
Math 404, Fall 2020
Homework #10

For your convenience, I begin this homework assignment with a quick sum-

mary of the explicit and implicit �nite di�erence schemes for solving the heat

equation. The homework question comes at the very end. In fact, there are two

questions there. The second one is optional but it will earn you bonus points if

you do it.

1. The finite difference discretization

We wish to solve the initial boundary value problem

)u
)t =

)2u
)x2 a < x < b, 0 < t < T ,(1a)

u(x, 0) = f (x), a < x < b,(1b)

u(a, t) = �(t), 0 < t < T ,(1c)

u(b, t) = �(t), 0 < t < T ,(1d)

for the unknown function u. The initial condition f (x), the boundary conditions �(t) and

�(t), and the upper limit in time, T , are given.

In a �nite-di�erence approximation, we subdivide the space interval [a, b] into n equal-

length segments, and subdivide the time interval [0, T ] into m equal-length segments.

This imposes an (m+1)× (n +1) grid the domain of u as seen in Figure 1. The grid spacing

in the x direction is Δx = (b−a)/n, and the grid spacing in the t direction is Δt = T /m. We

write xj , j = 1, 2, … , n + 1 for the x coordinates of the grid points, and ti , i = 1, 2, … ,m + 1
for the t coordinates of the grid points. In particular

x1 = a, xn+1 = b, t1 = 0, tm+1 = T .
We refer to the grid points through their indices (i, j), where i increases in the t direc-

tion and j increases in the x directions. We write ui,j for the value of u(x, t) at the node

(i, j), that is,

ui,j = u(xj , ti).
At the grid point (i, j) the partial derivative )u/)t may be approximated as

(2a)

)u
)t

||||(xj ,ti )
≈ ui+1,j − ui,j

Δt , (forward di�erence)

or

(2b)

)u
)t

||||(xj ,ti )
≈ ui,j − ui−1,j

Δt . (backward di�erence)

Replacing the )u/)t term in the PDE with (2a) leads to the so-called explicit �nite di�erence
scheme, while replacing it with (2b) leads to the so-called implicit �nite di�erence scheme,
as we shall see.

As to the PDE’s second order derivative )2u/)x2, we replace it with

(3)

)2u
)x2

||||(xj ,ti )
≈ ui,j−1 − 2ui,j + ui,j+1

(Δx)2 ,

as demonstrated in class.

Be sure to examine each term in equations (2a), (2b), and (3) and see how they are

related to the corresponding grid points in Figure 1.
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Figure 1. The �nite di�erence grid.

2. The explicit scheme

Let us replace the partial derivatives in the PDE (1) with the �nite di�erence approxi-

mations (2a) and (3). We get:

(4)

ui+1,j − ui,j
Δt = ui,j−1 − 2ui,j + ui,j+1

(Δx)2 , i = 1, … ,m, j = 2, … , n.

This equation is known as the explicit �nite di�erence scheme for the heat equation. It

enables us to calculate ui+1,j at time ti+1 in terms of the values of u at the previous time

ti . Thus, we may march forward in time beginning with t = 0 where the value of u is

known from the initial condition in (1b).

Isolating ui+1,j in the equation above, we get

ui+1,j = ui,j +
Δt
(Δx)2 [ui,j−1 − 2ui,j + ui,j+1].

To simplify the notation, we introduce

(5) r = Δt
(Δx)2 .

And then, combining the two ui,j we arrive at

(6) ui+1,j = rui,j−1 + (1 − 2r)ui,j + rui,j+1.
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To truly appreciate what this equation says, let us evaluate it for j = 2, … , n:

ui+1,2 = rui,1 + (1 − 2r)ui,2 + rui,3,
ui+1,3 = rui,2 + (1 − 2r)ui,3 + rui,4,
ui+1,4 = rui,3 + (1 − 2r)ui,4 + rui,5,

⋯
ui+1,n = rui,n−1 + (1 − 2r)ui,n + rui,n+1.

We pad this system of equations from the top and from the bottom by the two equations

ui+1,1 = �(ti+1),
ui+1,n+1 = �(ti+1)

which express the values of ui+1,1 and ui+1,n which are known from the boundary condi-

tions. We get

ui+1,1 = �(ti+1),
ui+1,2 = rui,1 + (1 − 2r)ui,2 + rui,3,
ui+1,3 = rui,2 + (1 − 2r)ui,3 + rui,4,
ui+1,4 = rui,3 + (1 − 2r)ui,4 + rui,5,

⋯
ui+1,n = rui,n−1 + (1 − 2r)ui,n + rui,n+1,

ui+1,n+1 = �(ti+1).
Finally, we cast the equations into a matrix form:

(7)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ui+1,1
ui+1,2
ui+1,3
ui+1,4
⋮
ui+1,n
ui+1,n+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
r (1 − 2r) r
0 r (1 − 2r) r
0 0 r (1 − 2r) r
⋮
0 0 0 0 r (1 − 2r) r
0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ui,1
ui,2
ui,3
ui,4
⋮

ui,n
ui,n+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�(ti+1)
0
0
0
⋮
0

�(ti+1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In this equation we clearly see how the values of u at time ti are related to the values of

u at time ti+1. In class we learned how to enter this equation in Matlab and get numbers

out of it.

