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Hyperbolic equations in applications

The wave equation
∂2u
∂t2 = c2∂

2u
∂x2 ,

along with its many variants, is the prototype of a very large class of hyperbolic
equations that arise in many applications such as

• vibration of solid structures (strings, beams, membranes, plates)
• propagation of seismic waves
• geological exploration, oil well detection
• aerodynamics and supersonic flight
• propagation of electromagnetic waves (radiant heat, light, radio waves,

microwaves, fiber optics, antennas)
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The wave equation
We wish to derive the equation of motion of a stretched string with ends fixed.
(Think of a guitar string or cello string). Depending on the manner of excitation,
the string may flex in many different ways. See the figure to the right. We write T
for the tensile force within the string, ρ for the mass of string per unit length,
u(x , t) for the lateral displacement of the string, and θ(x , t for the angle between
the string and the equilibrium state at the location x at time t,

We assume that the deflection away from equilibrium is small so that we may
approximate sin(θ) ≈ θ and tan(θ) ≈ θ.

x

u(x , t)
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The wave equation (continued)
Let us focus on a small segment of the string between locations x and x + ∆x .
The mass of that segment is ρ∆x , and its vertical acceleration is ∂2u

∂t2 . Therefore,
according to Newton, ρ∆x ∂2u

∂t2 equals the resultant of vertical forces acting on the
string. But in the diagram below we see that the vertical component of the acting
forces is T sin θ(x + ∆x , t)− T sin θ(x , t). We conclude that

ρ∆x ∂
2u
∂t2 = T sin θ(x + ∆x , t)− T sin θ(x , t).

x x + ∆x

θ(x , t)

θ(x + ∆x , t)

T

T
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The wave equation (continued)
We divide through by ∆x

ρ
∂2u
∂t2 = T sin θ(x + ∆x , t)− sin θ(x , t)

∆x
and pass to the limit as ∆x → 0:

ρ
∂2u
∂t2 = T ∂

∂x
(
sin θ

)
.

However, by our smallness assumption of θ we have ∂u
∂x

slope= tan θ ≈ sin θ and
therefore

ρ
∂2u
∂t2 = T ∂

∂x
(∂u
∂x
)

= T ∂2u
∂x2 .

We let T/ρ = c2 and cast the equation above into the standard form of the wave
equation. It expresses Newton’s law of motion applied to a stretched string:

∂2u
∂t2 = c2∂

2u
∂x2 . (1)
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The vibrating string

Consider the stretched string depicted in Slide 4. We have seen that its motion
u(x , t) is a solution of the wave equation. We supply that equation with initial and
boundary conditions to obtain a well-posed initial boundary value problem:

utt = c2uxx 0 < x < L, t > 0, (2a)
u(0, t) = 0 t > 0, (2b)
u(L, t) = 0 t > 0, (2c)
u(x , 0) = f (x) 0 < x < L, (2d)
ut(x , 0) = g(x) 0 < x < L. (2e)

Note the specification of the initial condition. The condition (2d) specifies the
string’s deflection at t = 0. The condition (2e) specifies the string’s velocity at
t = 0.

In the slides that follow, we will calculate the solution of this initial boundary value
problem through. . . what else? Separation of variables!
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The wave equation — separation of variables

We look for solutions to (2) in the form u(x , t) = X (x)T (t). Plugging this
into (2a) we see that X (x)T ′′(t) = c2X ′′(x)T (t), whence

T ′′(t)
c2T (t) = X ′′(x)

X (x) = −λ2,

where we have, based on our previous experiences with such matters, picked −λ2

(a negative number) for the separation constant. Thus, we obtain

T ′′(t) + c2λ2T (t) = 0, X ′′(x) + λ2X (x) = 0, X (0) = 0, X (L) = 0. (3)

The last two equations are the consequences of (2b) and (2c).

