
Partial Differential Equations
Lecture Notes for Math 404

Rouben Rostamian

Department of Mathematics and Statistics
UMBC

Fall 2020



Introduction

The heat
equation
Instances of use

Heat conduction
across a refrigerator
wall

The derivation of
the heat equation

Initial/boundary
value problems
for the heat
equation

Separation of
variables
Homogeneous
equations

Insulated boundary

Equations with heat
source

Prescribed
temperature at the
boundary

A compact notation
for partial
derivatives

Inhomogeneous
boundary conditions

Newton’s Law of
cooling

The Fourier sine
series in 2D

Heat conduction in
two dimensions

From Cartesian to
polar

The Fourier series

Steady-state heat
conduction in a disk

Introduction to PDEs
You are already familiar with Ordinary Differential Equations (ODEs). Here are a
few representative samples:

p′(r) = −kp(r), u′′(x) + ω2u(x) = 0, my ′′(t) + cy ′(t) + ky(t) = f (t).

In these equations the unknowns p, u, y (also known as the dependent variables)
are functions of the single variables, r , x and t (called the independent variables).
In Partial Differential Equations (PDEs), unknowns are functions of more than one
independent variable. Here are a few representative samples:

∂u
∂t = ∂u

∂x advection: u(x , t) in one space dimension

∂u
∂t = ∂2u

∂x2 diffusion: u(x , t) in one space dimension

∂2u
∂t2 = ∂2u

∂x2 + ∂2u
∂y2 + ∂2u

∂z2 wave propagation: u(x , y , z , t) in three space dimensions

∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 = 0 static gravitational field: u(x , y , z) in three space dimensions
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Equations of parabolic, hyperbolic, and elliptic
types

Read the textbook’s Lesson 1 on an extensive discussion of classifications of PDEs.
In this course we will focus on linear equations of the type

∂u
∂t = ∂2u

∂x2 + f (x , t) parabolic, in analogy with y = x2 + c

∂2u
∂t2 = ∂2u

∂x2 + f (x , t) hyperbolic, in analogy with y2 = x2 + c

∂2u
∂x2 + ∂2u

∂y2 = f (x , y) elliptic, in analogy with x2 + y2 = c

Occasionally we will take side tours to look at other, closely related equations, but
the above will be the bulk of this course’s material.



The heat equation
as a prototype of parabolic equations



Introduction

The heat
equation
Instances of use

Heat conduction
across a refrigerator
wall

The derivation of
the heat equation

Initial/boundary
value problems
for the heat
equation

Separation of
variables
Homogeneous
equations

Insulated boundary

Equations with heat
source

Prescribed
temperature at the
boundary

A compact notation
for partial
derivatives

Inhomogeneous
boundary conditions

Newton’s Law of
cooling

The Fourier sine
series in 2D

Heat conduction in
two dimensions

From Cartesian to
polar

The Fourier series

Steady-state heat
conduction in a disk

Parabolic equations in applications

The heat equation
∂u
∂t = ∂2u

∂x2 ,

along with its many variants, is the prototype of a very large class of parabolic
equations that arise in many applications such as

• heat conduction within solids, liquids, and gasses
• seepage in porous media
• diffusion of chemicals
• smoothing of supersonic shock waves (for numerical computation)
• stochastic processes in probability
• image analysis, edge detection, blurring and sharpening
• the Black-Scholes model of financial mathematics (Nobel prize in economics, 1997)
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Heat conduction across a refrigerator wall

Heat flows from hot to cold

Rate of flow ∝ T2−T1
L

Fourier’s Law of Heat Conduction

q = −k dT
dx

q = heat flux
= thermal energy passing through

per unit area per unit time

k = thermal conductivity

T1 = 34◦F

T2 = 78◦F

insulation
wall thickness=L

outside
(room)

inside
(refrigerator)

⇐=

⇐=

⇐=
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Heat conduction movie

x0

u(x , t)

L

The heat equation

∂u
∂t = κ

∂2u
∂x2

Expresses conservation of thermal energy.
Temperature variations across a

refrigerator wall
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Where does the heat equation come from?

x⇒

L

cross-sectional area = A

ρ = density = mass / unit volume
k = thermal conductivity
c = specific heat capacity

u(0, t) = α(t) u(L, t) = β(t)

∆xx x + ∆x

Specific heat capacity
thermal energy required to raise the temperature of unit mass by one degree

q(x)
flux in

q(x + ∆x)
flux out

volume = A∆x
mass = ρA∆x
energy content = (ρA∆x)

(
cu
)

∂

∂t
(

(ρA∆x)(cu)
)

= Aq(x)− Aq(x + ∆x)
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Conservation of thermal energy
Conservation of energy: The rate of change of the thermal energy content within
the green slice equals the rate of energy flowing in minus the rate of energy flowing
out

∂

∂t
(

(ρA∆x)(cu)
)

= Aq(x)− Aq(x + ∆x)

∂u
∂t = − 1

cρ
q(x + ∆x)− q(x)

∆x
Taking the limit as ∆x → 0 we arrive at a partial differential equation that
expresses conservation of energy:

∂u
∂t = − 1

cρ
∂q
∂x (1a)

Together with Fourier’s Law of Heat Conduction

q = −k ∂u
∂x (1b)

we have a system of two first order PDEs in the two unknowns u and q.
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The heat equation

Eliminating q between equations (1a) and (1b), we obtain a second order PDE for
the unknown temperature u;

∂u
∂t = 1

cρ
∂

∂x

(
k ∂u
∂x

)
That’s the heat equation!

The coefficients c, ρ, and k may vary with the position x , but if they are constants,
then we obtain the classic heat equation:

∂u
∂t = κ

∂2u
∂x2

(
where κ = k

cρ
)

κ is called the heat equation’s diffusion coefficient
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Remarks
The formulation of the heat conduction as a system of first order PDEs

∂u
∂t = − 1

cρ
∂q
∂x , q = −k ∂u

∂x (2)

seems to be equivalent to the single second order PDE

∂u
∂t = 1

cρ
∂

∂x

(
k ∂u
∂x

)
(3)

but there are subtle and significant differences.

In (3) the diffusion coefficient k is under a differentiation sign while in (2) it is not.
If k is a constant or a smoothly varying function, that’s not a big deal, but what if
k is discontinuous?

Recall the example of heat conduction through a refrigerator wall. The wall
consists of a metal layer on the outside, a plastic layer on the inside, and styrofoam
filling in between. The conductivities of these materials are drastically different,
therefore k varies discontinuously as we move through the wall.



Introduction

The heat
equation
Instances of use

Heat conduction
across a refrigerator
wall

The derivation of
the heat equation

Initial/boundary
value problems
for the heat
equation

Separation of
variables
Homogeneous
equations

Insulated boundary

Equations with heat
source

Prescribed
temperature at the
boundary

A compact notation
for partial
derivatives

Inhomogeneous
boundary conditions

Newton’s Law of
cooling

The Fourier sine
series in 2D

Heat conduction in
two dimensions

From Cartesian to
polar

The Fourier series

Steady-state heat
conduction in a disk

Remarks (continued)
There are various ways of handling discontinuous k at theoretical and computational levels.
• [Theoretical] Generalize the classical definitions of functions and their derivative to

non-smooth functions. This leads to the theory of generalized functions and
distributions. Dirac’s delta function falls in that category.

• [Theoretical] Formulate differentiation as an operator in a function space. This leads
to Sobolev spaces and weak formulations of PDEs.

• [Computational] In the weak formulation of a PDE, replace the infinite-dimensional
Sobolev space with an appropriate finite-dimensional approximation. This leads to
Galerkin’s formulation and the method of finite elements.

• [Computational] Approximate the derivatives in (2) through difference quotients. This
leads to a finite difference formulation of the problem.

• [Computational] Approximate the derivatives in (3) through difference quotients. A
naive implementation will produce junk since it will attempt to differentiate k.
Special-purpose finite difference schemes are available for producing correct results.

• [Computational] Apply (3) separately within each layer where k is differentiable.
Connect the layers through equations that enforce the conservation of energy.
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The domain of u(x , t)

0 u(x , 0) = φ(x)
x

u(
0,

t)
=
α

(t
)

t

L

u(
L,

t)
=
β

(t
)

Domain of solution:
0 < x < L, T > 0

The graph of temperature u(x , t) within
the refrigerator’s wall, as a function of x

and t.
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Initial/boundary value problems for the heat
equation

Prescribed boundary temperature:

∂u
∂t = κ

∂2u
∂x2 + f (x , t) 0 < x < L, t > 0

u(0, t) = α(t) t > 0
u(L, t) = β(t) t > 0
u(x , 0) = φ(x) 0 < x < L

Prescribed boundary flux at one end:

∂u
∂t = κ

∂2u
∂x2 + f (x , t) 0 < x < L, t > 0

u(0, t) = α(t) t > 0

− k ∂u
∂x

∣∣∣∣
x=L

= γ(t) t > 0

u(x , 0) = φ(x) 0 < x < L



Separation of variables
for homogeneous equations
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The separation of variables trick
The simplest initial/boundary value problem:

∂u
∂t = κ

∂2u
∂x2 0 < x < L, t > 0 (4a)

u(0, t) = 0 t > 0 (4b)
u(L, t) = 0 t > 0 (4c)
u(x , 0) = φ(x) 0 < x < L (4d)

Try for a solution of the form u(x , t) = X (x)T (t):

X (x)T ′(t) = κX ′′(x)T (t) ⇒ T ′(t)
κT (t) = X ′′(x)

X (x) (5a)

X (0)T (t) = 0 ⇒ X (0) = 0 (5b)
X (L)T (t) = 0 ⇒ X (L) = 0 (5c)
X (x)T (0) = φ(x) ⇒ ? (will worry about this one later) (5d)
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The separation of variables trick – part 2
Equation (5a) implies that

T ′(t)
κT (t) = X ′′(x)

X (x) = some constant, say η (6)

The constant η may be positive, zero, or negative

Spoiler! Turns out that only η < 0 leads to anything interesting.