Remark 1. As noted in class, equation (7) produces a faithful representation of the solution

of the initial value problem (1) provided that r ≤ 1/2. It is likely to produce junk otherwise.

3. The implicit scheme

Let us replace the partial derivatives in (1a) with the �nite di�erence approxima-

tions (2b) and (3). We get:

(8)

ui,j − ui−1,j
Δt = ui,j−1 − 2ui,j + ui,j+1

(Δx)2 , i = 1, … ,m, j = 2, … , n.

This is known as the implicit �nite di�erence scheme for the heat equation. The reason for

calling it implicit is that, unlike the previous sections explicit scheme, it does not express
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u at a given time in terms of the values of u at the previous times. To see this clearly, take

Δt to the right-hand side:

ui,j − ui−1,j =
Δt
(Δx)2 [ui,j−1 − 2ui,j + ui,j+1],

and then let r = Δt/(Δx)2 as we did in (5),

ui,j − ui−1,j = r[ui,j−1 − 2ui,j + ui,j+1].

Then rearrange the terms as:

−rui,j−1 + (1 + 2r)ui,j − rui,j+1 = ui−1,j .
Observe that this fails to express u at time ti in terms of u at time ti−1. Rather, it express

linear combination of the u values at time ti in terms of the value of u at time ti−1.
But all is not lost. Let us write out explicitly what the equation says for j = 2, 3, … , n:

−rui,1 + (1 + 2r)ui,2 − rui,3 = ui−1,2,
−rui,2 + (1 + 2r)ui,3 − rui,4 = ui−1,3,
−rui,3 + (1 + 2r)ui,4 − rui,5 = ui−1,4,

⋯
−rui,n−1 + (1 + 2r)ui,n − rui,n+1 = ui−1,n .

We pad the equations, as before by the values supplied by the boundary conditions, and

we arrive at

ui,1 = �(ti),
−rui,1 + (1 + 2r)ui,2 − rui,3 = ui−1,2,
−rui,2 + (1 + 2r)ui,3 − rui,4 = ui−1,3,
−rui,3 + (1 + 2r)ui,4 − rui,5 = ui−1,4,

⋯
−rui,n−1 + (1 + 2r)ui,n − rui,n+1 = ui−1,n ,

ui,n+1 = �(ti).
Finally, we cast this into a matrix form:

(9)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−r (1 + 2r) −r
0 −r (1 + 2r) −r
0 0 −r (1 + 2r) −r
⋮
0 0 0 0 −r (1 + 2r) −r
0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ui,1
ui,2
ui,3
ui,4
⋮
ui,n
ui,n+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�(ti)
ui−1,2
ui−1,3
ui−1,4
⋮
ui−1,n
�(ti)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This equation has the form Ax = b, were A is a tridiagonal matrix, x is the (unknown)

vector of the solution at time ti , and the right-hand side b is a known vector which is

constructed from the values of the solution at time ti−1, and the boundary conditions. We

see that calculating the unknown vector calls for solving a linear system of equations.

We have seen in class how encode this system into Matlab, and that we solve it by the

command x = A⧵b.
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4. Adding a heat source

Early in the semester, we saw that in the presence of a heat source, the PDE (1a)

changes to

)u
)t =

)2u
)x2 + F(x, t).

Here we wish to modify the results of the previous sections to include F (x, t) in the �nite

di�erence formulation.

Let Fi,j = F(xj , ti). Then the explicit scheme in (4) takes the form

ui+1,j − ui,j
Δt = ui,j−1 − 2ui,j + ui,j+1

(Δx)2 + Fi,j i = 1, … ,m, j = 2, … , n.

Multiplying through by Δt and recalling the de�nition of r in (5), we get

ui+1,j = ui,j + r[ui,j−1 − 2ui,j + ui,j+1] + Fi,jΔt
which we rearrange into

(10) ui+1,j = rui,j−1 + (1 − 2r)ui,j + rui,j+1 + Fi,jΔt
This is how equation (6) changes when we add a heat source.

Homework problem #1. (8pts) The explicit scheme with a heat source.
Examine the calculations that lead from equation (6) to the matrix form (7). Do the equiv-

alent calculation beginning with equation (10) and obtain the corresponding matrix form.

Homework problem #2. (optional, 8 bonus pts) The implicit scheme with a heat source.
Examine the calculations that lead from equation (8) to the matrix form (9). Derive the

matrix formulation when a heat source is present.