The general solution of the X equation is X (x) = A cosλx + B sinλx . Applying
the condition X (0) = 0 implies that A = 0, and thus we are left with
X (x) = B sinλx . Applying the condition X (L) = 0 implies that sinλL = 0, whence
λ = nπ/L for all positive integers n. We write these as λn = nπ/L.
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The wave equation — separation of variables 2
Having determined the values of the separation constant, we write Xn(x) = sinλnx
for the corresponding solutions. Moreover, in view of the T equation in (3), we see
that Tn(t) = A cosλnct + B sinλnct. We conclude that
Xn(x)Tn(t) = (An cosλct + Bn sinλnct) sinλnx is a solution of the equations (2a),
(2b), and (2c) for any positive integer n, and therefore the following infinite linear
combination is also a solution:

u(x , t) =
∞∑

n=1
(An cosλnct + Bn sinλnct) sinλnx . (4)

In remains to pick the A’s and Bs in order to satisfy the initial conditions (2d)
and (2e). Let’s observe that the velocity of the string at (x , t) is obtained by
differentiating the displacement u(x , t) with respect to t:

ut(x , t) =
∞∑

n=1
(−Anλnc sinλnct + Bnλnc cosλnct) sinλnx .

We set u(x , 0) = f (x), ut(x , 0) = g(x) and continue into the next slide.
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The wave equation — separation of variables 3

We see that
∞∑

n=1
An sinλnx = f (x),

∞∑
n=1

Bnλnc sinλnx = g(x).

Then An and Bn may be calculated from our old formulas for the Fourier sine series:

An = 2
L

∫ L

0
f (x) sinλnx dx , Bn = 2

λncL

∫ L

0
g(x) sinλnx dx . (5)

This completes our analysis and solution of the vibrating string problem. The
string’s motion is given in (4), where the coefficients An and Bn are calculated
according to (5).
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Vibrating string – An example
Suppose that we deflect the string into the shape of a parabola f (x) = x(1− x

L )
and release it without imparting any initial velocity, i.e., g(x)=0. The motion is
given in (4), with the As and Bs as in (5). Since g(x) = 0, we have all Bs equal
zero, and the solution is

u(x , t) =
∞∑

n=1
An cosλnct sinλnx ,

where

An = 2
L

∫ L

0
f (x) sinλnx dx = 2

L

∫ L

0
x(1− x

L ) sinλnx dx = 4L
π3 ·

1− (−1)n

n3 .

An animation with L = 1, c = 1 and infinity set to 20.
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Vibrating string – Another example

We simulate the plucking of the string by setting f (x) =
{

x if x < L/3,
1
2(L− x) if x > L/3.

and g(x)=0. Then u(x , t) =
∑∞

n=1 An cosλnct sinλnx , where

An = 2
L

∫ L

0
f (x) sinλnx dx = 3L

π2 ·
sin nπ

3
n2 .

An animation with L = 1, c = 1 and infinity set to 20.
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The piano wire – an exercise
What sets a piano wire into motion is not an initial deflection, but an initial
velocity, imparted to it by the hammer. In a piano wire of length L, let’s take the
striking region to be 1/16th of the wire’s length at either side of the wire’s center.
Then the wire’s initial displacement is zero while the initial velocity is

g(x) =
{

1 if x > L
2 −

L
16 and x < L

2 + L
16 ,

0 otherwise.

Find the wire’s displacement u(x , t). Here is what it looks like:

An animation with L = 1, c = 1 and infinity set to 100 (large!) in order to
adequately resolve the discontinuous initial velocity.
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The characteristic lines
Let u(x , t) be a solution to the one-dimensional wave equation

utt = c2uxx . (6)

Let us observe:

(ut + cux )t = utt + cuxt ,

(ut + cux )x = utx + cuxx .

Multiply the second equation by −c and add it to the first. We get

(ut + cux )t − c(ut + cux )x = utt − c2uxx = 0 (by (6)).

Letting v = ut + cux , this becomes

vt − cvx = 0. (7)

That’s nice! We have gotten a first order PDE out of the second order PDE (6)
But that’s not all. . .
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The characteristic lines (continued)

Similarly, we calculate

(ut − cux )t = utt − cuxt ,

(ut − cux )x = utx − cuxx .

Multiply the second equation by c and add it to the first. We get

(ut − cux )t + c(ut − cux )x = utt − c2uxx = 0 (by (6)).

