Algorithm for finding particular solutions

This replaces the 9 cases listed in Farlow's Table 3.2 on page 153.

Consider the following second order, linear, constant coefficients, nonhomogeneous differential equation for the unknown y(x)

$$ay'' + by' + cy = f(x),$$

where f(x) is of the form

$$f(x) = e^{\alpha x} \left[P_n(x) \cos \beta x + Q_n(x) \sin \beta x \right].$$

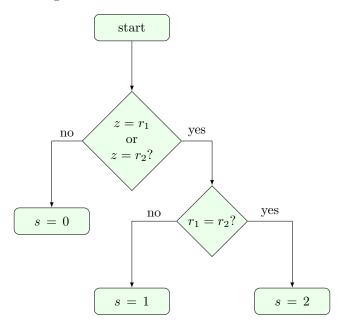
where $P_n(x)$ and $Q_n(x)$ are polynomials of up to nth degree in x, and α and β are real constants.

Then there exists a particular solution of the form

$$y_p(x) = x^s e^{\alpha x} \left[(A_0 + A_1 x + A_2 x^2 + \dots + A_n x^n) \cos \beta x + (B_0 + B_1 x + B_2 x^2 + \dots + B_n x^n) \sin \beta x \right],$$

where A_k and B_k , k = 0, 1, ..., n, are constants to be determined. The exponent s is a number from the set $\{0, 1, 2\}$, picked as follows.

Let us introduce the generally complex number $z = \alpha + i\beta$, and let's write r_1 and r_2 for the roots of the characteristic equation $ar^2 + br + c = 0$. Then select $s \in \{0, 1, 2\}$ according to the flowchart below.



To state the flowchart in words: If z matches neither of r_1 or r_2 , then s = 0. If z matches only one of r_1 or r_2 , then s = 1. If z matches both r_1 and r_2 , then s = 2.

¹Note that z is completely determined by f(x), and that z is a real number if $\beta = 0$.

²The roots r_1 and r_2 may be real, complex or repeated, depending on the sign of the discriminant $b^2 - 4ac$. Regardless, we refer to the roots by r_1 and r_2 in all cases.

Example: Let us find a particular solution to $y'' + 2y' + y = (2x+3)e^{-x}$. Comparing the right-hand side against f(x), we see that $\alpha = -1$, $\beta = 0$, and n = 1. Then our particular solution has the form $y_p(x) = x^s e^{-x} (A_0 + A_1 x)$.

To determine s, we note that the characteristic equation $r^2 + 2r + 1 = 0$ which factorizes as $(r+1)^2 = 0$, and therefore the roots are $r_1 = r_2 = -1$. Since $\alpha = -1$, $\beta = 0$, we have z = -1. Referring to the flowchart, we see that s = 2. Thus, we seek a particular solution of the form $y_p(x) = x^2 e^{-x} (A_0 + A_1 x)$, or equivalently, $y_p(x) = e^{-x} (A_0 x^2 + A_1 x^3)$.

It remains to determine A_0 and A_1 . Toward that end, we calculate

$$y_p'(x) = -e^{-x}(A_0x^2 + A_1x^3) + e^{-x}(2A_0x + 3A_1x^2)$$

$$= e^{-x} \left[-A_1x^3 + (3A_1 - A_0)x^2 + 2A_0x \right],$$

$$y_p''(x) = -e^{-x} \left[-A_1x^3 + (3A_1 - A_0)x^2 + 2A_0x \right] + e^{-x} \left[-3A_1x^2 + 2(3A_1 - A_0)x + 2A_0 \right]$$

$$= e^{-x} \left[A_1x^3 + (-6A_1 + A_0)x^2 + (6A_1 - 4A_0)x + 2A_0 \right]$$

Substituting these into the differential equation we obtain $(6A_1x + 2A_0)e^{-x} = (2x+3)e^{-x}$, that is, $6A_1x + 2A_0 = 2x+3$, from which it follows that $A_1 = 1/3$ and $A_0 = 3/2$, and consequently,

$$y_p(x) = x^2 \left(\frac{3}{2} + \frac{1}{3}x\right)e^{-x}.$$

Since the solution of the homogeneous equation is $y_h(x) = c_1 e^{-x} + c_2 x e^{-x}$, the general solution of our differential equation is

$$y(x) = c_1 e^{-x} + c_2 x e^{-x} + x^2 \left(\frac{3}{2} + \frac{1}{3}x\right) e^{-x}.$$