Case η = λ2 > 0: From (6) we get:

T ′(t) = κλ2T (t), X ′′(x) = λ2X (x)

From the second equation above we get X (x) = A sinhλx + B coshλx , and
therefore X (0) = B. Then from (5b) we get B = 0. Thus, we are left with
X (x) = A sinhλx , and therefore X (L) = A sinhλL. Then from (5c) we get
A sinhλL = 0. Since λL 6= 0, we must have A = 0, and therefore the solution is
X (x) = 0 for all x . Not interesting.

Case η = 0: You do it. (conclusion: Not interesting)
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The separation of variables trick – part 3
Case η = −λ2 < 0: From (6) we get:

T ′(t) + κλ2T (t) = 0, X ′′(x) + λ2X (x) = 0 (7)

From the second equation above we get X (x) = A sinλx + B cosλx , and therefore
X (0) = B. Then from (5b) we get B = 0. Thus, we are left with X (x) = A sinλx ,
and therefore X (L) = A sinλL. Then from (5c) we get A sinλL = 0. We don’t
want A to be zero (not interesting) so we get sinλL = 0 and therefore λL = nπ,
for any integer n, will do. We let

λn = nπ
L , n = 1, 2, . . . (8)

and thus, X (x) = A sinλnx .

Furthermore, from the first equation in (7) we get T (t) = Ce−κλ2
nt , and therefore

we arrive at u(x , t) = ACe−κλ2
nt sinλnx as a solution that satisfies the

equations (5a), (5b), and (5c). and consequently, equations (4a), (4b), and (4c).

We have not yet accounted for equation (5d) (or equivalently, equation (4d)). We
turn to that issue now.
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The separation of variables trick – part 4
Equations (4a)–(4c) are linear and homogeneous, which is the technical way of
saying that if u1(x , t) and u2(x , t) satisfy those equations, then any linear
combination c1u1(x , t) + c2u2(x , t) with constant coefficients c1 and c2, also
satisfy those equations. (Verify this for yourself; it’s not hard!)
In the previous slide (slide 18) we saw that u(x , t) = e−κλ2

nt sinλnx satisfies the
equations (4a)–(4c) for any integer n. Therefore, so does the (infinite) linear
combination

u(x , t) =
∞∑

n=1
ane−κλ2

nt sinλnx (9)

where the choice of the (constant) coefficients an is at our disposal. We are going
to choose those coefficients so that u(x , t), expressed as (9), satisfies the one last
remaining requirement, that is, the equation (4d).
From (9) we have u(x , 0) =

∑∞
n=1 an sinλnx , and therefore from (4d) we get
∞∑

n=1
an sinλnx = φ(x). (10)
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The separation of variables trick – part 5
Question: Can any function φ be expressed as the infinite sum in (10)?
The answer is yes! provided that φ satisfies certain regularity conditions such as
sufficient continuity and integrability. (We won’t get into those conditions in this
course, but for practical purposes it is safe to assume that those are satisfied.) If
so, we multiply (10) by sinλmx and integrate over the interval (0, L):

∞∑
n=1

an

∫ L

0
sinλmx sinλnx dx =

∫ L

0
φ(x) sinλmx dx (11)

It is left to you as an exercise to show that for λs defined as in (8), and any two
integers m and n: ∫ L

0
sinλmx sinλnx dx =

{
0 if m 6= n
L/2 if m = n

and therefore in the infinite sum in (11) only one term survives and we arrive at
L
2 am =

∫ L

0
φ(x) sinλmx dx .

This tells us the value of am for all m, since the initial condition φ is known.
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Summary of the two preceding slides
A function φ defined in the interval (0, L) may be expressed as the infinite sum

φ(x) =
∞∑

n=1
an sinλnx , (12)

where

an = 2
L

∫ L

0
φ(x) sinλnx dx . (13)

and where
λn = nπ

L , n = 1, 2, . . . (14)

The expression on the right-hand side of (12) is called the Fourier sine series
representation of the function φ. The coefficients an are called the corresponding
Fourier coefficients (named after the French mathematician Joseph Fourier,
1767–1830).
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How good is the Fourier series?

In these demos, the original function φ is plotted in blue, while the approximations
by the first N terms of the Fourier series are plotted in red.

φ(x) = x(x − 1/3)(1− x)

= 4
3π3

∞∑
n=1

(
5(−1)n + 4

)
sin nπx

n3

φ(x) = 1/2− |x − 1/2|

= 4
π2

∞∑
n=1

sin nπ
2 sin nπx

n2
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The separation of variables trick – part 6 and
conclusion

Summary:
In the previous slides we have developed the bits and pieces needed for calculating
the solution u(x , t) of the initial/boundary value problem (4). In (9) we saw that

u(x , t) =
∞∑

n=1
ane−κλ2

nt sinλnx (15a)

and we learned that the coefficients an are obtained from (13)

an = 2
L

∫ L

0
φ(x) sinλnx dx , (15b)

where
λn = nπ

L . (15c)
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A fully worked-out example
Equations (15) on the previous slide present the solution u(x , t) of the
initial/boundary value problem (4) (on slide 17) for an arbitrary initial condition
u(x , 0) = φ(x).
Calculating the solution for a specific φ is a matter of carrying out the integration
in (15b). Here is a sketch of the calculations.

φ(x) = L
2 −

∣∣∣x − L
2

∣∣∣ =
{

x if x < L/2
L− x if x > L/2

The graph of φ(x) with L = 1

an = 2
L

∫ L

0
φ(x) sinλnx dx = 2

λ2
nL
[
2 sin λnL

2 − sinλnL
]

(from Quiz #1)

= 2L
n2π2

[
2 sin nπ

2 − sin nπ
]

= 4L
n2π2 sin nπ

2 . (from (15c))
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The solution

u(x , t) = 4L
π2

∞∑
n=1

e−κλ2
nt sin nπ

2 sinλnx
n2

= 4L
π2

[
e−κ(π/L)2t sin πx

L −
1
32 e−κ(3π/L)2t sin 3πx

L + 1
52 e−κ(5π/L)2t sin 5πx

L − · · ·
]

The solution u(x , t) evaluated with L = 1, κ = 1 and truncated as
∑19

n=1 (ten
terms)



Insulated boundary

−k ∂u
∂x

∣∣∣∣∣x=L
= 0
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Insulated boundary at x = L

L

u = 0 −k ∂u
∂x = 0

∂u
∂t = κ

∂2u
∂x2 (16a)

u(0, t) = 0 (16b)

−k ∂u
∂x

∣∣∣
x=L

= 0 (16c)

u(x , 0) = φ(x) (16d)

Separate the variables: u(x , t) = X (x)T (t). Then X (x)T ′(t) = κX ′′(x)T (t) and
therefore

1
κ

T ′(t)
T (t) = X ′′(x)

X (x) = −λ2, X (0) = 0, X ′(L) = 0
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Separation of variables

T ′(t) = −κλ2T (t),
X ′′(x) + λ2X (x) = 0, X (0) = 0, X ′(L) = 0

The general solution of the X equation is X (x) = A sinλx + B cosλx . Applying
the boundary condition X (0) = 0, we get B = 0. Therefore X (x) = A sinλx .
Then X ′(x) = λA cosλx . Therefore applying the boundary condition X ′(L) = 0 we
get cosλL = 0. We conclude that λL is an odd multiple of π/2, that is
λnL = (2n − 1)π2 , and therefore

λn = (2n − 1)π
2L , Xn(x) = sinλnx , Tn(t) = e−κλ2t n = 1, 2, . . . (17)

and

u(x , t) =
∞∑

n=1
anXn(x)Tn(t) =

∞∑
n=1

ane−κλ2
nt sinλnx

=
∞∑

n=1
ane−κ

[
(2n−1)π/(2L)

]2
t sin (2n − 1)π

2L x .
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Separation of variables continued

The coefficients an are determined by applying the initial condition u(x , 0) = φ(x):

u(x , 0) =
∞∑

n=1
anXn(x) = φ(x)

Exercise: Show that for any integer m and n, and λn defined as in (17), we have:

∫ L

0
Xm(x)Xn(x) dx =

∫ L

0
sinλmx sinλnx dx =

{
0 if m 6= n
L/2 if m = n

Therefore

an = 2
L

∫ L

0
φ(x)Xn(x) dx = 2

L

∫ L

0
φ(x) sinλnx dx

= 2
L

∫ L

0
φ(x) sin (2n − 1)πx

2L dx
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The modal shapes and an animation

