𝒉 is isotropic if and only if there exists a function ℎ̂ ∶ ℝ → ℝ so that

𝒉(𝒗) = ℎ̂(‖𝒗‖)𝒗 for all 𝒗 ∈  .

Hint: Define 𝜙 ∶  × → ℝ as 𝜙(𝒖, 𝒗) = 𝒖 ⋅𝒉(𝒗). Show that 𝜙 is isotropic (see Exercise 35)

and then simplify the result observing that 𝜙 is linear in 𝒖.

37. Referring to (132) on page 56, show that the left Cauchy–Green strain tensors 𝑩 and

𝑩∗
of a motion observed by two observers are related through 𝑩∗ = 𝑸𝑩𝑸𝑇

.

38. Consider the motion 𝝓𝑡 , and let 𝑭(𝑿, 𝑡) and 𝒗(𝒙, 𝑡) be the corresponding deformation

gradient and the spatial velocity fields, respectively. Show that

∙
𝑭 (𝑿, 𝑡) = 𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡) 𝑭(𝑿, 𝑡) where 𝒙 = 𝝓𝑡(𝑿). (221)

Hint: Recall the equation 𝐠𝐫𝐚𝐝 𝒗(𝒙, 𝑡) 𝐆𝐫𝐚𝐝 𝝓𝑡(𝑿) = 𝐆𝐫𝐚𝐝
∙
𝝓𝑡(𝑿) from Section 28.

39. Consider the motion 𝝓𝑡 , and let 𝑭 , 𝑪, and 𝑫 be the motion’s deformation gradient,

the right Cauchy–Green strain tensor, and the strain rate, respectively. Show that

∙
𝑪 = 2𝑭 𝑇𝑫𝑭. (222)

Hint: Apply (221).

40. Is the constitutive equation 𝑺 = 𝑺̂(𝑭) = 𝑭 + 𝑭 𝑇 frame-indifferent? Here 𝑺 is the

Cauchy stress associated with the deformation gradient 𝑭 .

41. A visco-elastic material combines the behavioral characteristics of both an elastic

and a viscous material. Its constitutive equation 𝑺 = 𝑺̂(𝑭 ,
∙
𝑭) relates the stress 𝑺 to the

deformation gradient 𝑭 and its rate of change,

∙
𝑭 . Show that frame-indifference restricts

the constitutive equation to

𝑺 = 𝑹𝑺̂(𝑼 ,
∙
𝑼)𝑹𝑻 ,

where 𝑭 = 𝑹𝑼 is the deformation gradient’s right polar decomposition.

42. Show how equation (184) follows from equation (183).

43. The classical Poiseuille flow concerns the steady-state motion of an incompressible

Newtonian fluid pumped through an open-ended cylindrical pipe. That is a special case

of the problem studied in Section 31. Here, the constitutive equation is 𝑺 = −𝑝𝑰 + 2𝜇𝑫,

where the constant 𝜇 is the fluid’s viscosity.

Repeat the calculations of Section 31 for this special case and conclude that

𝑝(𝑧) = (𝑐 − 𝜌𝑔)𝑧 + 𝑝0, 𝜙(𝑟) = −
𝑐
4𝜇

(𝑅2 − 𝑟2), (223)
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where 𝑐 is a (positive) constant, and 𝑝0 is the atmospheric pressure. We note that the

pressure varies linearly in 𝑧, and that the velocity profile is parabolic. See Exercise 44 on

how to determine the constant 𝑐.

Hint: Derive the equations of motion and observe that the pressure 𝑝(𝑟, 𝑧) is independent

of 𝑟 , that is, 𝑝 = 𝑝(𝑧). Set 𝑝(0) = 𝑝0 to determine one of the integration constants.

44. In Exercise 43 show that the pipe’s volumetric flow rate 𝑄, that is, the volume of

the fluid passing through a pipe’s cross-section per unit time, is given by 𝑄 = 𝜋𝑐
8𝜇𝑅

4
, or

equivalently, 𝑄 = 𝑐
8𝜋𝜇𝐴

2
, where 𝐴 is the pipe’s cross-sectional area. This enables us to

calculate the constant 𝑐 in (223) in terms of the easily measurable quantities 𝑄, 𝑅, or 𝐴.

45. Calculate the resultant 𝑻 of the forces acting on the slanted face of the cube in Fig-

ure 13 of Section 27. Use the Cauchy stress tensor that was calculated in that section.