Letting w = ut − cux , this becomes

wt + cwx = 0. (8)

That’s a second 1st order PDE emerging from the wave equation (6).
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The characteristic lines – Summary

Summary: The 2nd order wave equation utt = c2uxx is equivalent to the system of
two 1st order equations

vt − cvx = 0, wt + cwx = 0, (9)

where

v def= ut + cux , w def= ut − cux . (10)

Note that ut = 1
2(v + w) and ux = 1

2c (v − w), so once we find v and w , we can
calculate u.

Terminology: Either of the equations (9) is called a one-dimensional first order
wave equation.
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The first order wave equation
Let us look at the first order wave equation for w in (9):

wt + cwx = 0. (11)

Its solution, w(x , t), expresses the value of w at the position x at time t.
Suppose that we have an observer that moves along the x axis according to some
arbitrary motion x(t). Then the value of w that the observer sees at time t is
w
(
x(t), t

)
. The rate of change of w , as seen by the observer, is obtained by the

chain rule
d

dpt w
(
x(t), t

)
= wx

(
x(t), t

)
x ′(t) + wt

(
x(t), t

)
, (12)

where x ′(t) = d
dt x(t) is the observer’s velocity.

What happens if the observer moves at the constant velocity c, where c is the
coefficient in (11)? Then we would have x(t) = ct + x0, and (12) would reduce to

d
dt w

(
x(t), t

)
= wx

(
x(t), t

)
c + wt

(
x(t), t

)
= 0 (by (11)).

This says that the observer moving with velocity c sees no changes at all in w !
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A summary of the previous slide

We have seen that if w(x , t) is the solution of wt + cwx = 0, then an observer
moving with velocity c will perceive no changes in the value of w . The position of

an observer moving with the constant velocity c is given by x(t) = ct + x0, where
x0 is the observer’s location at time t = 0.

The lines x = ct + x0 in the x -t plane are called the characteristic lines, or just the
characteristics for short, of the equation wt + cwx = 0.

x

t

x0

x = ct
+ x 0 (x , t)

We have seen that the solution w is constant along the characteristics. Thus,
referring to the picture above, w(x , t) = w(x0, 0).
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Solving a first order wave equation via
characteristics

Let’s say the value of w along the x axis is prescribed, that is, the initial condition
is w(x , 0) = φ(x) for some given φ. Then the value of of w at the point (x , t) is
the same as the value of w at the point x0 where the characteristic through (x , t)
intersects the x axis. Thus

w(x , t) = w(x0) = φ(x0).

But the equation of the characteristic is x = ct + x0, and therefore x0 = x − ct.
We conclude that

w(x , t) = φ(x − ct). (13)

Important conclusion: Equation (13) expresses the solution w(x , t) of the PDE
wt + cwx = 0 in terms of its initial condition φ(x).
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Riding on the characteristics
Let’s solve the initial value problem for the function w(x , t):

wt + cwx = 0,
w(x , 0) = φ(x),

where φ is a blip:

φ(x) =
{1

5(1 + cos πx) if |x | < 1,
0 otherwise.

We know that the solution is w(x , t) = φ(x − ct). But what does it look like?

It’s a traveling wave!
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The traveling blip



The wave
equation
Instances of use

The wave equation

The method of
characteristics

d’Alembert’s
solution to the
second order wave
equation

Waves in
semi-infinite
domains and
reflections from the
boundary

Traveling in the opposite direction
Returning to Slide 17, recall that we split the 2nd order wave equation utt = c2uxx
into a pair of two 1st order PDEs vt − cvx = 0 and wt + cwx = 0. We have
completely analyzed the w equation. The v equation is pretty much the same
except for the wave speed +c has been changed to −c. Everything that has been
said about w carries over to v , but the waves travel in the opposite direction.