The solution u(x , t) with the initial condition φ(x) = x/L, evaluated with L = 1,
κ = 1 and truncated as

∑10
n=1 (ten terms)



Equations with heat source
. . . but zero boundary conditions

∂u
∂t = κ

∂2u
∂x 2 + f (x , t)

u(0, t) = 0
u(L, t) = 0
u(x , 0) = φ(x)
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Eigenfunction expansion
We are going to solve the initial/boundary value problem

∂u
∂t = κ

∂2u
∂x2 + f (x , t) 0 < x < L, t > 0 (18a)

u(0, t) = 0 t > 0 (18b)
u(L, t) = 0 t > 0 (18c)
u(x , 0) = φ(x) 0 < x < L (18d)

On slide 21 we saw that any function of x defined in the interval 0 < x < L may be
expanded into a Fourier sine series. We let

u(x , t) =
∞∑

n=1
an(t) sinλnx , f (x , t) =

∞∑
n=1

f̄n(t) sinλnx , φ(x) =
∞∑

n=1
φ̄n sinλnx ,

where the coefficients an(t) are unknown, but f̄n(t) and φ̄n may be calculated from:

f̄n(t) = 2
L

∫ L

0
f (x , t) sinλnx dx , φ̄n = 2

L

∫ L

0
φ(x) sinλnx dx .
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Reducing the PDE into a set of infinitely many
ODEs

Substitute the expansions into equations (18a) and (18d):
∞∑

n=1
a′n(t) sinλnx = κ

∞∑
n=1

(−λ2
n)an(t) sinλnx +

∞∑
n=1

f̄n(t) sinλnx ,

∞∑
n=1

an(0) sinλnx =
∞∑

n=1
φ̄n sinλnx ,

and groups the summands
∞∑

n=1

(
a′n(t) + κλ2

nan(t)− f̄n(t)
)

sinλnx = 0,

∞∑
n=1

(
an(0)− φ̄n

)
sinλnx = 0.

Since
{

sinλnx
}∞

n=1 is a basis, it follows that

a′n(t) + κλ2
nan(t) = f̄n(t), an(0) = φ̄n, n = 1, 2, . . . (19)



Introduction

The heat
equation
Instances of use

Heat conduction
across a refrigerator
wall

The derivation of
the heat equation

Initial/boundary
value problems
for the heat
equation

Separation of
variables
Homogeneous
equations

Insulated boundary

Equations with heat
source

Prescribed
temperature at the
boundary

A compact notation
for partial
derivatives

Inhomogeneous
boundary conditions

Newton’s Law of
cooling

The Fourier sine
series in 2D

Heat conduction in
two dimensions

From Cartesian to
polar

The Fourier series

Steady-state heat
conduction in a disk

Calculating the coefficients an(t)
Equations (19) express a set of infinitely many initial value problems for ODEs in
the unknowns an(t). which may be solved with the integrating factor method
learned in a course in ODEs.

So we multiply through by the integrating factor eκλ2
nt and combine terms:(

eκλ2
ntan(t)

)′
= eκλ2

nt f̄n(t),

and integrate: (
eκλ2

nsan(s)
)∣∣∣∣s=t

s=0
=
∫ t

0
eκλ2

ns f̄n(s) ds.

but (
eκλ2

nsan(s)
)∣∣∣∣s=t

s=0
= eκλ2

ntan(t)− an(0) = eκλ2
ntan(t)− φ̄n,

therefore
eκλ2

ntan(t)− φ̄n =
∫ t

0
eκλ2

ns f̄n(s) ds.
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Calculation of an(t): Conclusion

From the previous slide:

eκλ2
ntan(t)− φ̄n =

∫ t

0
eκλ2

ns f̄n(s) ds.

therefore
an(t) = e−κλ2

nt φ̄n +
∫ t

0
e−κλ2

n(t−s)f̄n(s) ds.

We conclude that the solution u(x , t) of the initial/boundary value problem (18) is

u(x , t) =
∞∑

n=1

(
e−κλ2

nt φ̄n +
∫ t

0
e−κλ2

n(t−s)f̄n(s) ds
)

sinλnx .
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A worked-out example

Let’s solve the initial/boundary value problem

∂u
∂t = κ

∂2u
∂x2 + σ sinωt, 0 < x < L, t > 0

u(0, t) = 0 t > 0
u(L, t) = 0 t > 0
u(x , 0) = 0 0 < x < L

(20)

This corresponds to f (x , t) = σ sinωt, and therefore

f̄n(t) = 2
L

∫ L

0
σ sinωt sinλnx dx = 2σ sinωt

L

∫ L

0
sinλnx dx

= 2σ sinωt
L · L

π

(1− (−1)n

n

)
= 2σ

π

(1− (−1)n

n

)
sinωt.
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A worked-out example (continued)
Then equations (19) on slide 33 take the form

a′n(t) + κλ2
nan(t) = 2σ

π

(1− (−1)n

n

)
sinωt, an(0) = 0, n = 1, 2, . . .

which may be solved with an integrating factor as before, but in this case it is
quicker to express the solution as the sum of homogeneous and particular solutions,
as is done in a course in ODEs.
The homogeneous equation is a′n(t) + κλ2

nan(t) = 0, whence an(t) = Ce−κλ2
nt .

Look for a particular solution of the form an(t) = A cosωt + B sinωt.(
−Aω sinωt + Bω cosωt

)
+ κλ2

n

(
A cosωt + B sinωt

)
= 2σ

π

(1− (−1)n

n

)
sinωt,

(
−Aω + Bκλ2

n

)
sinωt +

(
Bω + Aκλ2

n

)
cosωt = 2σ

π

(1− (−1)n

n

)
sinωt,

−Aω + Bκλ2
n = 2σ

π

(1− (−1)n

n

)
≡ Qn

Aκλ2
n + Bω = 0

⇒


A = − Qnω

ω2 + κ2λ4
n

B = Qnκλ
2
n

ω2 + κ2λ4
n
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A worked-out example (continued)
Particular solution:

an(t) = − Qnω

ω2 + κ2λ4
n

cosωt + Qnκλ
2
n

ω2 + κ2λ4
n

sinωt, where Qn = 2σ
π

(1− (−1)n

n

)
General solution:

an(t) = Ce−κλ2
nt − Qnω

ω2 + κ2λ4
n

cosωt + Qnκλ
2
n

ω2 + κ2λ4
n

sinωt.

Initial condition:

an(0) = 0 ⇒ 0 = C − Qnω

ω2 + κ2λ4
n

⇒ C = Qnω

ω2 + κ2λ4
n

an(t) = Qnω

ω2 + κ2λ4
n

e−κλ2
nt − Qnω

ω2 + κ2λ4
n

cosωt + Qnκλ
2
n

ω2 + κ2λ4
n

sinωt

= Qn
ω2 + κ2λ4

n

(
ωe−κλ2

nt − ω cosωt + κλ2
n sinωt

)
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A worked-out example (conclusion)

u(x , t) =
∞∑

n=1
an(t) sinλnx

=
∞∑

n=1

Qn
ω2 + κ2λ4

n

(
ωe−κλ2

nt − ω cosωt + κλ2
n sinωt

)
sinλnx

= 2σ
π

∞∑
n=1

1− (−1)n

n (ω2 + κ2λ4
n)

(
ωe−κλ2

nt − ω cosωt + κλ2
n sinωt

)
sinλnx

An animation of u(x , t)
evaluated as

∑10
n=1 (five terms)

Note the transient behavior.



Prescribed temperature at the
boundary

∂u
∂t = κ

∂2u
∂x 2 + f (x , t)

u(0, t) = α(t)
u(L, t) = β(t)
u(x , 0) = φ(x)
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Prescribed temperature at the boundary
Up to now all of our boundary conditions have been of the form u = 0 (zero
temperature) of ∂u

∂x = 0 (zero flux). We sought solutions in the form
u(x , t) =

∑∞
n=1 an(t)Xn(t), where Xn(x) were selected expressly to satisfy those

zero boundary conditions. As a result, the sum satisfies the those zero boundary
conditions and we are done.
But what if the boundary conditions are other than zero? There is no use in
changing the Xns to satisfy those boundary conditions because even if each Xn
satisfies a nonzero boundary condition, it does not follow that the sum∑∞

n=1 an(t)Xn(t) also satisfies that boundary condition. (This clearly shows that a
zero boundary condition is something very special!)
Here is a bright idea: Split u(x , t) into a sum u(x , t) = v(x , t) + ξ(x , t). For
ξ(x , t) pick a function, any function, that satisfies the problem’s boundary
conditions. Since u(x , t) also satisfies those boundary conditions, it follows that
v(x , t) satisfies the corresponding zero boundary conditions!
In the PDE, replace u(x , t) by v(x , t) + ξ(x , t). This will yield a PDE involving v .
But v satisfies zero boundary conditions, and therefore we may calculate it through
our previous techniques. Once we have v , we add ξ to it to obtain u.
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Temperature prescribed at the boundaries
Heat condition in a rod with prescribed temperatures at the ends:

∂u
∂t = κ

∂2u
∂x2 + f (x , t) 0 < x < L, t > 0

u(0, t) = α(t) t > 0
u(L, t) = β(t) t > 0
u(x , 0) = φ(x) 0 < x < L

(21)

For the function ξ(x , t) we pick

ξ(x , t) =
(

1− x
L
)
α(t) + x

Lβ(t). (22)

and note that ξ(0, t) = α(t), ξ(L, t) = β(t).