Assume that it is a unit cube.

46. Repeat the previous exercise, but this time use the Piola–Kirchhoff stress tensor to

do the calculations.

47. Show that (193) cannot hold if 𝜆1, 𝜆2, 𝜆3 are all distinct.

48. Suppose that the elasticity tensor C of Theorem 33 (page 95) is positive definite. Show

that 𝜇 > 0 and 2𝜇 + 3𝜆 > 0.

49. Complete the proof of Theorem 33 (page 95) by showing that the elasticity tensor C
of an isotropic material is strongly elliptic if and only if 𝜇 > 0 and 2𝜇 + 𝜆 > 0.

50. Verify the equations (207). Hint: Apply the results of Exercises 21 and 23.
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𝑥
𝑦

𝑧

𝑟

𝑃
𝒆𝑟

𝒆𝜃

𝒆𝑧

𝒆𝑥
𝒆𝑦

𝒆𝑧

𝑟

𝜃

Figure 23. This is an illustration of the relationship between a

Cartesian and cylindrical coordinates, and the corresponding frames

{𝒆𝑥 , 𝒆𝑦 , 𝒆𝑧} and {𝒆𝑟 , 𝒆𝜃, 𝒆𝑧}. The point 𝑃 has cylindrical coordinates 𝑟 , 𝜃, 𝑧.

Appendix A. Formulas in cylindrical coordinates

The cylindrical coordinates (𝑟, 𝜃, 𝑧) and the corresponding Cartesian coordinates (𝑥, 𝑦, 𝑧)
are related through

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃, 𝑧 = 𝑧.

Vectors and tensors in the Cartesian coordinates are expressed in terms of the frame

{𝒆𝑥 , 𝒆𝑦 , 𝒆𝑧}which is aligned with the coordinate axes. Vectors and tensors in the cylindrical

coordinates are expressed in terms of the frame {𝒆𝑟 , 𝒆𝜃, 𝒆𝑧}which is related to the Cartesian

frame through

𝒆𝑥 = 𝒆𝑟 cos 𝜃 − 𝒆𝜃 sin 𝜃, 𝒆𝑦 = 𝒆𝑟 sin 𝜃 + 𝒆𝜃 cos 𝜃, 𝒆𝑧 = 𝒆𝑧 .

Figure 23 illustrates the relationship between a Cartesian and cylindrical coordinates, and

the corresponding frames.

Thus, a vector 𝒗 in relative to the frame {𝒆𝑟 , 𝒆𝜃, 𝒆𝑧} is expressed as

𝒗 = 𝑣𝑟𝒆𝑟 + 𝑣𝜃𝒆𝜃 + 𝑣𝑧𝒆𝑧 . (224)

The components of a tensor 𝑨 has relative to the frame {𝒆𝑟 , 𝒆𝜃, 𝒆𝑧} are expressed as 𝐴𝑟𝑟 ,

𝐴𝑟𝜃, etc. Here is the full matrix of the components of 𝑨:

𝑨 =
⎛
⎜
⎜
⎝

𝐴𝑟𝑟 𝐴𝑟𝜃 𝐴𝑟𝑧
𝐴𝜃𝑟 𝐴𝜃𝜃 𝐴𝜃𝑧
𝐴𝑧𝑟 𝐴𝑧𝜃 𝐴𝑧𝑧

⎞
⎟
⎟
⎠
. (tensor components relative to

the {𝒆𝑟 , 𝒆𝜃, 𝒆𝑧} frame)
(225)

In the following list of differentiation formulas, 𝜙, 𝒗, and 𝑨 are generic scalar, vector,

and tensor fields, respectively.
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𝐠𝐫𝐚𝐝 𝜙 =
𝜕𝜙
𝜕𝑟
𝒆𝑟 +

1
𝑟
𝜕𝜙
𝜕𝜃
𝒆𝜃 +

𝜕𝜙
𝜕𝑧
𝒆𝑧 (226)