The solution of the initial value problem

vt − cvx = 0,
v(x , 0) = ψ(x),

is v(x , t) = ψ(x + ct).



d’Alembert’s solution to the
second order wave equation

∂2u
∂t2 = c2 ∂2u

∂x 2
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Solving the second order wave equation
We have completely analyzed the 1st order initial value problems

wt + cwx = 0, vt − cvx = 0,
w(x , 0) = φ(x), v(x , 0) = ψ(x),

and have obtained their solutions w(x , t) = φ(x − ct) and v(x , t) = ψ(x + ct). On
Slide 17 we saw that the solution u(x , t) of the 2nd order wave equation
utt = c2uxx is related to v and w through

ut(x , t) = 1
2
[
v(x , t) + w(x , t)

]
, ux (x , t) = 1

2c
[
v(x , t)− w(x , t))

]
.

With what we have learned, these become

ut(x , t) = 1
2
[
ψ(x + ct) + φ(x − ct)

]
, ux (x , t) = 1

2c
[
ψ(x + ct)− φ(x − ct)

]
,

Let us introduce the the function F and G defined through their derivatives as

F ′(x) = − 1
2c φ(x), G ′(x) = 1

2cψ(x). (14)

Then
ut(x , t) = cG ′(x + ct)− cF ′(x − ct), ux (x , t) = G ′(x + ct) + F ′(x − ct).
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Solving the second order wave equation
(continued)

In the previous slide we arrived at

ut(x , t) = cG ′(x + ct)− cF ′(x − ct), ux (x , t) = G ′(x + ct) + F ′(x − ct).

Integrating the first equation with respect to t, and the second equation with
respect to x we get

u(x , t) = G(x + ct) + F (x − ct) + A(x), u(x , t) = G(x + ct) + F (x − ct) + B(t),

where A(x) and B(t) are the integration “constants”. Subtracting the two
equations results in A(x) = B(t). This says that A(x) does not depend on x (since
it’s equal to B(t) for all x). Therefore A(x) is a constant, and therefore B(t) is
also a constant. Let’s write C for that common constant.

Thus, we arrive at u(x , t) = G(x + ct) + F (x − ct) + C . The presence of C there
is immaterial since each of F and G are defined through their derivatives only
in (14). We conclude that
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Solving the second order wave equation
(continued)

The reasoning in the previous slide has lead us to

u(x , t) = F (x − ct) + G(x + ct) (15)

as a solution of the wave equation utt = c2uxx . The functions F and G are defined
in (14) in terms of the arbitrary functions φ and ψ, therefore they may be regarded
as arbitrary functions as well.

Important! It can be shown (but not in this course) that (15) is the general
solution of the wave equation utt = c2uxx , that is, every solution of the wave
equation has that form.

The functions F and G may be determined from a set of prescribed initial
conditions to the wave equation. We will address that in the next slide.
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d’Alembert’s solution
Here we consider the initial value problem for the function u(x , t):

utt = c2uxx −∞ < x <∞, t > 0, (16a)
u(x , 0) = f (x), −∞ < x <∞, (16b)
ut(x , 0) = g(x), −∞ < x <∞, (16c)

where the initial displacement, f , and the initial velocity, g , are given. The general
solution to the PDE (16a) is available in (15). Our task is to determine F and G in
terms of the given data f and g .
We have

u(x , t) = F (x − ct) + G(x + ct),
ut(x , t) = −cF ′(x − ct) + cG ′(x + ct).

Letting t = 0 and applying the initial conditions we get

F (x) + G(x) = f (x), (17a)
−cF ′x) + cG ′(x) = g(x). (17b)
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d’Alembert’s solution (continued)
Isolate G(x) in (17a) and plug the result into (17b):

−cF ′(x) + c
[
f ′(x)− F ′(x)

]
= g(x),

solve for F ′(x):
F ′(x) = 1

2 f ′(x)− 1
2c g(x),

and integrate:
F (x) = 1

2 f (x)− 1
2c

∫ x

0
g(ξ) dξ + K . (18)

Note: The integration constant, K , cancels a −K in the final answer in the next
slide, and therefore it is of no practical significance.

