Algorithm for finding particular solutions

This replaces the 9 cases listed in Farlow's Table 3.2 on page 153.

Consider the following second order, linear, constant coefficients, nonhomogeneous differential equation for the unknown $y(x)$

$$
ay'' + by' + cy = f(x),
$$

where $f(x)$ is of the form

$$
f(x) = e^{\alpha x} \bigg[(a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n) \cos \beta x + (b_0 + b_1 x + b_2 x^2 + \cdots + b_n x^n) \sin \beta x \bigg].
$$

Here *n* is a nonnegative integer and α , β , a_k , and b_k , $k = 0, 1, \ldots, n$ are constants.

Then there exists a particular solution of the form

$$
y_p(x) = x^s e^{\alpha x} \bigg[(A_0 + A_1 x + A_2 x^2 + \dots + A_n x^n) \cos \beta x + (B_0 + B_1 x + B_2 x^2 + \dots + B_n x^n) \sin \beta x \bigg],
$$

where A_k and B_k , $k = 0, 1, ..., n$, are constants to be determined. The exponent s is a number from the set $\{0, 1, 2\}$, picked as follows.

Let us introduce the generally complex number $z = \alpha + i\beta$,¹ and let's write r_1 and r_2 for the roots of the characteristic equation $am^2 + bm + c = 0$.² Then select $s \in \{0, 1, 2\}$ according to the flowchart below.

¹Note that z is completely determined by $f(x)$, and that z is a real number if $\beta = 0$.

²The roots r_1 and r_2 may be real, complex or repeated, depending on the sign of the discriminant

 $b^2 - 4ac$. Regardless, we refer to the roots by r_1 and r_2 in all cases.

Example: Let us find a particular solution to $y'' + 2y' + y = (2x + 3)e^{-x}$. Comparing the right-hand side against $f(x)$, we see that $\alpha = -1$, $\beta = 0$, $a_0 = 2$, $a_1 = 3$, $n = 1$. Then our particular solution has the form $y_p(x) = x^s e^{-x} (A_0 + A_1 x)$.

To determine s, we note that the characteristic equation $m^2 + 2m + 1 = 0$ which factorizes as $(m+1)^2 = 0$, and therefore the roots are $r_1 = r_2 = -1$. Since $\alpha = -1$, $\beta = 0$, we have $z = -1$. Referring to the flowchart, we see that $s = 2$. Thus, we seek a particular solution of the form $y_p(x) = x^2 e^{-x} (A_0 + A_1 x)$, or equivalently, $y_p(x) = e^{-x} (A_0 x^2 + A_1 x^3)$.

It remains to determine A_0 and A_1 . Toward that end, we calculate

$$
y_p'(x) = -e^{-x}(A_0x^2 + A_1x^3) + e^{-x}(2A_0x + 3A_1x^2)
$$

= $e^{-x}[-A_1x^3 + (3A_1 - A_0)x^2 + 2A_0x]$,

$$
y_p''(x) = -e^{-x}[-A_1x^3 + (3A_1 - A_0)x^2 + 2A_0x] + e^{-x}[-3A_1x^2 + 2(3A_1 - A_0)x + 2A_0]
$$

= $e^{-x}[A_1x^3 + (-6A_1 + A_0)x^2 + (6A_1 - 4A_0)x + 2A_0]$

Substituting these into the differential equation we obtain $(6A_1x+2A_0)e^{-x} = (2x+3)e^{-x}$, that is, $6A_1x + 2A_0 = 2x + 3$, from which it follows that $A_1 = 1/3$ and $A_0 = 3/2$, and consequently,

$$
y_p(x) = x^2 \left(\frac{3}{2} + \frac{1}{3}x\right) e^{-x}.
$$

Since the solution of the homogeneous equation is $y_h(x) = c_1e^{-x} + c_2xe^{-x}$, the general solution of our differential equation is

$$
y(x) = c_1 e^{-x} + c_2 x e^{-x} + x^2 \left(\frac{3}{2} + \frac{1}{3}x\right) e^{-x}.
$$