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Preface

Unless otherwise specified, by “solving a problem” I mean performing all the steps
laid out below:

1. Select configuration parameters.

2. Define the position vectors r1,r2, . . . of the point masses in terms of the generalized
coordinates q1, q2, . . . .

3. Compute the velocities of the point masses:

vi = ṙi =
∑

j

∂ ri

∂ q j

q̇ j , i = 1,2, . . . .

4. Compute the kinetic energy T = 1
2

∑

i mi‖vi‖
2, the potential energy V , and the

Lagrangian L= T −V .

5. Form the equations of motion (a system of second order differential equations
(DEs)) in the unknowns q1(t ), q2(t ), . . .:

d

d t

�

∂ L

∂ q̇ j

�

=
∂ L

∂ q j

, j = 1,2, . . . .

If done by hand, this step would be the most labor-intensive part of the calculations.
The calculations can get unbearably complex and can easily lead to formulas that
fill more than one page. Fortunately we can relegate the tedious computations to
MAPLE.1

6. Solve the system of DEs. Except for a few special cases, such system are generally
not solvable in terms of elementary function. One solves them numerically with
the help of specialized software such as MAPLE (or MATHEMATICA).

The software replaces the continues time variable t by a closely spaced “time ticks”
t0, t1, t2, . . . which span the time interval of interest, say [0,T ], and then it ap-
plies some rather sophisticated numerical algorithms to evaluate the unknowns
q1(t ), q2(t ), . . . at those time ticks. The result may be presented as:

(a) a table of numbers; but that’s not very illuminating, so it’s rarely done that
way;

1Nowadays MAPLE and MATHEMATICA are the two dominant Computer Algebra Systems. If you are famil-
iar with MATHEMATICA,you should be able to translate the MAPLE commands in this book into the equivalent
MATHEMATICA commands.
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viii Preface

(b) as a set of plots of q j versus t . This is the most common way. Both MAPLE

(and MATHEMATICA) can do this easily; or

(c) as a computer animation, which is the most “user friendly” choice but which
takes some work—and a certain amount of know-how—to produce. I will
show you how to do this in MAPLE.



Chapter 1

An introduction through
examples

This chapter introduces some of the basic ideas involved in the Lagrangian formulation
of dynamics through examples. You will need to take some of the statements and formu-
las for granted since they won’t be formally introduced until several chapters later. The
objective here is to acquire some “gut feeling” for the subject which can help to motivate
some of the abstract concepts that come later.

1.1 The simple pendulum à la Newton

A pendulum, specifically a simple pendulum, is a massless rigid rod of fixed length ℓ, one
end of which is attached to, and can swing about, an immobile pivot, and to the other end
of which is attached a point of mass m, called the bob.2 The force of gravity tends to pull
the pendulum down so that to bring the free end to the lowest possible position, called
the pendulum’s stable equilibrium configuration. A pendulum can stay motionless in the
stable equilibrium configuration forever. If disturbed slightly away from the equilibrium,
however, it will oscillate back and forth about it, indefinitely in principle if there are no
frictional/dissipative effects. Figure 1.1 shows a simple pendulum at a generic position
where the rod makes an angle ϕ relative to the vertical.

The pendulum may also be balanced in an inverted position, obtained by turning it
upward about the pivot by 180 degrees (remember that the connecting rod is rigid.) That
position, which admittedly is difficult to achieve in practice, is called the pendulum’s un-
stable equilibrium configuration. A pendulum can stay motionless in the unstable equilib-
rium configuration forever, in principle. If disturbed slightly away from that equilibrium,
however, it will move away from it in general.

The stable and unstable equilibria are the only possible equilibrium position of a sim-
ple pendulum. The pendulum cannot stay motionless at an angle, say at 45 degrees, rela-
tive to the vertical.

A pendulum’s initial condition, that is, its state at time zero, completely determine its
future motion. I am assuming here that the only external action on the pendulum is the
force of gravity. The initial condition consists of a pair of data items, one being the initial
angle that the rod makes relative to stable equilibrium position, and the other is the initial
velocity with which the bob is set into motion.

As a specific instance, consider the case where the rod’s initial angle is zero, and the

2The pendulum of a grandfather clock is a reasonably good example of such a pendulum, albeit the rod is
not massless, and the mass attached to the end of it is not literally a point mass.

1
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ℓ

ϕ

m g

x

y

ϕ

w = m gj

−τer

er

eϕ i

j

Figure 1.1: On the left is a depiction of the physical shape of the pendulum. On the
right we see the mathematical machinery devised to analyze the pendulum’s
motion. The unit vectors i and j are attached to the fixed Cartesian coordi-
nates system and are stationary; the unit vectors er and eϕ move with the

pendulum. The weight of the bob is w = m gj.

bob’s initial velocity is small. Then the pendulum will oscillate back and forth about the
stable configuration, similar to what we see in a grandfather clock. If the initial velocity
is slightly larger, the pendulum will undergo wider oscillations. If, however, the initial
velocity is sufficiently large, the pendulum will not oscillate at all. It will swing about
pivot, reach the unstable equilibrium position at the top and go past it, fall down from the
other side, and return to its initial position, having made a complete 360 degree rotation
about the pivot. At this point the pendulum finds itself in the same condition that it had
at the initial time, therefore it will repeat what it did the first time around. In the absence
of energy dissipating factors, the rotations about the pivot will continue indefinitely.

To make a mathematical model of the pendulum, we introduce the Cartesian coordi-
nates xy with the origin at the pendulum’s pivot, and the y axis pointing down. We also
introduce the stationary unit vectors i and j along the x and y axes, and the moving unit
vectors er along the pendulum’s rod and eϕ which is perpendicular to it, as shown in Fig-

ure 1.1. It it evident that the vectors er and eϕ may be expressed as linear combinations

of the vectors i and j:

er = i sinϕ+ j cosϕ, eϕ =−icosϕ+ j sinϕ.