Then substitute
u(x , t) = v(x , t) +

(
1− x

L
)
α(t) + x

Lβ(t)

into (21).
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Equation with homogeneous boundary conditions
The v equation:

∂v
∂t +

(
1− x

L
)
α′(t) + x

Lβ
′(t) = κ

∂2v
∂x2 + f (x , t)

v(0, t) = 0
v(L, t) = 0

v(x , 0) +
(

1 + x
L
)
α(0) + x

Lβ(0) = φ(x)

Rearrange: 

∂v
∂t = κ

∂2v
∂x2 + f (x , t)−

(
1− x

L
)
α′(t)− x

Lβ
′(t)

v(0, t) = 0
v(L, t) = 0

v(x , 0) = φ(x)−
(

1 + x
L
)
α(0)− x

Lβ(0)

(23)

So going from u equations in (21) to the v equations in (23) amounts to modifying
the heat source function f and the initial condition φ.
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The heat equation with oscillating temperature at
the boundary

Oscillatory temperature imposed at the right-hand end:

∂u
∂t = κ

∂2u
∂x2 0 < x < L, t > 0

u(0, t) = 0 t > 0
u(L, t) = σ sinωt t > 0
u(x , 0) = 0 0 < x < L

(24)

This is a special case of the problem (21) on slide 42. The ξ function in (22) is
ξ(x , t) = x

Lσ sinωt, and therefore u(x , t) = v(x , t) + x
Lσ sinωt and then

problem (23) takes the form

∂v
∂t = κ

∂2u
∂x2 −

x
Lσω cosωt 0 < x < L, t > 0

v(0, t) = 0 t > 0
v(L, t) = 0 t > 0
v(x , 0) = 0 0 < x < L

(25)
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Solution continued

The initial/boundary value problem (25) is quite similar to the system (20) on
slide 36. Solving it is left to you as homework. When you work out the details, you
will find that:

v(x , t) = 2σω
π

∞∑
n=1

(−1)n

n(ω2 + κ2λ4
n)
[
−κλ2

ne−κλ2
nt + κλ2

n cosωt + ω sinωt
]

sinλnx .

and therefore

u(x , t) = x
Lσ sinωt

+ 2σω
π

∞∑
n=1

(−1)n

n(ω2 + κ2λ4
n)
[
−κλ2

ne−κλ2
nt + κλ2

n cosωt + ω sinωt
]

sinλnx .
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Animation of the solution
We animate the solution with the parameter values

L = 1, ω = 1, σ = 1, κ = 0.02,

and truncate the series at the tenth term.



A compact notation for partial
derivatives

ut = ∂u
∂t ux = ∂u

∂x uxx = ∂2u
∂x2

ux (L, t) = ∂u
∂x

∣∣∣∣
x=L
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A compact notation for partial derivatives
Initial/boundary value problem in the expanded notation:

∂u
∂t = κ

∂2u
∂x2 + f (x , t) 0 < x < L, t > 0

u(0, t) = α(t) t > 0

− k ∂u
∂x

∣∣∣∣
x=L

= γ(t) t > 0

u(x , 0) = φ(x) 0 < x < L

The same problem in compact notation:
ut = κuxx + f (x , t) 0 < x < L, t > 0
u(0, t) = α(t) t > 0
− kux (L, t) = γ(t) t > 0
u(x , 0) = φ(x) 0 < x < L



Handling inhomogeneous boundary
conditions

ut = κuxx + f (x , t)
α1(t)u(0, t) + α2(t)ux (0, t) = α(t)
β1(t)u(L, t) + β2(t)ux (L, t) = β(t)
u(x , 0) = φ(x)
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Handling inhomogeneous boundary conditions

Initial/boundary value problem with inhomogeneous boundary conditions:

ut = κuxx + f (x , t) (26a)
α1(t)u(0, t) + α2(t)ux (0, t) = α(t) (26b)
β1(t)u(L, t) + β2(t)ux (L, t) = β(t) (26c)
u(x , 0) = φ(x) (26d)

Introduce a new unknown v(x , t) through

u(x , t) = v(x , t) + c1(t) + c2(t)x (27)

and eliminate u in favor of v in the problem. Then, pick c1(t) and c2(t) so as to
eliminate the inhomogeneous terms α(t) and β(t) in (26b) and (26c).
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Eliminating the inhomogeneous terms

Substituting u(x , t) from (27) into (26b) and (26c) we get

α1
(
v(0, t) + c1

)
+ α2

(
vx (0, t) + c2

)
= α,

β1
(
v(L, t) + c1 + c2L

)
+ β2

(
vx (L, t) + c2

)
β2 = β.

whence

α1v(0, t) + α2vx (0, t) = α− α1c1 − α2c2 (28a)
β1v(L, t) + β2vx (L, t) = β − β1c1 − (β1L + β2)c2 (28b)

To get homogeneous boundary conditions on v , set the right-hand sides to zero:

α1c1 + α2c2 = α, (29a)
β1c1 + (β1L + β2)c2 = β (29b)

and solve the system for the unknowns c1 and c2.
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Eliminating the inhomogeneous terms – continued

c1 = (β1L + β2)α− α2β

α1(β1L + β2)− α2β1
, c2 = α1β − β1α

α1(β1L + β2)− α2β1
. (30)

Observation: Since α, α1, α2, β, β1, β2 are generally functions of time, c1 and c2
calculated above are also functions of time. Occasionally we will write c1(t) and
c2(t) to stress that.
In view of (29), the boundary conditions (28) on v reduce to

α1v(0, t) + α2vx (0, t) = 0, (31a)
β1v(L, t) + β2vx (L, t) = 0 (31b)

which are homogeneous by design.
To obtain a PDE on v , substitute u(x , t) from (27) into (26a) and we get
vt + c ′1(t) + c ′2(t)x = κvxx + f (x , t), that is,

vt = κvxx + f (x , t)− c ′1(t)− c ′2(t)x (32)



Introduction

The heat
equation
Instances of use

Heat conduction
across a refrigerator
wall

The derivation of
the heat equation

Initial/boundary
value problems
for the heat
equation

Separation of
variables
Homogeneous
equations

Insulated boundary

Equations with heat
source

Prescribed
temperature at the
boundary

A compact notation
for partial
derivatives

Inhomogeneous
boundary conditions

Newton’s Law of
cooling

The Fourier sine
series in 2D

Heat conduction in
two dimensions

From Cartesian to
polar

The Fourier series

Steady-state heat
conduction in a disk

Eliminating the inhomogeneous terms – continued
To obtain the initial condition on v , substitute u(x , t) from (27) into (26d). We
get v(x , 0) + c1(0) + c2(0)x = φ(x), that is

v(x , 0) = φ(x)− c1(0)− c2(0)x . (33)

In summary, the change of variables (27) with c1 and c2 selected as in (30),
converts the inhomogeneous boundary conditions in (26) into homogeneous
boundary conditions in the modified equation:

vt = κvxx + f (x , t)− c ′1(t)− c ′2(t)x (34a)
α1(t)v(0, t) + α2(t)vx (0, t) = 0 (34b)
β1(t)v(L, t) + β2(t)vx (L, t) = 0 (34c)
v(x , 0) = φ(x)− c1(0)− c2(0)x . (34d)

Observation: Going from (26) to (34) amounts to (a) zeroing the inhomogeneous
parts of the boundary conditions; (b) replacing f (x , t) by f (x , t)− c ′1(t)− c ′2(t)x ;
and (c) replacing φ(x) by φ(x)− c1(0)− c2(0)x .
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Special case: Dirichlet boundary conditions
The initial/boundary value problem

ut = κuxx + f (x , t) (35a)
u(0, t) = α(t) (35b)
u(L, t) = β(t) (35c)
u(x , 0) = φ(x) (35d)

is a special case of (26) with α1(t) = 1, α2(t) = 0, β1(t) = 1, β2(t) = 0. From (30)
we get c1 = α(t), c2 =

(
β(t)− α(t)

)
/L and then (27) and (34) reduce to

u(x , t) = v(x , t) + α(t) + β(t)− α(t)
L x (36)

and
vt = κvxx + f (x , t)− α′(t)− β′(t)− α′(t)

L x (37a)

v(0, t) = 0 (37b)
v(L, t) = 0 (37c)

v(x , 0) = φ(x)− α(0)− β(0)− α(0)
L x (37d)
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Special case: Dirichlet and Neumann boundary
conditions

The initial/boundary value problem

ut = κuxx + f (x , t)
u(0, t) = α(t)
ux (L, t) = β(t)
u(x , 0) = φ(x)

is a special case of (26) with α1(t) = 1, α2(t) = 0, β1(t) = 0, β2(t) = 1.
From (30) we get c1 = α(t), c2 = β(t) and then (27) and (34) reduce to

u(x , t) = v(x , t) + α(t) + β(t)x

and
vt = κvxx + f (x , t)− α′(t)− β′(t)x
v(0, t) = 0
v(L, t) = 0
v(x , 0) = φ(x)− α(0)− β(0)x
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Special case: Neumann and Robin boundary
conditions