Having determined F (x), now we calculate G(x) from (17a):

G(x) = 1
2 f (x) + 1

2c

∫ x

0
g(ξ) dξ − K . (19)
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d’Alembert’s solution (continued)
We conclude that

F (x − ct) = 1
2 f (x − ct)− 1

2c

∫ x−ct

0
g(ξ) dξ − K ,

G(x + ct) = 1
2 f (x + ct) + 1

2c

∫ x+ct

0
g(ξ) dξ + K ,

whence the general solution

u(x , t) = F (x − ct) + G(x + ct) (20)

takes the form

u(x , t) = 1
2
[
f (x − ct) + f (x + ct)

]
+ 1

2c

∫ x+ct

x−ct
g(ξ) dξ. (21)

The representation (21) of the initial value problem (16) was discovered by
Jean-Baptiste le Rond d’Alembert in 1747 and is referred to as d’Alembert’s
solution.
Note: The expression (21) is pleasing, but it’s not the most convenient form for
hand calculations. To calculate u(x , t), it’s more practical to calculate the
functions F and G from (18) and (19), and then apply (20) to determine u(x , t).
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A worked out example
Consider a string which at the initial time is deformed into a rectangular blip, as
shown below, and is released with zero initial velocity:

f (x) =
{

1 if |x | < δ,

0 otherwise. x

f (x)

−δ δ

1

This fits the formulation of d’Alembert’s problem in equations (16) with f (x) as the
blip given above, and g(x) = 0. We apply (20) to calculate the solution u(x , t).

Equations (18) and (19) indicate that F (x) = G(x) = 1
2 f (x), that is, each of F

and G is just like the original blip but with half the height.

To apply (20), we need to calculate F (x − ct) and G(x + ct). But the graph of
F (x − ct) is obtained by translating the graph of F (x) to the right along the x axis
by the amount ct. Similarly, the graph of G(x + ct) is obtained by translating the
graph of G(x) to the left by ct. The resulting u(x , t) is shown in the next slide.
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A worked out example (continued)

ct = 0

ct = 0.4δ

ct = 0.8δ

ct = 1.2δ
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Animated traveling waves
Initial conditions: f (x) =

{
1 if |x | < 1
0 otherwise

and g(x) = 0

Initial conditions: f (x) =
{

1− |x | if |x | < 1
0 otherwise

and g(x) = 0
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Another worked out example (hitting a piano wire)
Consider a string which at t = 0 is in its equilibrium position (i.e. f (x) = 0), but it
is given an initial velocity g(x) in the form of a rectangular blip, as shown below:

g(x) =
{

v if |x | < δ,

0 otherwise. x

g(x)

−δ δ

v

Calculating the function F (x) and G(x) in (18) and (19), calls for finding the
antiderivative of g(x). We see that

∫ x

0
g(ξ) dξ =


−vδ if x < −δ,
vx if |x | ≤ δ,
vδ if x > δ,

x

∫ x
0 g(ξ) dξ

vδ

−vδ
−δ δ
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Piano wire (continued)
From (18) and (19):

F (x) =


vδ
2c if x < −δ,
− v

2c x if |x | ≤ δ,
− vδ

2c if x > δ,
x

F (x)
vδ
2c

− vδ
2c

−δ δ

G(x) =


− vδ

2c if x < −δ,
v
2c x if |x | ≤ δ,
vδ
2c if x > δ,

x

G(x)
vδ
2c

− vδ
2c

−δ δ

Then from (20):
u(x , t) = F (x − ct) + G(x + ct).
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Animations
Initial conditions: f (x) = 0 and g(x) =

{
v if |x | < δ,

0 otherwise.

Initial conditions: f (x) = 0 and g(x) =
{

sinπx if |x | < 1
0 otherwise



Waves in semi-infinite domains
and reflections from the boundary

The Method of Images
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An introduction to the Method of Images
Traveling wave in an infinite string with an odd function for the initial condition.

A blip: b(x) =
{

(x − 1)4(x + 1)3 if |x | < 1,
0 otherwise.

x

b(x)

−1 0 1

1

Initial displacement: f (x) = b(x − a)− b(−x − a).

x

f (x)

−a 0 a

Note that f is odd: f (−x) = −f (x).

Take the initial velocity g(x) = 0. What does the solution look like? Let’s see. . .



