for many small values of n, including 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 16, 17, 19, 20, 22,
24, and 30.

Both proofs that the g;s are relatively prime extend easily to the sequences ob-
tained using any two relatively prime integers for a; and b;, and recurrence pair
biy1 = a;b;_1, aiy1 = bipial + bial_, for any nonnegative integers r and s (a; = +1
when s > 0).
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Another Slmple Proof of
1+ 5+ 35+ = 1%-

James D. Harper

Recently Josef Hofbauer [2] shared with the readers of this MONTHLY a simple proof
that

JT2

1+1+1+ =
22 32 T 6

The crux of his proof was a clever application of Tannery’s theorem. In this paper I
use Fubini’s theorem (twice) to prove this identity.
As has been frequently noted, it is enough to prove that

00 7.[2
Z: 2n+ 2~ 8"

Let us begin with the following double integral:

>l x % Man~' xz 7'
dzdx:/ — | dx

./0 /0(x2+1)(x222+1) 0 [x2+1]0
Oot -1 2
:/ mx e
0 x2+1 8
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By Fubini’s theorem this integral is equal to:

I o X I oo 1 2xz? 2x
dxdz = - dxd
/0/0 (2 + D222+ 1) T /o[o 2z2-1) [x222+1 x2+1} ra
1 2.2 o]
=/ 1 ln(xz +1> dz
s 2@ —1) 241 /],
' Inz?
Y L
/02<z2—1> ¢
' Inz
= —dz.
_/012—1 ¢

We now integrate this last integral by parts using u = Inz and dv = dz/(z*> — 1) to
obtain:

1 1 1 — 1t h—l 1 t h—l
f znz dz =[~Inztanh™' 2], _/ —famh X, =/ anh” z
0 z—1 0 z 0 z

Finally, we use the McLaurin series expansion for (tanh™! 2) /z and then interchange
this summation with the integral (Fubini again!):

ltanh—lz 00 1 Z2n o] 1
/0 z ¢ ;/0 M1 Z(2n+1)2

n=0

Putting the two ends together, we have our result. For readers who would enjoy seeing
more proofs, Dan Kalman has given us “Six Ways to Sum a Series” [3] and Robin
Chapman [1] has found fourteen ways to evaluate ¢ (2) (not including Hofbauer’s).
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