The initial/boundary value problem

ut = κuxx + f (x , t)
ux (0, t) = α(t)
β1(t)u(L, t) + β2(t)ux (L, t) = β(t)
u(x , 0) = φ(x)

is a special case of (26) with α1(t) = 0, α2(t) = 1. From (30) we get

c1(t) = β(t)−
(
β1(t)L+β2(t)

)
α(t)

β1(t) , c2(t) = α(t) and then (27) and (34) reduce to

u(x , t) = v(x , t) + c1(t) + c2(t)x

and
vt = κvxx + f (x , t)− c ′1(t)− c ′2(t)x
v(0, t) = 0
v(L, t) = 0
v(x , 0) = φ(x)− c1(0)− c2(0)x
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Exceptional cases
The change in (27) from u(x , t) to the v(x , t) works for reducing inhomogeneous
boundary conditions to homogeneous ones in most cases, but not always. That’s
because the equations in (30) fail to provide values for c1 and c2 when their
denominators vanish. Once such instance occurs when Neumann boundary
conditions are specified at both ends:

ux (0, t) = α(t), ux (L, t) = β(t). (38)

That’s a special case of (26b) and (26c) with

α1(t) = 0, α2(t) = 1, β1(t) = 0, β2(t) = 1.

Calculating c1 and c2 in this case fails since the denominators in (30) vanish.
A little experimentation shows that we can make things work by replacing the
change of variables (27) by

u(x , t) = v(x , t) + c1(t)x + c2(t)x2. (39)

Determining the proper choices for these c1(t) and c2(t) is left as a homework
problem.



Newton’s Law of cooling

−kux(L, x) = γ
(
u(L, t)− u∞

)

or equivalently

γu(L, t) + kux(L, x) = γu∞
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Newton’s Law of cooling – Example 1
Rod with prescribed temperature at the left, Newton’s cooling on the right.

⇒u(0, t) = α(t) −kux (L, t) = γ
(
u(L, t)− u∞

)


ut = κuxx + f (x , t) 0 < x < L, t > 0
u(0, t) = α(t) t > 0
γu(L, t) + kux (L, x) = γu∞ t > 0
u(x , 0) = φ(x) 0 < x < L

(40)

The initial/boundary value problem (40) matches (26) on slide 50 with
α1 = 1, α2 = 0, β1 = γ, β2 = k, β = γu∞. Thus, from (30) we obtain

c1 = α(t), c2 =
γ
(
u∞ − α(t)

)
γL + k

and therefore (27) takes the form

u(x , t) = v(x , t) + α(t) +
γ
(
u∞ − α(t)

)
γL + k x . (41)
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Newton’s Law of cooling – Example 1 (continued)

Plugging (41) into (40), and having the Observation on slide 53 in mind, we arrive
at 

vt = κvxx + f (x , t)− γ(L− x) + k
γL + k α′(t) 0 < x < L, t > 0

v(0, t) = 0 t > 0
γv(L, t) + kvx (L, t) = 0 t > 0

v(x , 0) = φ(x)−
[
α(0) +

γ
(
u∞ − α(0)

)
γL + k x

]
0 < x < L

(42)

Now that we have homogeneous boundary conditions, we may solve for v through
eigenfunction expansion as usual, and then obtain u from (41).
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Newton’s Law of cooling – Example 2
Heat conduction in a rod with forced flux at the left, Newton’s cooling on the right.

⇒−kux (0, t) = α(t) −kux (L, t) = γ
(
u(L, t)− u∞

)


ut = κuxx + f (x , t) 0 < x < L, t > 0
−kux (0, t) = α(t) t > 0
−kux (L, t) = γ

(
u(L, t)− u∞

)
t > 0

u(x , 0) = φ(x) 0 < x < L

(43)

Rearrange the terms in the right boundary condition as
γu(L, t) + kux (L, t) = γu∞. Then (43) matches (26) on slide 50 with
α1 = 0, α2 = −k, β1 = γ, β2 = k, β = γu∞. Thus, from (30) we obtain

c1 = u∞ + α(t)
γ

+ Lα(t)
k , c2 = −α(t)

k
and therefore (27) takes the form

u(x , t) = v(x , t) + α(t)
k (L− x) + α(t)

γ
+ u∞. (44)



Introduction

The heat
equation
Instances of use

Heat conduction
across a refrigerator
wall

The derivation of
the heat equation

Initial/boundary
value problems
for the heat
equation

Separation of
variables
Homogeneous
equations

Insulated boundary

Equations with heat
source

Prescribed
temperature at the
boundary

A compact notation
for partial
derivatives

Inhomogeneous
boundary conditions

Newton’s Law of
cooling

The Fourier sine
series in 2D

Heat conduction in
two dimensions

From Cartesian to
polar

The Fourier series

Steady-state heat
conduction in a disk

Newton’s Law of cooling – Example 2 (continued)

Plugging (44) into (43), and having the Observation on slide 53 in mind, we arrive
at 

vt = κvxx + f (x , t)−
[L− x

k + 1
γ

]
α′(t) 0 < x < L, t > 0

vx (0, t) = 0 t > 0
γv(L, t) + kvx (L, t) = 0 t > 0

v(x , 0) = φ(x)−
[L− x

k + 1
γ

]
α(0)− u∞ 0 < x < L

(45)

Now that we have homogeneous boundary conditions, we may solve for v through
eigenfunction expansion as usual, and then obtain u from (44).
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The eigenfunctions of problem (42)
Here we give the details of solving problem (42). The solution of problem (45) is
along similar lines and is left as a homework problem.
We begin by examining the homogeneous PDE corresponding to (42), and the
associated boundary conditions:

vt = κvxx 0 < x < L, t > 0
v(0, t) = 0 t > 0
γv(L, t) + kvx (L, t) = 0 t > 0

(46)

We look for a separable solution of the form v(x , t) = X (x)T (t). We get:

T ′(t)X (x) = κT (t)X ′′(x), X (0)T (t) = 0, γX (L)T (t) + kX ′(L)T (t) = 0

which simplifies to

T ′(t)
κT (t) = X ′′(x)

X (x) , X (0) = 0, hX (L) + X ′(L) = 0 (47)

where h = γ/k.
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The eigenfunctions of problem (42) – slide 2
The first of equations (47) implies that

T ′(t)
κT (t) = X ′′(x)

X (x) = −λ2

for some constant λ. Therefore T ′(t) + κλ2T (t = 0 and

X ′′(x) + λ2X (x) = 0, X (0) = 0, hX (L) + X ′(L) = 0, (48)

whence
T (t) = Ce−κλ2t , X (x) = A sinλx + B cosλx .

The boundary condition X (0) = 0 implies that B = 0. Therefore X (x) = A sinλx .
The boundary condition at x = L says that hA sinλL + λA cosλL = 0, that is,
tanλL = − 1

hλ. We rewrite this as tanλL = − 1
hLλL and then let µ = λL and arrive

at tanµ = − 1
hLµ.

Conclusion: Need to solve the transcendental equation

tanµ = − 1
hLµ (49)

numerically to determine µ. Then λ = µ/L.
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The eigenfunctions of problem (42) – slide 3

The graphs of tanµ and − 1
hLµ plotted together. We

have taken L = 1, h = 1 for the purposes of this
illustration. The intersection of the graphs mark the
solutions of (49). The first five positive roots are
µ = 2.0288, 4.9132, 7.9787, 11.0855, 14.2074.

We write µn, n = 1, 2, . . . for the roots of the equation (49). The corresponding
values of λ are λn = µn/L, and the solution of (48) are Xn(x) = sinλnx .
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The eigenfunctions of problem (42) – slide 4
The Sturm–Liouville Theory. The problem (48) that we just solved, is a special case of
what is know as the Sturm–Liouville problem:

(
p(x)X ′(x)

)′
+ q(x)X (x) + λw(x)X (x) = 0,

α1X (a) + α2X ′(a) = 0,
β1X (b) + β2X ′(b) = 0.

(50)

The Sturm–Liouville Theory, dating back to 1837, states that under certain conditions (see
Wikipedia for the precise requirements) the boundary value problem (50) has infinitely
many eigenvalues λn which may be ordered as

λ1 < λ2 < · · · < λn < · · · → ∞,

and corresponding to each λn there is a unique (up to a multiplicative constant) nonzero
eigenfunctions Xn(x). The eigenfunctions, after appropriate scaling, satisfy the
orthogonality condition ∫ b

a
w(x)Xm(x)Xn(x) dx =

{
0 if m 6= n
1 if m = n

Any function φ(x) on the interval (a, b) may be expressed as the infinite sum
φ(x) =

∑∞
n=1 cnXn(x), where cn =

∫ b
a w(x)φ(x)Xn(x) dx .