Furthermore, let us observe that their time derivatives are related through

ėr = iϕ̇ cosϕ− jϕ̇ sinϕ =−ϕ̇eϕ, ėϕ = iϕ̇ sinϕ+ jϕ̇ cosϕ = ϕ̇er . (1.1)

The bob’s position vector r(t ) relative to the origin is r = ℓer , where ℓ is the length of
the rod, and therefore the bob’s velocity v = ṙ and acceleration a= v̇ may be computed
easily with the help of (1.1):

v = ṙ = (ℓer )
· =−ℓϕ̇eϕ , a= v̇ = (−ℓϕ̇eϕ)

· =−ℓϕ̈eϕ − ℓϕ̇ėϕ =−ℓϕ̈eϕ − ℓϕ̇
2er .

We see that the bob’s acceleration has a component along eϕ and another along er .

Newton’s law of motion asserts that ma = F , where F is the resultant of all forces
acting on the bob. Referring to Figure 1.1 we see that the forces acting on the bob consist
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of weight w and the tension−τer along the rod,3 where τ generally varies with time and
is unknown. It follows that

m(−ℓϕ̈eϕ − ℓϕ̇
2er ) =w−τer .

The weight, however, is w = m gj, where m is the mass of the bob and g is the acceler-
ation due to gravity. We replace w with its decomposition w = m gj = (m g cosϕ)er +
(m g sinϕ)eϕ in the equation of motion, and collect the coefficients of er and and eϕ , and
arrive at

�

mℓϕ̈+m g sinϕ
�

eϕ +
�

mℓϕ̇2+m g cosϕ−τ
�

er = 0.

Since er and eϕ are orthogonal, hence linearly independent, each of the expressions in

the square brackets is zero. We conclude that

mℓϕ̈+m g sinϕ = 0, mℓϕ̇2+m g cosϕ−τ = 0. (1.2)

The first equation is a second order differential equation in the unknownϕ. It has a unique
solution for any initial condition

�

ϕ(0), ϕ̇(0)
	

, although the solution is not expressible in
terms of elementary functions. In practice, one solves the equation through a numerical
approximation algorithm on a computer. Once the solution ϕ(t ) is obtained, it may be
substituted in the second equation to evaluate the tension τ(t ) in the rod, should it be of
interest.

1.2 The simple pendulum à la Euler

In the previous section we assumed, without explanation, that the force within the pen-
dulum’s rod points along the rod; see Figure 1.1 where that force is shown as the vector
−τer .

That assumption seems to be so “obvious” that many textbooks on mechanics and its
applications present it without as much as a comment. A close scrutiny, however, shows
that the assumption is far from obvious, and in fact, it is not a logical consequence of
any of Newton’s laws of motion. Antman [2] presents a critical analysis of this issue and
concludes that the proper approach is through an application of Euler’s law of motion,
which states that the rate of change of the pendulum’s angular momentum equals the
resultant torque applied to it.

1.3 The simple pendulum à la Lagrange

In this section we rederive the differential equation of motion of the simple pendulum
through Lagrange’s analytical approach. We no longer need the vectors er and eϕ . In-

stead, we write the bob’s position vector r directly in terms of its i and j components:

r = (ℓ sinϕ)i+(ℓcosϕ)j,

and then differentiate to find the velocity

v = ṙ = (ℓϕ̇ cosϕ)i− (ℓϕ̇ sinϕ)j.

It follows that that ‖v‖2 = ℓ2ϕ̇2.
To proceed further, we introduce a few definitions and assertions whose motivations

and explanations will emerge only in subsequent chapters.

3The assertion that the force exerted on the bob by the rod lies along the rod requires justification. See the
next section for elaboration.
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• A the kinetic energy T of a point mass m moving with velocity v is T = 1
2 m‖v‖2.

In the case of the pendulum this is T = 1
2 mℓ2ϕ̇2.

• The potential energy V of a point mass m in a constant gravitational field equals
m g h where g is the acceleration due to gravity, and h is its height above an arbitrar-
ily selected reference point. In the case of the pendulum, the elevation of the bob rel-
ative to the lowest point in its path is h = ℓ(1−cosϕ), therefore V = m gℓ(1−cosϕ).

• The Lagrangian L of a mechanical system is the difference between its kinetic and
potential energies, that is, L= T −V . In the case of the pendulum we have:

L(ϕ, ϕ̇) =
1

2
mℓ2ϕ̇2−m gℓ(1− cosϕ). (1.3)

As the notation above indicates, we are viewing the Lagrangian L as a function two
variables ϕ and ϕ̇. It should be emphasized that ϕ and ϕ̇ are considered independent
variables here.4

The Lagrangian completely characterizes a mechanical system. It incorporates the
system’s parameters, geometry, and physics, all in one neat bundle. Beyond this point the
analysis of the system’s motion is pure calculus—or analysis, as Lagrange called it in his
Mécanique Analytique—with no need to refer to the system’s components and geometry.

According to Lagrange’s theory which we will later study in detail, the equation of
motion of a mechanical system whose Lagrangian depends on two variables ϕ and ϕ̇, is
given by

d

d t

�
∂ L

∂ ϕ̇

�

=
∂ L

∂ ϕ
. (1.4)

In the case of pendulum we have:

∂ L

∂ ϕ̇
= mℓ2ϕ̇,

∂ L

∂ ϕ
=−m gℓ sinϕ,

and therefore the equation of motion is

(mℓ2ϕ̇)· =−m gℓ sinϕ,

or equivalently,

ϕ̈+
g

l
sinϕ = 0, (1.5)

which agrees with the first equation in (1.2). The second of those equations may be ob-
tained through the Lagrangian approach as well, but we will not get into that right now.

1.4 The double pendulum

A double pendulum is obtained by suspending a second pendulum from the bob of a first
pendulum, as shown in the left diagram in Figure 1.2. The double pendulum’s geometric
configuration is specified through the two angles ϕ1 and ϕ2 that the rods make relative to
the vertical.

4If you find the notation ϕ̇ confusing in that regard, consider renaming it to ω, as in

L(ϕ,ω) =
1

2
mℓ2ω2 −m gℓ(1− cosϕ).

