for many small values of *n*, including 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 16, 17, 19, 20, 22, 24, and 30.

Both proofs that the a_i s are relatively prime extend easily to the sequences obtained using any two relatively prime integers for a_1 and b_1 , and recurrence pair $b_{i+1} = a_i b_{i-1}$, $a_{i+1} = b_{i+1} a_i^s + b_i a_{i-1}^s$ for any nonnegative integers r and s ($a_1 = \pm 1$ when s > 0).

ACKNOWLEDGMENTS We thank Professor Peter Hilton for his encouragement and suggestions on the manuscript.

REFERENCES

- 1. L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952.
- 2. A. W. F. Edwards, Infinite coprime sequences, Math. Gazette 48 (1964) 416-422.
- 3. P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, New York, 1996.
- M. Somos, In the elliptic realm, in preparation; see website at http://grail.cba.csuohio.edu/~somos/math.html.

1081 Carver Road, Cleveland Heights, OH 44112 somos@grail.cba.csuohio.edu

Another Simple Proof of π^2

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$$

James D. Harper

Recently Josef Hofbauer [2] shared with the readers of this MONTHLY a simple proof that

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}.$$

The crux of his proof was a clever application of Tannery's theorem. In this paper I use Fubini's theorem (twice) to prove this identity.

As has been frequently noted, it is enough to prove that

$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$$

Let us begin with the following double integral:

$$\int_0^\infty \int_0^1 \frac{x}{(x^2+1)(x^2z^2+1)} dz \, dx = \int_0^\infty \left[\frac{\tan^{-1} xz}{x^2+1} \right]_0^1 dx$$
$$= \int_0^\infty \frac{\tan^{-1} x}{x^2+1} \, dx = \frac{\pi^2}{8}.$$

By Fubini's theorem this integral is equal to:

$$\int_0^1 \int_0^\infty \frac{x}{(x^2+1)(x^2z^2+1)} \, dx \, dz = \int_0^1 \int_0^\infty \frac{1}{2(z^2-1)} \left[\frac{2xz^2}{x^2z^2+1} - \frac{2x}{x^2+1} \right] dx \, dz$$

$$= \int_0^1 \frac{1}{2(z^2-1)} \left[\ln \left(\frac{x^2z^2+1}{x^2+1} \right) \right]_0^\infty \, dz$$

$$= \int_0^1 \frac{\ln z^2}{2(z^2-1)} \, dz$$

$$= \int_0^1 \frac{\ln z}{z^2-1} \, dz.$$

We now integrate this last integral by parts using $u = \ln z$ and $dv = dz/(z^2 - 1)$ to obtain:

$$\int_0^1 \frac{\ln z}{z^2 - 1} \, dz = \left[-\ln z \tanh^{-1} z \right]_0^1 - \int_0^1 \frac{-\tanh^{-1} x}{z} dz = \int_0^1 \frac{\tanh^{-1} z}{z} dz.$$

Finally, we use the McLaurin series expansion for $(\tanh^{-1} z)/z$ and then interchange this summation with the integral (Fubini again!):

$$\int_0^1 \frac{\tanh^{-1} z}{z} dz = \sum_{n=0}^\infty \int_0^1 \frac{z^{2n}}{2n+1} dz = \sum_{n=0}^\infty \frac{1}{(2n+1)^2}.$$

Putting the two ends together, we have our result. For readers who would enjoy seeing more proofs, Dan Kalman has given us "Six Ways to Sum a Series" [3] and Robin Chapman [1] has found fourteen ways to evaluate $\zeta(2)$ (not including Hofbauer's).

REFERENCES

- 1. R. Chapman, Evaluating $\zeta(2)$, preprint, http://www.maths.ex.uk/~rjc/etc/zeta2.dvi.
- 2. J. Hofbauer, A simple proof of $+\frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{\pi^2}{6}$ and related identities, this MONTHLY **109** (2002) 196–200.
- 3. D. Kalman, Six ways to sum a series, College Math. J. 24 (1993) 402-421.

Mathematics Department, Central Washington University, Ellensburg, WA 98926. harperj@cwu.edu