𝐠𝐫𝐚𝐝 𝒗 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜕𝑣𝑟
𝜕𝑟

1
𝑟
𝜕𝑣𝑟
𝜕𝜃

−
𝑣𝜃
𝑟

𝜕𝑣𝑟
𝜕𝑧

𝜕𝑣𝜃
𝜕𝑟

1
𝑟
𝜕𝑣𝜃
𝜕𝜃

+
𝑣𝑟
𝑟

𝜕𝑣𝜃
𝜕𝑧

𝜕𝑣𝑧
𝜕𝑟

1
𝑟
𝜕𝑣𝑧
𝜕𝜃

𝜕𝑣𝑧
𝜕𝑧

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(tensor components relative to

the {𝒆𝑟 , 𝒆𝜃, 𝒆𝑧} frame)

(227)

div 𝒗 =
1
𝑟
𝜕(𝑟𝑣𝑟 )
𝜕𝑟

+
1
𝑟
𝜕𝑣𝜃
𝜕𝜃

+
𝜕𝑣𝑧
𝜕𝑧

(228)

𝐜𝐮𝐫𝐥 𝒗 = (
1
𝑟
𝜕𝑣𝑧
𝜕𝜃

−
𝜕𝑣𝜃
𝜕𝑧 )

𝒆𝑟 + (
𝜕𝑣𝑟
𝜕𝑧

−
𝜕𝑣𝑧
𝜕𝑟 )

𝒆𝜃 +
1
𝑟 (

𝜕(𝑟𝑣𝜃)
𝜕𝑟

−
𝜕𝑣𝑟
𝜕𝜃 )

𝒆𝑧 (229)

Δ𝜙 =
1
𝑟
𝜕
𝜕𝑟 (

𝑟
𝜕𝜙
𝜕𝑟 )

+
1
𝑟2
𝜕2𝜙
𝜕𝜃2

+
𝜕2𝜙
𝜕𝑧2

(230)

Δ𝒗 = (Δ𝑣𝑟 −
1
𝑟2
𝑣𝑟 −

2
𝑟2
𝜕𝑣𝜃
𝜕𝜃 )

𝒆𝑟 + (Δ𝑣𝜃 −
1
𝑟2
𝑣𝜃 +

2
𝑟2
𝜕𝑣𝑟
𝜕𝜃 )

𝒆𝜃 + (Δ𝑣𝑧)𝒆𝑧 (231)

(𝐠𝐫𝐚𝐝 𝒗)𝒗 = (𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟

+
𝑣𝜃
𝑟
𝜕𝑣𝑟
𝜕𝜃

+ 𝑣𝑧
𝜕𝑣𝑟
𝜕𝑧

−
𝑣2𝜃
𝑟 )
𝒆𝑟

+ (𝑣𝑟
𝜕𝑣𝜃
𝜕𝑟

+
𝑣𝜃
𝑟
𝜕𝑣𝜃
𝜕𝜃

+ 𝑣𝑧
𝜕𝑣𝜃
𝜕𝑧

+
𝑣𝑟𝑣𝜃
𝑟 )𝒆𝜃

+ (𝑣𝑟
𝜕𝑣𝑧
𝜕𝑟

+
𝑣𝜃
𝑟
𝜕𝑣𝑧
𝜕𝜃

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧 )

𝒆𝑧

(232)

div𝑨 = (
𝜕𝐴𝑟𝑟

𝜕𝑟
+
1
𝑟
𝜕𝐴𝑟𝜃

𝜕𝜃
+
𝜕𝐴𝑟𝑧

𝜕𝑧
+
1
𝑟 (
𝐴𝑟𝑟 − 𝐴𝜃𝜃))𝒆𝑟

+ (
𝜕𝐴𝜃𝑟

𝜕𝑟
+
1
𝑟
𝜕𝐴𝜃𝜃

𝜕𝜃
+
𝜕𝐴𝜃𝑧

𝜕𝑧
+
1
𝑟 (
𝐴𝜃𝑟 + 𝐴𝑟𝜃))𝒆𝜃

+ (
𝜕𝐴𝑧𝑟

𝜕𝑟
+
1
𝑟
𝜕𝐴𝑧𝜃

𝜕𝜃
+
𝜕𝐴𝑧𝑧

𝜕𝑧
+
𝐴𝑧𝑟

𝑟 )𝒆𝑧

(233)
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Mathématiques, Œuvres Complètes D’Augustin Chaucy, volume VII, pages 60–78. Gauthier-Villars, Paris,

1889. (Cited on p. 45)

[2] P. Chadwick. Continuum mechanics. Dover Publications, Inc., Mineola, NY, second edition, 1999. Concise

theory and problems. (Cited on pp. 1, 47, 80, 85)