Now L is a function of two independent variables ϕ andω.
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ℓ1

m1 g

ϕ1
ℓ2

m2 g

ϕ2

x

y

r1

m1 gj

ϕ1

ℓ2

m2 gj

ϕ2

i

j r2

Figure 1.2: On the left is a depiction of the physical shape of the double pendulum. On
the right we see the pendulum’s mathematical model given by the position
vectors r1 and r2 of the two bobs.

To make a mathematical model of a double pendulum, we follow the ideas sketched in
the previous section. Specifically, we introduce the xy Cartesian coordinates and the sta-
tionary unit vectors i and j as shown in Figure 1.2, and then express the position vectors
r1 and r2 of the two bobs in terms of their components relative to i and j:

r1 = (ℓ1 sinϕ1)i+(ℓ1 cosϕ1)j, r2 = r1+(ℓ2 sinϕ2)i+(ℓ2 cosϕ2)j. (1.6)

Then we find the velocities of the bobs through differentiation:

v1 = (ℓ1ϕ̇1 cosϕ1)i− (ℓ1ϕ̇1 sinϕ1)j, v2 = v1+(ℓ2ϕ̇2 cosϕ2)i− (ℓ2ϕ̇2 sinϕ2)j.

We see that ‖v1‖
2 = ℓ2

1ϕ̇
2
1 . Computing ‖v2‖

2 takes only a little bit more work. We observe
that v2 = v1+ ṽ, where ṽ = (ℓ2ϕ̇2 cosϕ2)i− (ℓ2ϕ̇2 sinϕ2)j. Therefore

‖v2‖
2 = ‖v1‖

2+ ‖ṽ‖2+ 2v1 · ṽ

= ℓ2
1ϕ̇

2
1 + ℓ

2
2ϕ̇

2
2 + 2

�

(ℓ1ϕ̇1 cosϕ1)i− (ℓ1ϕ̇1 sinϕ1)j
�

·
�

(ℓ2ϕ̇2 cosϕ2)i− (ℓ2ϕ̇2 sinϕ2)j
�

= ℓ2
1ϕ̇

2
1 + ℓ

2
2ϕ̇

2
2 + 2ℓ1ℓ2ϕ̇1ϕ̇2(cosϕ1 cosϕ2+ sinϕ1 sinϕ2).

= ℓ2
1ϕ̇

2
1 + ℓ

2
2ϕ̇

2
2 + 2ℓ1ℓ2ϕ̇1ϕ̇2 cos(ϕ2−ϕ1).

We conclude that the double pendulum’s kinetic energy is

T =
1

2
m1ℓ

2
1ϕ̇

2
1 +

1

2
m2

�

ℓ2
1ϕ̇

2
1 + ℓ

2
2ϕ̇

2
2 + 2ℓ1ℓ2ϕ̇1ϕ̇2 cos(ϕ2−ϕ1)

�

=
1

2
(m1+m2)ℓ

2
1ϕ̇

2
1 +

1

2
m2ℓ

2
2ϕ̇

2
2 +m2ℓ1ℓ2ϕ̇1ϕ̇2 cos(ϕ2−ϕ1).

As to the potential energy, let us recall that a mass’s potential energy in a constant
gravitational field is the product of its weight and its elevation above a certain reference
point. In the case of a double pendulum, it is easiest to set the reference point at the origin
of the coordinates; see Figure 1.2. Then the j components of the vectors r1 and r2 provide
the elevations of the bobs below the reference point, therefore their elevations above the
reference point will require a sign reversal. Referring to (1.6) we see that

V =−m1 g cosϕ1−m2 g
�

ℓ1 cosϕ1+ ℓ2 cosϕ2

�

=−(m1+m2)g cosϕ1−m2 gℓ2 cosϕ2.

Thus, the double pendulum’s Lagrangian, L= T −V , takes the form

L(ϕ1,ϕ2, ϕ̇1, ϕ̇2) =
1

2
(m1+m2)ℓ

2
1ϕ̇

2
1 +

1

2
m2ℓ

2
2ϕ̇

2
2 +m2ℓ1ℓ2ϕ̇1ϕ̇2 cos(ϕ2−ϕ1)

+ (m1+m2)g cosϕ1+m2 gℓ2 cosϕ2.
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In the previous section’s simple pendulum, the Lagrangian L(ϕ, ϕ̇) was a function
two variables. In the present case, the Lagrangian L(ϕ1,ϕ2, ϕ̇1, ϕ̇2) is a function of four
variables. In general, if a mechanical system’s geometric configuration is specified through
n variables q1, . . . , qn , then its Lagrangian is a function of 2n variables q1, . . . , qn , q̇1, . . . , q̇n .
The equivalent of the single equation of motion (1.4) now is a system of n equations, called
the mechanical system’s Euler–Lagrange equations:

d

d t

�
∂ L

∂ q̇i

�

=
∂ L

∂ qi

, i = 1, . . . , n.

The variable q1, . . . , qn are called the system’s generalized coordinates.
Applied to the case of double pendulum, the Euler–Lagrange equations lead to

d

d t

�
∂ L

∂ ϕ̇1

�

=
∂ L

∂ ϕ1

,
d

d t

�
∂ L

∂ ϕ̇2

�

=
∂ L

∂ ϕ2

.

To evaluate these explicitly, we begin by computing

∂ L

∂ ϕ̇1

= (m1+m2)ℓ
2
1ϕ̇1+m2ℓ1ℓ2ϕ̇2 cos(ϕ2−ϕ1),

∂ L

∂ ϕ̇2

=m2ℓ
2
2ϕ̇2+m2ℓ1ℓ2ϕ̇1 cos(ϕ2−ϕ1),

∂ L

∂ ϕ1

=m2ℓ1ℓ2ϕ̇1ϕ̇2 sin(ϕ2−ϕ1)− (m1+m2)g sinϕ1,

∂ L

∂ ϕ2

=−m2ℓ1ℓ2ϕ̇1ϕ̇2 sin(ϕ2−ϕ1)−m2 gℓ2 sinϕ2.