The Fourier sine series in 2D
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The Fourier sine series in 2D

In Slide 21 we learned how to expand a function φ(x) into the Fourier sine series.
Here we generalize the idea to functions of two variables. Specifically, let us
consider a function φ(x , y) on the square (O, L)× (0, L). For any fixed value of y ,
this is a function of the single variable x , and therefore we may apply the
formulas (12), (13), and (14) on Slide 21 to obtain:

φ(x , y) =
∞∑

n=1
bn(y) sinλnx , (51)

where
bn(y) = 2

L

∫ L

0
φ(x , y) sinλnx dx , and λn = nπ

L . (52)
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The Fourier sine series in 2D – continued
The function bn(y) itself may be expanded into a Fourier sine series, as in

bn(y) =
∞∑

m=1
amn sinλmy (53)

where
amn = 2

L

∫ L

0
bn(y) sinλmy dy

Substituting for bn(y) from (52), this becomes

amn = 4
L2

∫ L

0

∫ L

0
φ(x , y) sinλnx sinλmy dx dy .

Furthermore, substituting bn(y) from (53) into (51) we see that

φ(x , y) =
∞∑

n=1

∞∑
m=1

amn sinλnx sinλmy .
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The Fourier sine series in 2D – summary

To summarize the calculations of the previous two slides: A function φ(x , y) on the
square (0, L)× (0, L) may be expanded into two-dimensional Fourier sine series as

φ(x , y) =
∞∑

n=1

∞∑
m=1

amn sinλnx sinλmy . (54)

where

amn = 4
L2

∫ L

0

∫ L

0
φ(x , y) sinλnx sinλmy dx dy . (55)

These are the two-dimensional versions of the formulas on Slide 21.



Heat conduction in two dimensions

∂2u
∂x 2 + ∂2u

∂y 2 + f (x , y) = 0
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Heat conduction in two dimensions
The equation of heat conduction ∂u/∂t = κ∂2u/∂x2 + f (x , t) generalizes to two
spatial dimensions as

∂u
∂t = κ

(
∂2u
∂x2 + ∂2u

∂y2

)
+ f (x , y , t),

where the temperature u is a function of three variables, u = u(x , y , t).
When the heat generation term f (x , y , t) and the boundary conditions are
independent of time t, the temperature stabilizes to the steady state distribution,
u(x , y), and therefore ∂u/∂t drops out and we are left with

κ

(
∂2u
∂x2 + ∂2u

∂y2

)
+ f (x , y) = 0.

Dividing through κ and renaming 1
κ f (x , y) as f (x , y), we arrive at:

∂2u
∂x2 + ∂2u

∂y2 + f (x , y) = 0. (Poisson’s equation)
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Solving the heat equation in 2D
Let us look at the heat conduction problem in the square S = (0, L)× (0, L) with
zero boundary conditions along the edges:

∂2u
∂x2 + ∂2u

∂y2 + f (x , y) = 0 in S, (56a)

u(x , 0) = u(x , L) = u(0, y) = u(L, y) = 0 for all 0 < x < L, 0 < y < L. (56b)

To solve that boundary value problem, we expand the known function f (x , y) and
the unknown function u(x , y) into Fourier sine series according to (54)

u(x , y) =
∞∑

n=1

∞∑
m=1

amn sinλnx sinλmy , f (x , y) =
∞∑

n=1

∞∑
m=1

cmn sinλnx sinλmy ,

The coefficients cmn are calculated according to (55):

cmn = 4
L2

∫ L

0

∫ L

0
f (x , y) sinλnx sinλmy dx dy , (57)

but the coefficients amn are unknown and are to be determined.
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Solving the heat equation in 2D – continued
To determine the coefficients amn in the expansion of u(x , y), we calculate the
partial derivatives of that expansion, as in

∂2u
∂x2 =

∞∑
n=1

∞∑
m=1
−λ2

namn sinλnx sinλmy ,

∂2u
∂y2 =

∞∑
n=1

∞∑
m=1
−λ2

mamn sinλnx sinλmy ,

and substitute these, along with the series expansion of f (x , y), into the
PDE (56a). We get
∞∑

n=1

∞∑
m=1
−λ2

namn sinλnx sinλmy +
∞∑

n=1

∞∑
m=1
−λ2

mamn sinλnx sinλmy

+
∞∑

n=1

∞∑
m=1

cmn sinλnx sinλmy = 0.

∞∑
n=1

∞∑
m=1

[
−(λ2

n + λ2
m)amn + cmn

]
sinλnx sinλmy = 0.
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Solving the heat equation in 2D – continued

It follows that −(λ2
n + λ2

m)amn + cmn = 0, and therefore

amn = cmn
λ2

n + λ2
m
.

Consequently

u(x , y) =
∞∑

n=1

∞∑
m=1

cmn
λ2

n + λ2
m

sinλnx sinλmy , (58)

where the coefficients cmn are given in (57).
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A worked out example

Let us calculate the the temperature u(x , y) in problem (56) on Slide 73 where the
heat generation is uniform f (x , y) = 1 throughout the square.
We begin with calculating the coefficients cmn of the Fourier expansion of f (x , y)
through the formula (55):

cmn = 4
L2

∫ L

0

∫ L

0
1× sinλnx sinλmy dx dy

= 4
L2

(∫ L

0
sinλnx dx

)(∫ L

0
sinλmy dy

)
= 4

L2

(
− 1
λn

cosλnx
∣∣∣L
0

)(
− 1
λm

cosλny
∣∣∣L
0

)
= 4
λmλnL2

(
− cosλnL + 1

)(
− cosλmL + 1

)
.
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A worked out example – continued
Then according to (58) we get

u(x , y) = 4
L2

∞∑
n=1

∞∑
m=1

(1− cosλmL)(1− cosλnL)
λmλn(λ2

n + λ2
m) sinλnx sinλmy .

Considering that λn = nπ/L and that cosλnL = cos nπ = (−1)n, this takes the
form

u(x , y) = 4L2

π4

∞∑
n=1

∞∑
m=1

(
1− (−1)m

)(
1− (−1)n

)
mn(m2 + n2) sin nπx

L sin mπy
L .

Movie made with L = 1 and ∞ set to 8
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Exercise
Calculate the solution u(x , y) of the steady-state heat conduction problem (56) on
Slide 73, assuming that heat is generated only in the lower-left quarter of the
domain, that is,

f (x , y) =
{

1 if 0 < x < L/2 and 0 < y < L/2,
0 otherwise,

Here is what the solution looks like:

Movie made with L = 1 and ∞ set to 8



From Cartesian to polar
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Change of coordinates from Cartesian to polar
The point P at (x , y) in Cartesian
coordinates is represented as (r , θ) in
polar coordinates where r , called the
radial coordinate or the radius, is the
distance of the point from the origin O,
and θ, called the angular coordinate or
the polar coordinate, is the rotation
angle, measured counterclockwise, of the
ray OP away from the positive x axis

x

y

r
P(x , y)

θ

x = r cos θ, y = r sin θ

x = r cos θ ∂/∂x=⇒ 1 = ∂r
∂x cos θ − r sin θ ∂θ

∂x

y = r sin θ ∂/∂x=⇒ 0 = ∂r
∂x sin θ + r cos θ ∂θ

∂x
Solve for ∂r∂x and ∂θ∂x :

∂r
∂x = cos θ, ∂θ

∂x = −1
r sin θ, and similarly ∂r

∂y = sin θ, ∂θ

∂y = 1
r cos θ.



Introduction

The heat
equation
Instances of use

Heat conduction
across a refrigerator
wall

The derivation of
the heat equation

Initial/boundary
value problems
for the heat
equation

Separation of
variables
Homogeneous
equations

Insulated boundary

Equations with heat
source

Prescribed
temperature at the
boundary

A compact notation
for partial
derivatives

Inhomogeneous
boundary conditions

Newton’s Law of
cooling

The Fourier sine
series in 2D

Heat conduction in
two dimensions

From Cartesian to
polar

The Fourier series

Steady-state heat
conduction in a disk

First derivatives in polar coordinates

A function u(x , y) expressed in the Cartesian coordinates may be evaluated at the
corresponding polar coordinates as u(r cos θ, r sin θ). The result of the evaluation is
a function U(r , θ), where

u(x , y) = u(r cos θ, r sin θ) = U(r , θ).