[3] S. Chapman and E. A. Milne. The proof of the formula for the vector triple product. The Mathematical
Gazette, 23(253):35–38, 1939. (Cited on p. 20)

[4] C. Cuvelier and R. M. S. M. Schulkes. Some numerical methods for the computation of capillary free bound-

aries governed by the Navier-Stokes equations. SIAM Rev., 32(3):355–423, 1990. (Cited on p. 80)

[5] Oscar Gonzalez and Andrew M. Stuart. A first course in continuum mechanics. Cambridge Texts in Applied

Mathematics. Cambridge University Press, Cambridge, 2008. (Cited on pp. 1, 31, 47, 55, 56, 92, 99)

[6] A. E. Green and W. Zerna. Theoretical elasticity. Clarendon Press, Oxford, second edition, 1968. (Cited on

pp. 80, 85)

[7] Morton E. Gurtin. An introduction to continuum mechanics, volume 158 of Mathematics in Science and
Engineering. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. (Cited

on pp. 1, 29, 31, 47, 92, 93)

[8] Morton E. Gurtin. Topics in finite elasticity, volume 35 of CBMS-NSF Regional Conference Series in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. (Cited on

pp. 87, 92)

[9] A. C. Merrington. Flow of visco-elastic materials in capillaries. Nature, 152:663, December 1943. (Cited on

pp. 71, 74)

[10] J. G. Oldroyd. On the formulation of rheological equations of state. Proc. Roy. Soc. London Ser. A, 200:523–

541, 1950. (Cited on p. 55)

[11] S. L. Rathna. Coulette and Poiseuille flow in non-Newtonian fluids. Proc. Nat. Inst. Sci. India Part A, 26:392–

399, 1960. (Cited on pp. 71, 73, 74, 75, 79)

[12] S. L. Rathna and P. L. Bhatnagar. Weissenberg and Merrington effects in non-Newtonian fluids. J. Indian
Inst. Sci., 45:57–82, 1963. (Cited on pp. 75, 79)

[13] R. S. Rivlin. Torsion of a rubber cylinder. Journal of Applied Physics, 18:444–449, May 1947. (Cited on p. 85)

[14] R. S. Rivlin. Large elastic deformations of isotropic materials. I. Fundamental concepts. Philos. Trans. Roy.
Soc. London Ser. A, 240:459–490, 1948. (Cited on p. 91)

[15] R. S. Rivlin. Large elastic deformations of isotropic materials. II. Some uniqueness theorems for pure, ho-

mogeneous deformation. Philos. Trans. Roy. Soc. London Ser. A, 240:491–508, 1948. (Cited on pp. 87, 91)

[16] R. S. Rivlin. Large elastic deformations of isotropic materials. III. Some simple problems in cylindrical polar

coordinates. Philos. Trans. Roy. Soc. London Ser. A, 240:509–525, 1948. (Cited on p. 85)

[17] R. S. Rivlin. Large elastic deformations of isotropic materials. IV. Further developments of the general

theory. Philos. Trans. Roy. Soc. London Ser. A, 241:379–397, 1948. (Cited on p. 85)

[18] R. S. Rivlin. A uniqueness theorem in the theory of highly-elastic materials. Proc. Cambridge Philos. Soc.,
44:595–597, 1948. (Cited on pp. 87, 91)

[19] R. S. Rivlin. A note on the torsion of an incompressible highly-elastic cylinder. Proc. Cambridge Philos. Soc.,
45:485–487, 1949. (Cited on p. 85)

[20] R. S. Rivlin. Stability of pure homogeneous deformations of an elastic cube under dead loading. Quarterly
of Applied Mathematics, 32(3):265–271, 1974. (Cited on pp. 91, 92)

[21] R. S. Rivlin and J. L. Ericksen. Stress-deformation relations for isotropic materials. J. Rational Mech. Anal.,
4:323–425, 1955. (Cited on p. 29)

[22] James Serrin. Poiseuille and Couette flow on non-Newtonian fluids. Z. Angew. Math. Mech., 39:295–299,

1959. (Cited on pp. 75, 79)

[23] C. Truesdell. Notes on the history of the general equations of hydrodynamics. Amer. Math. Monthly, 60:445–

458, 1953. (Cited on p. 68)

[24] K. Weissenberg. A continuum theory of rheological phenomena. Nature, 159:310–311, March 1947. (Cited

on p. 75)
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