We conclude that the differential equations of motion are

�

(m1+m2)ℓ
2
1ϕ̇1+m2ℓ1ℓ2ϕ̇2 cos(ϕ2−ϕ1)

� ·

= m2ℓ1ℓ2ϕ̇1ϕ̇2 sin(ϕ2−ϕ1)− (m1+m2)g sinϕ1,
�

m2ℓ
2
2ϕ̇2+m2ℓ1ℓ2ϕ̇1 cos(ϕ2−ϕ1)

� ·

=−m2ℓ1ℓ2ϕ̇1ϕ̇2 sin(ϕ2−ϕ1)−m2 gℓ2 sinϕ2.

Exercises

1.1. Pendulum with a mobile pivot. Figure 1.3 shows a pendulum whose pivot is
allowed to move horizontally without friction. The pivot has mass m1 while the
bob has mass m2. Find the equations of motion of the pendulum.

1.2. A spherical pendulum. The motion of the simple pendulum of length ℓ intro-
duced in this chapter was confined to a single vertical plane, and therefore the
pendulum’s bob moved along a circular arc of radius ℓ. If off-plane motions are
permitted, then the bob will move on a sphere of radius ℓ centered at the pivot. In
that setting the pendulum is called a spherical pendulum; see Figure 1.4.
Derive the equations of motion of the spherical pendulum.

1.3. Bead on a spinning hoop. A circular wire hoop of radius R spins about a vertical
diameter at a constant angular velocity Ω. A bead of mass m can slide without fric-
tion along the hoop. The hoop’s radius that connects to the bead makes an angle



Exercises 7

x

y

x

ℓ

m1

m2

ϕ

Figure 1.3: Pendulum with a horizontally mobile pivot (Exercise 1.1).

x
y

z

i
j

k

ℓ

θ

ϕ

Figure 1.4: A spherical pendulum (Exercise 1.2).

of ϕ(t ) with respect to the vertical; see Figure 1.5. Find the differential equation
satisfied by ϕ.

1.4. A governor mechanism. Figure 1.6 is a schematic drawing of a (simplified) Watt
governor which was invented for the automatic control of the speed of steam en-
gines. Our version consists of four massless rigid links of length ℓ each, hinged at
their ends to form a rhombus. The vertex O remains motionless, while the sleeve
at vertex S can slide on the device’s vertical shaft, thereby change the rhombus’s
shape. Two balls of mass m1 each are attached to the vertices A and B . The sleeve’s
mass is m2. The entire assembly rotates at a constant angular speed Ω about the
vertical shaft. Find the differential equation satisfied by the angle ϕ marked on the
diagram.

1.5. Two masses on a string. A particle P of mass m1 lies on a smooth horizontal table
and is attached to a long, inextensible string which passes through a smooth hole
O in the table and hangs down. The other end of the string carries a particle Q of
mass m2; see the illustration in Figure 1.7.
The particle P is positioned at the point (a, 0,0) in the xy z coordinates shown, and
given a horizontal initial velocity perpendicular to the x axis. Find the differential
equations of motion.
Hint: Let ρ(t ) and ϕ(t ) be P ’s position at time t in polar coordinates as seen in
Figure 1.7. The equations of motions constitute a system of differential in ρ(t ) and
ϕ(t ) .
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R

m g

ϕ

Ω

Figure 1.5: Bead on a rotating hoop (Exercise 1.3).

ℓ

ℓ ℓ

ℓ
ϕ

Ω

O

A

m1

B

m1

Sm2

Figure 1.6: A simplified Watt governor (Exercise 1.4).

x

y

z

ρ(t )

P
m1

Q m2

ϕ(t )

Figure 1.7: The point P slides on the table. The point Q moves vertically (Exercise 1.5).



Chapter 2

Work and potential energy

Work is the product of force and its displacement. To be precise, the infinitesimal work
dW performed in displacing a force F by an infinitesimal distance dr is dW = F · dr.
If the point of the application of the force moves along a path C in space, then the work
performed along the path is the line integral

W =

∫

C

F · dr. (2.1)

If you are repositioning a massive desk in an office, for example, then work measures the
amount of effort exerted by you in performing the task.

Expanding upon the moving of the desk scenario, suppose that you intend to move
the desk from a point A to a point B . It should be obvious that the amount of work
performed will vary, depending on the path along which you move the desk between A
and B . Chances are that the shortest (straight line) path will require lesser effort than a
long path that winds around the office.

There are many interesting and important situations where, unlike the moving of the
desk example, the work performed in goings from a point A to a point B is independent of
the path taken between A and B . The most elementary example is the raising or lowering
of a weight. To see how it works, set up a Cartesian coordinate system in space so that
the x and y axes are horizontal, and the z axis points up. Let ra = (xa , ya , za) and rb =
(xb , yb , zb ) be the position vectors5 of the starting and ending points A and B , and let
r = 〈x, y, z〉 be the position vector of a generic point along a path C (A,B)with endpoints
A and B . Suppose that we move an object of mass m along that path. The force of the
object’s weight is F = 〈0,0,−m g 〉, where g is the acceleration of gravity. The work
performed along the path is

W =

∫

C (A,B)

F · dr

=

∫

C (A,B)

〈0,0,−m g 〉 · 〈d x, d y, d z〉 =
∫

C (A,B)

−m g d z =−m g (zb − za).

We see that the work in moving the weight from A to B is expressed in terms the z co-
ordinates of the endpoints, thus it is the same on all conceivable paths that go from A
to B .

5A position vector of a point P (x , y, ) is the vector r = 〈x , y, z〉 that extends from the origin to the point P .

9



10 Chapter 2. Work and potential energy

To generalize, consider a (possibly position dependent) force field F (r)with the prop-
erty that the work performed in going from a given point A to an arbitrary point r in space
is independent of the path from A to r. Let us write V (r) for the negative of the value of
that integral, that is,

V (r) =−
∫

C (A,r)

F (r′) · dr′. (2.2)

The function V defined this way is called the potential function, or simply the potential, of
the the vector fieldF . Equivalently, the vector fieldF is said to be derived from a potential.
In (2.2) I have written r′ for the dummy variable of integration in order to distinguish it
from the position vector r which designates the path’s endpoint. The minus sign does
not have a deep significance; it’s convenient to build it into the definition since it leads to
more pleasing forms of general statements, such as the one on conservation of energy.