The wave
equation
Instances of use

The wave equation

The method of
characteristics

d’Alembert’s
solution to the
second order wave
equation

Waves in
semi-infinite
domains and
reflections from the
boundary

An introduction to the Method of Images
(continued)

Here is what the wave looks like:

Here is the same animation, cropped from the left and right:

And here is the same animation, with the x < 0 hidden:
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Waves in semi-infinite domains
The animations in the previous slide inspire the following “trick”.
Consider the motion of a semi-infinite string, 0 < x <∞, which is tided down
(cannot move) at x = 0.
We give it an initial displacement f (x) and, for the sake of simplicity, start off with
zero initial velocity, g(x). Here is the mathematical statement of the corresponding
initial boundary value problem:

utt = c2uxx 0 < x <∞, t > 0, (22a)
u(0, t) = 0 t > 0, (22b)
u(x , 0) = f (x) 0 < x <∞, (22c)
ut(x , 0) = 0, 0 < x <∞. (22d)

To solve this, we extend f (x) as an odd function to the negative x axis. That is,

let f̃ (x) =
{

f (x) if x > 0
−f (−x) if x < 0

. Then, we solve the wave equation on the entire x

axis, with the initial displacement f̃ (x). [continued on the next slide]
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Waves in semi-infinite domains (continued)

The extended initial boundary value problem is

utt = c2uxx −∞ < x <∞, t > 0, (23a)
u(x , 0) = f̃ (x) −∞ < x <∞, (23b)
ut(x , 0) = 0, −∞ < x <∞. (23c)

Note that the boundary constraint (22b) has been removed.

The solution of the system of equations (23) is give by (see (21))

u(x , t) = 1
2
[
f̃ (x − ct) + f̃ (x + ct)

]
. (24)



The wave
equation
Instances of use

The wave equation

The method of
characteristics

d’Alembert’s
solution to the
second order wave
equation

Waves in
semi-infinite
domains and
reflections from the
boundary

Waves in semi-infinite domains (continued)
Now here’s a nifty argument:
• The PDEs (23a) and (22a) are identical on the x > 0 domain. Since u(x , t)

given in (24) satisfies (23a) for all −∞ < x <∞, it also satisfies (22a) on
x > 0.
• Plugging t = 0 in (24) we see that u(x , 0) = f̃ (x), which is not a surprise,

since that is required in (23b). But the definition of f̃ says that f̃ and f
coincide on x > 0, therefore u(x , t) constructed in (24) also satisfies the initial
condition (22c).
• The velocity corresponding to (24) is

ut(x , t) = 1
2

[
−cf̃ ′(x − ct) + +cf̃ ′(x + ct)

]
and therefore ut(x , 0) = 0 for

−∞ < x∞, and in particular, for 0 < x <∞. It follows that u(x , t)
satisfies (22d).

• Let x = 0 in (24). We get u(0, t) = 1
2

[
f̃ (−ct) + f̃ (ct)

]
= 0 since f̃ is an odd.

Conclusion: The restriction of the function u(x , t) given in (24) satisfies all four
equations in (22) and therefore it is the desired solution.
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Recipe: The Method of Images
Consider the initial boundary value problem for the wave equation on a
semi-infinite domain:

utt = c2uxx 0 < x <∞, t > 0, (25a)
u(0, t) = 0 t > 0, (25b)
u(x , 0) = f (x) 0 < x <∞, (25c)
ut(x , 0) = g(x) 0 < x <∞. (25d)

To solve this, extend f and g as odd functions f̃ and g̃ to the entire x axis and
solve, let’s say via d’Alembert’s formula (21), the initial value problem

utt = c2uxx 0 < x <∞, t > 0, (26a)
u(x , 0) = f̃ (x) 0 < x <∞, (26b)
ut(x , 0) = g̃(x) 0 < x <∞. (26c)

Then the restriction of u(x , t) to x > 0 is the solution of (25).
We have seen why this is true when g = 0. Showing that this remains true when g
is nonzero is left as a homework problem.
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The Method of Images

Why is this called “The Method of Images”? It’s because the extensions f̃ and g̃
look like inverted mirror images of f and g .

f̃ (x) =
{

f (x) if x > 0
−f (−x) if x ≤ 0

g̃(x) =
{

g(x) if x > 0
−g(−x) if x ≤ 0

x

f (x)

x

g(x)
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