Then by the chain rule

∂u
∂x = ∂U

∂r
∂r
∂x + ∂U

∂θ

∂θ

∂x = ∂U
∂r cos θ − 1

r
∂U
∂θ

sin θ

∂u
∂y = ∂U

∂r
∂r
∂y + ∂U

∂θ

∂θ

∂y = ∂U
∂r sin θ + 1

r
∂U
∂θ

cos θ

Coming up next. . . the calculation of ∂2u
∂x2 and ∂2u

∂y2 and (homework) ∂2u
∂x∂y .
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The derivative uxx in polar coordinates

∂2u
∂x2 = ∂

∂x

(
∂u
∂x

)
= ∂

∂x

(
∂U
∂r cos θ − 1

r
∂U
∂θ

sin θ
)

= ∂

∂r

(
∂U
∂r cos θ − 1

r
∂U
∂θ

sin θ
)

cos θ − 1
r
∂

∂θ

(
∂U
∂r cos θ − 1

r
∂U
∂θ

sin θ
)

sin θ

=
(
∂2U
∂r 2 cos θ + 1

r 2
∂U
∂θ

sin θ − 1
r
∂2U
∂r∂θ sin θ

)
cos θ

− 1
r

(
∂2U
∂r∂θ cos θ − ∂U

∂r sin θ − 1
r
∂2U
∂θ2 sin θ − 1

r
∂U
∂θ

cos θ
)

sin θ

= ∂2U
∂r 2 cos2 θ − 2

r
∂2U
∂r∂θ sin θ cos θ + 1

r 2
∂2U
∂θ2 sin2 θ

+ 1
r
∂U
∂r sin2 θ + 2

r 2
∂U
∂θ

sin θ cos θ
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The derivative uyy in polar coordinates

∂2u
∂y2 = ∂

∂y

(
∂u
∂y

)
= ∂

∂y

(
∂U
∂r sin θ + 1

r
∂U
∂θ

cos θ
)

= ∂

∂r

(
∂U
∂r sin θ + 1

r
∂U
∂θ

cos θ
)

sin θ + 1
r
∂

∂θ

(
∂U
∂r sin θ + 1

r
∂U
∂θ

cos θ
)

cos θ

=
(
∂2U
∂r 2 sin θ − 1

r 2
∂U
∂θ

cos θ + 1
r
∂2U
∂r∂θ cos θ

)
sin θ

+ 1
r

(
∂2U
∂r∂θ sin θ + ∂U

∂r cos θ + 1
r
∂2U
∂θ2 cos θ − 1

r
∂U
∂θ

sin θ
)

cos θ

= ∂2U
∂r 2 sin2 θ + 2

r
∂2U
∂r∂θ sin θ cos θ + 1

r 2
∂2U
∂θ2 cos2 θ

+ 1
r
∂U
∂r cos2 θ − 2

r 2
∂U
∂θ

sin θ cos θ
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The Laplacian in polar coordinates

The expression ∂2u
∂x2 + ∂2u

∂y2 and its three-dimensional version ∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 are

ever-present in mathematical models stemming from physics, and encompass heat
conduction, fluid and solid mechanics, electromagnetism, relativity, and cosmology.
That expression is called the Laplacian of a function u and is written ∆u (notation
popular among mathematicians) and ∇2u (notation popular among engineers and
physicists). We have seen how the Laplacian plays a fundamental role in describing
heat conduction. So far we have dealt with the Laplacian expressed in Cartesian
coordinates. Equipped with the calculations of the preceding two slides, we may
express the Laplacian in polar coordinates by summing the expressions for ∂2u/∂x2

and ∂2u/∂y2 calculated there. There is great deal of cancellation/simplification
and we arrive at

∆u = ∇2u = ∂2u
∂x2 + ∂2u

∂y2 = ∂2U
∂r 2 + 1

r
∂U
∂r + 1

r 2
∂2U
∂θ2 (59)



The Fourier series

f (x) = A0 +
∞∑

n=1

(
An cos nx + Bn sin nx

)
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The Fourier series

Up to this point we have focused on the Fourier sine series which was formally
defined on Slide 21. The Fourier sine series works best with functions f (x) defined
on an interval (0, L) that satisfy zero boundary conditions, that is f (0) = f (L) = 0.

In this section we introduce the general Fourier series which works for all functions,
regardless of any boundary conditions. To simplify the algebra, we limit the
presentation to functions on the interval (−π, π). Extending the conclusions to
arbitrary intervals (a, b) is pretty straightforward.

Here is the general Fourier series for functions defined on the interval (−π, π):

f (x) = A0 +
∞∑

n=1

(
An cos nx + Bn sin nx

)
. (60)

We skip the technical details here, but suffice to say that such a representation is
possible for just about any function f (x) that you would normally run across. In
the next few slides we focus on how to determine the As and Bs for a given f .
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Calculating the Fourier series’ coefficients

The value of A0 is easy to determine: just integrate (60) over (−π, π) and note
that for any positive integer n we have∫ π

−π
cos nx dx = 1

n sin nx
∣∣∣∣π
−π

= 1
n
[
sin nπ − sin(−nπ)

]
= 0, (61a)∫ π

−π
sin nx dx = −1

n cos nx
∣∣∣∣π
−π

= −1
n
[
cos nπ − cos(−nπ)

]
= 0. (61b)

Consequently,
∫ π
−π f (x) dx = 2πA0, and therefore

A0 = 1
2π

∫ π

−π
f (x) dx .

Remark: It is worth noting that A0 calculated above is precisely the average value
of f (x) over the interval (−π, π).
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Calculating the Fourier series’ coefficients
(continued)

To calculate the remaining As and Bs, we observe that for all positive integers m
and n we have ∫ π

−π
cos mx cos nx dx =

{
0 if m 6= n
π if m = n

(62a)

∫ π

−π
sin mx sin nx dx =

{
0 if m 6= n
π if m = n

(62b)∫ π

−π
sin mx cos nx dx = 0 (62c)

Going back to (60), multiply both sides by cos mx , where m is a positive integer,
and integrate. We get∫ π

−π
f (x) cos mx dx = A0

∫ π

−π
cos mx dx

+
∞∑

n=1

(
An

∫ π

−π
cos mx cos nx dx + Bn

∫ π

−π
cos mx sin nx dx

)
. (63)
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Calculating the Fourier series’ coefficients
(continued)

The coefficients of A0 and Bn in (63) are zero due to (61a) and (62c). The
coefficients of An are all zero by (62a) except when n = m in which case the
coefficient is π. Thus, (63) collapses to

∫ π
−π f (x) cos mx dx = Amπ, whence

An = 1
π

∫ π

−π
f (x) cos nx dx , n = 1, 2, . . . .

To determine the coefficients Bn, we multiply (60) by sin mx and integrate.
Repeating the reasoning above, we arrive at

Bn = 1
π

∫ π

−π
f (x) sin nx dx , n = 1, 2, . . . .
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The Fourier series – Summary
Here we summarize the findings of this section.

For all practical purposes, any function f (x) defined in the interval (−π, π) may be
expressed as

f (x) = A0 +
∞∑

n=1

(
An cos nx + Bn sin nx

)
, (64a)

where

A0 = 1
2π

∫ π

−π
f (x) dx , (64b)

An = 1
π

∫ π

−π
f (x) cos nx dx , n = 1, 2, . . . , (64c)

Bn = 1
π

∫ π

−π
f (x) sin nx dx , n = 1, 2, . . . . (64d)



Steady-state heat conduction in a disk
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Steady-state heat conduction in a disk
Consider a thin circular disk of radius a, insulated
on its flat faces, and exposed all around its
peripheral edge.

We install a polar coordinate system (r , θ) in the
plane of the disk, with the origin at the disk’s
center, and we impose a prescribed temperature
f (θ), −π < θ < π around the edge and wait until
the temperature stabilizes to a steady-state
u(r , θ). Mathematically, this is described as a
boundary value problem:

x

y

r
θ

u = h(θ)



∂2u
∂r 2 + 1

r
∂u
∂r + 1

r 2
∂2u
∂θ2 = 0, 0 < r < a, −π < θ < π

u(a, θ) = h(θ). − π < θ < π

u(r , θ) is 2π-periodic in θ
u(0, θ) is finite

(65)
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Separation of variables
We look for a solution u(r , θ) = R(t)Ψ(θ). Plugging this into the PDE we obtain

R ′′(t)Ψ(θ) + 1
r R ′(t)Ψ(θ) + 1

r 2 R(t)Ψ′′(θ) = 0,

and then we separate the variables:

r 2R ′′(r)
R(r) + rR ′(r)

R(r) = −Ψ′′(θ)
Ψ(θ) (66)

The left-hand side involves r only, and the right-hand side involves θ only.
Therefore each side is a constant. The constant may be negative, zero, or positive.

A negative constant, say −λ2, is not interesting since the Ψ equation becomes
−Ψ′′(θ)

Ψ(θ) = −λ2, that is, Ψ′′(θ)− λ2Ψ(θ) = 0 whose general solution is
Ψ(θ) = A coshλθ + B sinhλθ. But such a function is not periodic in θ, and
therefore the periodicity condition in (65) cannot be met.

On the other hand, the zero or positive choices for the separation constant are both
viable and lead to interesting results.
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The case of a zero separation constant
Let’s consider the case where the separation constant, that is, the common value of
the two sides of (66), is zero. Then we would have

Ψ′′(θ) = 0, r 2R ′′(r) + rR ′(r) = 0.

The solution of the Ψ equation is Ψ(θ) = Aθ + B. The periodicity requirement on
Ψ forces A to be zero, therefore we are left with Ψ(θ) = B. In other words, Ψ(θ) is
any constant function. That certainly satisfies the periodicity condition.

To solve the R equation, we rewrite it as r 2R ′′(r) + rR ′(r) = 0, and thus
R′′(r)
R′(r) = −1

r , and integrate and get ln R ′(r) = ln c1 − ln r which simplifies to
ln
(
rR ′(r)

)
= ln c1, that is rR ′(r) = c1. Therefore R ′(r) = c1/r and consequently

R(r) = c1 ln r + c2. (67)

We are forced to take c1 = 0, otherwise the function would blow up as r
approaches zero, violating the finiteness requirement stated in (65).
Conclusion: When the separation constant is zero, the only acceptable solution is
Ψ(θ) = constant, R(r) = constant, and therefore u(r , θ) = constant.