Theorem 2.1. Consider a continuous vector field F defined in an open and connected do-
main D in the n-dimensional space, and suppose that F possesses a potential function V as
in (2.2). Then V is differentiable and F (r) =−∇V (r).

Proof. By definition, the gradient ∇V of a function V at a point r is the vector with the
property that for any unit vector e, the directional derivative of V in the direction of e is
given by ∇V (r) ·e. That is,

∇V (r) ·e= lim
h→0

V (r+ he)−V (r)

h
.

To simplify the discussion, let us write P and Q for the points in space corresponding
to the position vectors r and r+ he, as illustrated in Figure 2.1. Pick a path C (A,r) to
evaluate V at P , then extend that path as a straight line segment to Q to evaluate V at Q.
Then the difference V (Q)−V (P ) amounts to an integration along the straight segment
PQ:

V (r+ he)−V (r) =V (Q)−V (P ) =−
∫ h

0

F (r+ ξ e) ·edξ ,

Then it follows that

V (r+ he)−V (r)

h
=−

1

h

∫ h

0

F (r+ ξ e) ·edξ =−F (r+ ξ̂ e) ·e

for some ξ̂ ∈ (0, h), the latter assertion being a consequence of the Mean Value Theorem
for integrals; see e.g., Stewart [13].

As h goes to zero, so does ξ̂ because ξ̂ ∈ (0, h). It follows that

∇V (r) ·e= lim
h→0

V (r+ he)−V (r)

h
=−F (r) ·e.

Since this holds for every e, it follows that ∇V (r) =−F (r).

Remark 2.1. Let is point out the roles that the theorem’s technical assumptions play in
the proof:

• The continuity of the vector field F enters at the point where the Mean Value The-
orem is applied. That theorem is not true without continuity.
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A

P Q

r

r
+

he

e

C
(A

,r
)

Figure 2.1: If V (P ) is evaluated by integration along the path C (A,r), then V (Q)may
be evaluated by integrating along that same path, and then continuing along
the straight line segment PQ of length h in the direction e.

• The assumption that the domainD is connected is needed to ensure that a path may
be established between any pair of points in D . That’s what enabled us to sketch
the curve C (A,r) that connects the points A and P in Figure 2.1.

• The assumption that the domain D is open means that a ball of positive radius may
be placed around any point P ∈ D so that the ball lies entirely within D . It’s that
property which ensures that moving away from P by a small distance h, as we did
in Figure 2.1, we land safely on a point Q which lies within D .

Remark 2.2. Adding a constant to the potential function V does not affect the equality
F (r) =∇V (r). Thus, a vector field’s potential, if it has one, is defined modulo an additive
constant.

Example 2.2. Earlier in the this section we observed that the force field corresponding to
an object’s weight is F = 〈0,0,−m g 〉. We see that F (r) = −∇V (r) where V (x, y, z) =
m g z. We will use m g z as the potential of a weight throughout these notes. Note the
effect of the minus sign in (2.2); in its absence the potential of a weight would have been
−m g z.

Example 2.3. In the previous example we assumed that the acceleration of gravity g is a
constant. That’s a good assumption if the changes in height during the motion are small
relative to the radius of the Earth. In general, the gravitational force that a point mass M
exerts on a point mass m drops as the inverse square of the distance. Specifically, Newton’s
law of gravitation says

F (r) =−

�
GM m

‖r‖2

�
r

‖r‖
. (2.3)

where r is m’s position vector relative to M , and G is the universal gravitational constant.
The inverse square law is manifested through the ‖r‖2 term that appears in the denomi-
nator inside the parentheses. The factor r/‖r‖ is a unit vector that points from M to m.
It is possible to show (see Exercise ??) that F is derived from a potential.

Theorem 2.4. Suppose the force field F is derived from a potential V . Then the work per-



12 Chapter 2. Work and potential energy

formed in moving the force along any path from a point ra to rb is given by

W =V (ra)−V (rb ). (2.4)

Proof. We have F (r) =−∇V (r) therefore

F · dr =−∇V (r) · dr =−
D∂ V

∂ x1

, . . .
∂ V

∂ xn

E

· 〈d x1, . . . , d xn〉

=−
�∂ V

∂ x1

d x1 + · · ·+
∂ V

∂ xn

d xn

�

=−dV ,

therefore

W =

∫

C

F · dr =
∫ rb

ra

−dV =V (ra)−V (rb ).

Exercises

2.1. Verify that the gravitational potential field F (r) in (2.3) is derived from the poten-
tial

V (r) =
GM m

‖r‖
.



Chapter 3

A single particle in a
conservative force field

3.1 The principle of conservation of energy

Newton’s law of motion, F = mr̈ relates the acceleration r̈ of a point of constant mass
m subjected to a force F . If the force is derived from a potential V (r), that is, F =−∇V ,
then the law of motion takes the form

mr̈ =−∇V (r). (3.1)

Multiplying this through by the velocity ṙ

mṙ · r̈ =−∇V (r) · ṙ,

and then rearranging
1

2
m(ṙ · ṙ)·+

�

V (r)
�·
= 0,

we arrive at
d

d t

�
1

2
m‖ṙ‖2+V (r)

�

= 0,

which tells us that the quantity

E =
1

2
m‖ṙ‖2+V (r) (3.2)

remains constant during the motion. The constant E is called the particle’s mechanical
energy (or just the energy for short). The first term on the right-hand side of (3.2) is called
the kinetic energy; the second term is called the potential energy. The constancy of E in a
motion is called the principle of conservation of energy.

Remark 3.1. The kinetic and potential energies don’t remain constant during the mo-
tion; it’s their sum that does. Therefore the reduction of one is accompanied by the in-
crease of the other. It helps to think of this as a conversion of one form of energy to
the other. The myriad of motion phenomena encountered in our daily experiences are
manifestations of such interplay between the kinetic and potential energies.

Remark 3.2. The conservation of the total energy E is a consequence of the assumption
that the force fieldF is derived from a potential. This should explain the alternative name,

13



14 Chapter 3. A single particle in a conservative force field

a conservative force field, which is commonly used to refer to a force field derived from a
potential.

