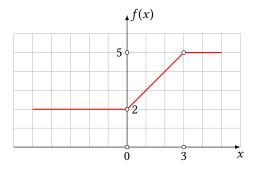
Math 404, Fall 2020 Homework #9


This homework concerns the initial value problem of traffic flow:

$$\begin{aligned} &\frac{\partial \rho}{\partial t} + c(\rho) \frac{\partial \rho}{\partial x} = 0 & -\infty < x < \infty, \quad t > 0, \\ &\rho(x,0) = f(x) & -\infty < x < \infty, \end{aligned}$$

where $\rho(x, t)$ is the traffic density at the location *x* at time *t*, and

$$c(\rho) = u_{\max} \left(1 - \frac{2\rho}{\rho_{\max}}\right).$$

Let $\rho_{\text{max}} = 8$, $u_{\text{max}} = 4$, and f(x) be as shown:

- 1. (8 points) Find the expression for the solution $\rho(x, t)$.
- 2. (3 points) Sketch the graph of $\rho(x, 1/2)$.
- 3. (3 points) Sketch the graph of $\rho(x, 1)$.
- 4. (3 points) Sketch the graph of $\rho(x, 3)$.

Don't just write down equations. Please explain what you are doing.