Introduction

The heat
equation
Instances of use

Heat conduction
across a refrigerator
wall

The derivation of
the heat equation

Initial/boundary
value problems
for the heat
equation

Separation of
variables
Homogeneous
equations

Insulated boundary

Equations with heat
source

Prescribed
temperature at the
boundary

A compact notation
for partial
derivatives

Inhomogeneous
boundary conditions

Newton’s Law of
cooling

The Fourier sine
series in 2D

Heat conduction in
two dimensions

From Cartesian to
polar

The Fourier series

Steady-state heat
conduction in a disk

The case of a positive separation constant
Let’s consider the case where the separation constant, that is, the common value of
the two sides of (66) is positive, say λ2. Then we would have

Ψ′′(θ) + λ2Ψ(θ) = 0, r 2R ′′(r) + rR ′(r)− λ2R(r) = 0. (68)

The general solution of the Ψ equation is Ψ(θ) = A cosλθ + B sinλθ, whence
Ψ′(θ) = −Aλ sinλθ + Bλ cosλθ.
We are interested in the range −π < θ < π. The solution u(r , θ) will be continuous
and smooth across the negative x axis if Ψ(−π) = Ψ(π) and Ψ′(−π) = Ψ′(π),
that is

A cos(−λπ) + B sin(−λπ) = A cos(λπ) + B sin(λπ),
−Aλ sin(−λπ) + Bλ cos(−λπ) = −Aλ sin(λπ) + Bλ cos(λπ).

These two equations simplify to B sinλπ = 0 and A sinλπ = 0, respectively. If
sinλπ is nonzero, then both A and B are zero, and that results in the trivial
solution Ψ(θ) = 0. We conclude that sinλπ = 0, and therefore λπ = nπ for all
positive integers n.
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The case of a positive separation constant
(continued)

We conclude that the Ψ functions of interest are Ψn(θ) = An cos nθ + Bn sin nθ,
n = 1, 2, . . ..

We return to (68) now and evaluate the R equation with λ = n. We get
r 2R ′′(r) + rR ′(r)− n2R(r) = 0. This ODE is called Euler’s equation and there is a
well-know trick for solving it. Specifically, We try a solution of the form R(r) = rα
for a yet unspecified exponent α. Plugging this into the ODE we see that
α(α− 1)rα + αrα − n2rα = 0, whence α(α− 1) + α− n2 = 0, which simplifies to
α2 = n2. We conclude that α = ±n, and therefore the general solution of Euler’s
equation is

R(r) = c1r−n + c2rn. (69)

We are forced to take c1 = 0, otherwise the function would blow up as r
approaches zero, violating the finiteness requirement stated in (65).

Conclusion: When the separation constant is positive, it has to be an integer, and
the function u(r , θ) = rn(An cos nθ + Bn sin nθ) satisfies the PDE in (65).
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A Fourier series representation of the solution
Putting together the results of the preceding slides, we arrive at the following
candidate for the solution of the boundary value problem (65):

u(r , θ) = A0 +
∞∑

n=1
rn
(

An cos nθ + Bn sin nθ
)
. (70)

This solution candidate satisfies the PDE, the periodicity, and finiteness
requirements. It remains to pick the As and Bs in order for meet the prescribed
boundary condition u(a, θ) = h(θ), that is,

h(θ) = A0 +
∞∑

n=1
an
(

An cos nθ + Bn sin nθ
)
.

The form of this expression happens to match precisely that of the general Fourier
series formalism summarized on Slide 90. Applying equations (64) to the case at
hand, we see that;

A0 = 1
2π

∫ π

−π
h(θ) dθ, An = 1

πan

∫ π

−π
h(θ) cos nθ dθ, Bn = 1

πan

∫ π

−π
h(θ) sin nθ dθ.

(71)
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A worked out problem
Let’s solve the boundary value problem (70) when

h(θ) =
{

1 if |θ| < π/6,
0 otherwise.

We evaluate the As and Bs according to (71) with the given h. We obtain:

A0 = 1
6 , An = 2

nπan sin nπ
6 , Bn = 0.

Then the solution (70) takes the form

u(r , θ) = 1
6 + 2

π

∞∑
n=1

(1
n sin nπ

6

)( r
a

)n
cos nθ.

Illustrations made with
a = 1, and ∞ set to 50
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Heat conduction on an annulus
Consider a thin annulus of inner and outer radii a
and b, respectively, insulated on its flat faces, and
exposed on its inner and outer peripheral edges
where the temperature is fixed at h(θ) around the
inner edge, and g(θ) around the outer edge. Here
θ is the angular coordinate in a polar coordinate
system affixed to the annulus at its center.

The resulting steady-state temperature field,
u(r , θ), is the solution of the boundary value
problem:

ba

u = g(θ)

u = h(θ)



∂2u
∂r 2 + 1

r
∂u
∂r + 1

r 2
∂2u
∂θ2 = 0, a < r < b, −π < θ < π

u(a, θ) = h(θ). − π < θ < π

u(b, θ) = g(θ). − π < θ < π

u(r , θ) is 2π-periodic in θ

(72)
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Heat conduction on an annulus – continued

We separate the variables in (72) just as we did in the case of heat conduction on a
disk. In fact, most of the calculation there carries over here with only small
changes.
Specifically, recall that in Slide 94 we dismissed the logarithmic term in (67) to
avoid blowup at r = 0. But that is of no concern in an annulus since r = 0 varies
from a to b, and does not hit zero. Therefore we retain the full solution given
in (67) in the current calculation.

Similarly, on Slide 96 we dismissed the r−n in (69), but we retain it in the current
calculation since r does not approach zero. Then, the equivalent of the
representation (70) in the case of annulus becomes

u(r , θ) = A0 +B0 ln r +
∞∑

n=1

((
Anrn +Bnr−n

)
cos nθ+

(
Cnrn +Dnr−n

)
sin nθ

)
. (73)
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Heat conduction on an annulus – continued
Applying the boundary conditions leads to

h(θ) = A0 + B0 ln a +
∞∑

n=1

((
Anan + Bna−n

)
cos nθ +

(
Cnan + Dna−n

)
sin nθ,

)
(74a)

g(θ) = A0 + B0 ln b +
∞∑

n=1

((
Anbn + Bnb−n

)
cos nθ +

(
Cnbn + Dnb−n

)
sin nθ.

)
.

(74b)
The calculation of the coefficients proceeds as before. We observe that both of the
equations above match the general Fourier series formalism from Slide 90.
Applying equations (64) to (74a) yields

A0 + B0 ln a = 1
2π

∫ π

−π
h(θ) dθ, (75a)

Anan + Bna−n = 1
π

∫ π

−π
h(θ) cos nθ dθ, (75b)

Cnan + Dna−n = 1
π

∫ π

−π
h(θ) sin nθ dθ. (75c)
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Heat conduction on an annulus – continued
Similarly, applying equations (64) to (74b) yields

A0 + B0 ln b = 1
2π

∫ π

−π
g(θ) dθ, (76a)

Anbn + Bnb−n = 1
π

∫ π

−π
g(θ) cos nθ dθ, (76b)

Cnbn + Dnb−n = 1
π

∫ π

−π
g(θ) sin nθ dθ. (76c)

We solve the set of six equations in (75) and (76) for the six unknowns A0, B0, An,
Bn, Cn, Dn, and obtain:

A0 = h̄ ln b − ḡ ln a
ln(b/a) , B0 = ḡ − h̄

ln(b/a) , (77a)

An = 1
∆n

[
−b−nH(n)

c + a−nGc
]
, Bn = 1

∆n

[
bnH(n)

c − anG (n)
c

]
, (77b)

Cn = 1
∆n

[
−b−nH(n)

s + a−nGs
]
, Dn = 1

∆n

[
bnH(n)

s − anG (n)
s

]
. (77c)

. . . continued on next slide
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Heat conduction on an annulus – continued
. . . continued from the previous slide where

∆n = π

[(b
a
)n
−
(a

b
)n]

, h̄ = 1
2π

∫ π

−π
h(θ) dθ, ḡ = 1

2π

∫ π

−π
g(θ) dθ,

H(n)
c =

∫ π

−π
h(θ) cos nθ dθ, G (n)

c =
∫ π

−π
g(θ) cos nθ dθ,

H(n)
s =

∫ π

−π
h(θ) sin nθ dθ, G (n)

s =
∫ π

−π
g(θ) sin nθ dθ.

We plug the coefficients calculated in equations (77) into (73) and regroup the
terms to arrive at the solution

u(r , θ) = h̄ ln b − ḡ ln a
ln(b/a) + ḡ − h̄

ln(b/a) r

+
∞∑

n=1

1
∆n

([(b
r
)n
−
( r

b
)n]

H(n)
c +

[(a
r
)n
−
( r

a
)n]

G (n)
c

)
cos nθ

+
∞∑

n=1

1
∆n

([(b
r
)n
−
( r

b
)n]

H(n)
s +

[(a
r
)n
−
( r

a
)n]

G (n)
s

)
sin nθ.
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Graphics
Here is a sample of the general solution obtained in the previous slide. The
annulus’s inner and outer radii are a = 0.5, b = 3, and the boundary conditions are

h(θ) = 0, g(θ) =
{

1 if |θ| < π/3,
0 otherwise.
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