Remark 3.3. Had we chosen against putting the minus sign in the definition (2.2),
the principle of conservation of energy would have stated that the difference between the
kinetic and potential energies remains constant, which is not as appealing as saying that
their sum remains a constant.

3.2 The scalar case

The rest of this chapter is devoted to a study of the scalar version of equation (3.1), that
is,

mẍ =−V ′(x), (3.3)

where x is scalar, and V ′ is the derivative of a potential V . In addition to the obvious
applications in one-dimensional dynamics, this equation occurs in quite a number of other
context which are far from one-dimensional motions. The equation of motion of a simple
pendulum (1.5), for instance, falls in this category, but the motion is certainly not linear.
We will more on this in Section 3.4.

The previous section’s statement on conservation of energy, which in the scalar case
takes the form

E =
1

2
mẋ2 +V (x), (3.4)

is a first order differential equation in the unknown x(t ), and which may be solved, in

principle, through a separation of variables. We have ẋ2 =
2
m

�

E −V (x)
�

, therefore ẋ =

±
q

2
m

�

E −V (x)
�

, and hence

∫
d x

Æ

2
�

E −V (x)
� =±

∫

d t =±t +C .

Expect for the most trivial cases, the integral on the left is impossible to evaluate in
terms of elementary functions. It is possible, however, to obtain quite an adequate “feel”
for the solution, without performing any integration at all, through a phase plane analysis
of the equation.

To explain the idea, consider the potential function V whose graph is shown in Fig-
ure 3.1(a). Regard the solution x(t ) of the differential equation (3.3) as the abscissa of a
point P that moves along the horizontal axis in that figure according to the equation’s
dynamics. Then the point Q with coordinates

�

x(t ),V (x(t )
�

slides on the graph of V
accordingly. The length of the line segment PQ equals the potential energy V (x). We ex-
tend that segment upward to a point R so the the length of QR equals the kinetic energy
1
2 mẋ2. Since the sum of the kinetic and potential energies remains a constant E during
the motion, the locus of the point R is the horizontal line V = E , as marked on the figure.

The point Q cannot rise above the horizontal line V = E during the motion because

the nonnegative length of the line segment QR (which equals 1
2 mẋ2) prevents it. Conse-

quently, the motion of Q is confined to the graph’s red-colored arc. We refer to that arc as
a potential well corresponding to the energy E and we think of Q as a point that has fallen
into the well and is unable to get out.

At the edges of the potential well the potential energy equals E and the kinetic en-
ergy, and therefore the velocity ẋ, are zero. In the interior, where the potential energy
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x

V (x)

x

ẋ

E

Q

P

R

1
2 mẋ2

V (x)
(a)

(b)

Figure 3.1: The dynamics of the equation ẍ +V ′(x) = 0 is completely determined by
the potential function V . The figure on top shows the graph of V (x), and
an energy well corresponding to an energy level E . The coordinate x is con-
fined to the energy well shown in red. Since the total energy is conserved,
as the potential energy drops below E within the well, the kinetic energy
increases, resulting in the phase portrait shown in the bottom figure.

drops below E , the kinetic energy, and therefore the velocity squared, ẋ2, are positive.
We conclude that as we traverse the potential well from left to right, the velocity begins
at zero, increases gradually (in absolute value) to a maximum, then drops back to zero at
the rightmost end. The sign of the velocity may be positive or negative since the only
information we are getting from Figure 3.1(a) is on the square of the velocity.

This observation leads to the red oval in the diagram shown in Figure 3.1(b). The
horizontal axis in that figure is the same as the x in Figure 3.1(a). The vertical axis is
the velocity ẋ . Observe that at the leftmost and rightmost points of the oval, which
correspond to the extremes of the potential well, the velocity is zero, and in between in
rises to a maximum (or falls to a minimum), as we expect. The oval is symmetric with
respect to the x axis because a given ẋ2 yields two velocities ±|ẋ |.

The red oval constructed in the previous discourse depends on the choice of the energy
level E . It should be clear that lowering E slightly will shrink the oval, and raising E
slightly, will expand it. The black curves in Figure 3.1(b) are the result of selecting various
values of E .

Figure 3.1(b) is called the phase diagram or phase portrait of the differential equation (3.3).
The curves in it are called orbits. An alternative to the geometric construction of the or-
bits carried out above, we may equally well view them as implicitly defined curves in the
x–ẋ plane through the equation (3.4). Varying the parameter E produces the family of all
orbits, some of which are shown in Figure 3.1(b).

Yet another way of viewing the orbits is as level curves of the the surface defined by
the function

E(x, ẋ) =
1

2
mẋ2 +V (x).

Two views of the surface E(x, ẋ) corresponding to the potential V (x) of Figure 3.1(a) are
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Figure 3.2: Two views of the energy surface E(x, ẋ) corresponding to the potential V (x)
of Figure 3.1(a). The graph on the right has been turned upside down to
bring out some of the details which are hidden in the conventional view on
the left.

shown in Figure 3.2.

3.3 Stability

We have seen that the dynamics of the equation (3.3) dictate that a hypothetical particle
trapped in an energy well cannot escape. The closer the energy level E is to the bottom
of the well, the lesser room there is for the particle to maneuver.6 In the extreme case
when the particle’s energy matches that of the well’s bottom, the particle cannot move
at all. We express this by saying that the bottom of the well is a stable equilibrium point
of the differential equation (3.3). If the energy level is increases just slightly, the particle
will move along an oval around the equilibrium point. Referring to the construction of
the phase portrait from the potential V , it should be evident that a local minimum of
V corresponds to a stable equilibrium. Similarly, a local maximum of V corresponds to a
saddle on the energy surface (see Figure 3.2) therefore a local maximum of V corresponds
to an unstable equilibrium.

3.4 The phase portrait of a simple pendulum

The previous section’s treatment of the scalar equation of motion has greater applicability
than it may appear on the surface. The variable x(t ) there need not be the coordinate of a
moving point along a straight line. For instance, according to (1.5) on page 4, the motion
of a simple pendulum is described by the differential equation

ϕ̈+
g

ℓ
sinϕ = 0, (3.5)

whereϕ = ϕ(t ) is the angle the the pendulum’s rod makes relative to the downward point-
ing vertical, as depicted in Figure 3.3 on the left. Although the motion of the pendulum
takes places in two dimensions, the equation of motion (3.5) is exactly of the form (3.3)
with V ′(ϕ) = g/ℓ sinϕ, hence V (ϕ) = g/ℓ(1− cosϕ), therefore the analysis of the pre-

6I am assuming a round-bottomed energy well here. In a flat-bottomed energy well the particle can move
around no matter how shallow the well.



Exercises 17

ℓ
ϕ

m g

ϕ

V (ϕ) = 1− cosϕ

0−2π −π π 2π

1

2

ϕ

ϕ̇

Figure 3.3: The pendulum is shown on the left. The graph of the potential function
V (ϕ) = g/ℓ(1− cosϕ) (with g/ℓ = 1) is shown at top right. The corre-
sponding phase portrait is shown at bottom right. The function V has a
period of 2π, therefore it would have sufficed to limit the plots to the range
−π≤ ϕ ≤π. Outside of that range, things repeat by periodicity.

vious section applies.7 The graph of V (ϕ) and the resulting phase portrait, constructed
according to the previous section’s guidelines, are shown in Figure 3.3 on the right.

The configuration of a pendulum is completely specified by the angle ϕ at any instant.
The configuration corresponding to ϕ + 2kπ is exactly the same as that of ϕ for any
integer k. In other words, the pendulum’s configuration is determined by ϕ mod 2π. In
particular, the left and right edges of the phase portrait in Figure 3.3 correspond to the
same configuration. This is best visualized by wrapping the phase portrait into a cylinder
and gluing the left and right edges together. This is illustrated in Figure 3.4.

Exercises

3.1. Analyze the stability of the spinning hoop of Exercise 1.3. Show that the lower
equilibrium is stable if Ω is small, and unstable if it is large. Find the value of Ω
where the transition takes place.

3.2. Plot representative phase portraits for the two cases of the problem above.

7As noted earlier, the potential function is defined within an additive arbitrary constant, therefore the “1”
in 1− cosϕ is immaterial; its inclusion makes V (0) = 0 which is nice but of no special consequence.



18 Chapter 3. A single particle in a conservative force field

Figure 3.4: Two views of the pendulum’s phase portrait as wrapped into a cylinder to
emphasize that the pendulum’s configuration depends on ϕ mod 2π.



Chapter 4

The Kapitsa pendulum

4.1 The inverted pendulum

The pendulum in Figure 4.1 consists of a massless rod of length ℓ, a point mass m as the
bob, and a pivot which oscillates vertically according to y = a cosωt , where a andω are
prescribed constants. In Exercise 4.1 you will show that the equation of motion is

ϕ̈+
g

ℓ
sinϕ+

aω2

ℓ
sinϕ cosωt = 0, (4.1)

where ϕ is the angle of the rod relative to the vertical, as shown.
If the amplitude a of the pivot’s oscillation is small, and if ω is not too large, then

we expect the system to behave similar to an ordinary pendulum, albeit with somewhat
jittery oscillations. In particular, the lower equilibrium ϕ = 0 would be stable and the
upper equilibrium ϕ = π would be unstable. A graph of the the solution ϕ(t ) of the
pendulum’s equation of motion with smallish a andω is shown on Figure 4.1.

It is the purpose of this chapter to show that asω is increases beyond a critical thresh-
old, the pendulum’s behavior changes drastically. Specifically, the lower equilibrium be-
comes unstable and the upper equilibrium becomes stable. Thus, the pendulum turns
around by 180 degrees, points upward, and oscillates about the ϕ =π position! Figure 4.2
shows the solution of the pendulum’s equation of motion for a relatively fast ω. Note
that the oscillation now take place about the upper equilibrium ϕ =π. The pendulum is
standing upright, pointing up!

4.2 Averaging out the fast oscillations

To explain this interesting phenomenon, Introduce the a hypothetical “nominal rod”
which connects the origin to the bob, and let ψ be its angle relative to the vertical, as
shown in the schematic diagram in Figure 4.1. The let δ = ϕ−ψ be the angle between
the real rod and the nominal rod. According to the Law of Sines applied to the triangle
shown in the figure, we have:

sinψ

ℓ
=

sinδ

a cosωt

that is,

sinδ =
a

ℓ
sinψcosωt .

19
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x

y

δ

ψ
a cosωt

pivot’s nominal position

m g

ℓ

rod’s nominal position

ϕ

−π6

π
6

ϕ(t )

t

Figure 4.1: The pivot oscillates vertically according to a cosωt about the pendulum’s
nominal pivot. In the schematic diagram on the left the pivot’s displacement
is exaggerated; we assume that a/ℓ is very small in our computations. When
the pendulum’s arm makes a “nominal” angle ψ with the vertical, the angle
actually oscillates rapidly in the range ψ±δ . The graph on the right is that
of the angle ϕ(t ) obtained by solving the differential equation (4.1) with
parameters ℓ= 1, g = 1, a = 0.05, andω = 20, and initial conditionsϕ(0) =
5π/6, ϕ̇(0) = 0. The oscillation about the lower equilibrium position (ϕ =
0) is stable since ω2 < 2gℓ/a.

ϕ(t )

t

π
4

π
2

3π
4

π

5π
4

Figure 4.2: The solution of the differential equation (4.1) with parameters ℓ= 1, g = 1,
a = 0.05, and ω = 40, and initial conditions ϕ(0) = π/6, ϕ̇(0) = 0. The
oscillation about the upper equilibrium position (ϕ =π) is stable sinceω2 >
2gℓ/a. The figure on the right is an enlarged copy of a portion of the graph
on the left. We see that ϕ(t ) consists of high-frequency, small-amplitude
oscillations riding on a slowly oscillating function.

Then the assumption a ≪ ℓ implies that sinδ ≪ 1, therefore sinδ ≈ δ. We conclude
that

δ ≈
a

ℓ
sinψcosωt . (4.2)

We are going to need δ’s second derivative soon, so let’s calculate it right now. We
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have:

δ̇ ≈
a

ℓ

�

ψ̇cosψcosωt −ω sinψ sinωt
�

,

δ̈ ≈
a

ℓ

�

ψ̈cosψcosωt − ψ̇2 sinψcosωt − 2ωψ̇ cosψ sinωt −ω2 sinψcosωt
�

.

We are interested in high frequency oscillations of the pivot, that is, ω≫ 1. Therefore,
the term withω2 in the expression above dominates the rest. We conclude that

δ̈ ≈−
aω2

ℓ
sinψcosωt .

Now we go to the differential equation (4.1) and replace ϕ by ψ+δ, and replace sinϕ
with its Taylor series approximation

sinϕ = sin(ψ+δ)≈ sinψ+δ cosψ.

We get:

ψ̈+ δ̈ +
g

ℓ

�

sinψ+δ cosψ
�

+
aω2

ℓ

�

sinψ+δ cosψ
�

cosωt = 0.

We multiply out everything and replace δ̈ with the expression obtained above, and arrive
at

ψ̈−
aω2

ℓ
sinψcosωt+

g

ℓ
sinψ+

g

ℓ
δ cosψ+

aω2

ℓ
sinψcosωt+

aω2

ℓ
δ cosψcosωt = 0.

The second and fifth terms cancel, leaving us with

ψ̈+
g

ℓ
sinψ+

g

ℓ
δ cosψ+

aω2

ℓ
δ cosψ sinωt = 0.

Then we substitute for δ from (4.2):

ψ̈+
g

ℓ
sinψ+

a g

ℓ2
sinψcosψcosωt +

a2ω2

ℓ2
sinψcosψcos2ωt = 0. (4.3)

In the graphs of ϕ(t ) in figures 4.1 and 4.2 we see that the period 2π/ω of the pivot’s
oscillations is much smaller than the oscillations of the pendulum itself. Consequently,
within one such time period, the value of ψ and its derivatives are essentially constants.
On the basis of this observations, we average (4.3) over one 2π/ω period, where we regard
ψ as constant. Since

1

2π/ω

∫ 2π/ω

0

cosωt d t = 0,
1

2π/ω

∫ 2π/ω

0

cos2ωt d t =
1

2
,

we get

ψ̈+
g

ℓ
sinψ+

a2ω2

2ℓ2
sinψcosψ= 0,

or the equivalent

ψ̈+
g

ℓ

h

1+
a2ω2

2ℓg
cosψ

i

sinψ= 0. (4.4)
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In comparison with the equation (3.5) of the motion of an ordinary unforced pendu-
lum, the Kapitsa pendulum sees an “effective acceleration of gravity” given by

g
h

1+
a2ω2

2ℓg
cosψ

i

.

If the pendulum’s motion is in the 0<ψ<π/2 regime, the quantity in the square brackets
is greater than 1, therefore vibrating the support is tantamount to increasing the acceler-
ation of gravity.8 If, however, the pendulum’s motion is in the π/2 < ψ < π regime,
then the effective acceleration of gravity may become negative if the coefficient of cosψ
is sufficiently large. The latter will happen ifω is sufficiently large. That’s tantamount to
reversing the direction of gravity, which sort of explains why the pendulum turns upright.

4.3 Stability analysis

The effective equation of motion (4.4) of the Kapitsa pendulum is of the type (3.3) which
was studied in Chapter 3. Comparing the two, we see that

V ′(ψ) =
g

ℓ
sinψ+

a2ω2

2ℓ2
sinψcosψ, (4.5)

whence

V (ψ) =
g

ℓ
(1− cosψ)+

a2ω2

4ℓ2
sin2ψ (4.6)

The analysis presented in Chapter 3 is based entirely on the shape of V ’s graph. Therefore
we proceed to analyze the shape.

The equation’s equilibria are the roots of the equation V ′(ψ) = 0. Upon factorizing
the equation as

h g

ℓ
+

a2ω2

2ℓ2
cosψ

i

sinψ

we see that the roots are the solutions of

sinψ= 0 and cosψ=−
2g l

a2ω2
.

The first equation yields ψ = 0 and ψ = π as roots. (It suffices to look for roots in the

0≤ψ≤π range.) The second equation yields a root ψ̂ given by

ψ̂= cos−1
�

−
2g l

a2ω2

�

(4.7)

if and only if ω2 > 2gℓ/a2. (If that ratio equals to 1 then the root is π, which duplicates
what we have already found.)

Table 4.1 lists the critical points of the function V (ψ), along with the values of V , V ′,
and V ′′ at those points. We see that:

• V ′′(0) > 0 regardless of the parameter values, therefore the hanging-down equilib-
rium, ψ= 0, is always stable;

8Don’t take this literally; the acceleration of gravity in (3.5) is a constant while the effective acceleration of
gravity in (4.4) depends on cosψ, therefore is not a constant.
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ψ 0 ψ̂ π

V (ψ) 0 V (ψ̂)
2g

ℓ

V ′(ψ) 0 0 0

V ′′(ψ)
g

l

ha2ω2

2gℓ
+ 1

i

−
a2ω2

2ℓ2
sin2ψ

g

l

ha2ω2

2gℓ
− 1

i

Table 4.1: The analysis of the critical points of the function V (ψ) defined in (4.6). The

critical point ψ̂, defined in (4.7) exists if and only ifω2 > 2gℓ/a2.

Figure 4.3: Two representative graphs of the function V (ψ) in (4.6) with the parameters
ℓ = 1, g = 1, a = 0.05. On the left we have taken ω = 20, which leads to
2g l/(a2ω2) = 2 > 1. This corresponds to a stable equilibrium at ψ = 0
and an unstable equilibrium at ψ = π. On the left we have taken ω = 40,
which leads to 2g l/(a2ω2) = 1/2< 1. This corresponds to stable equilibria
at ψ= 0 and ψ=π, and an unstable equilibrium at ψ= 2π/3.

• V ′′(ψ̂)< 0 regardless of the parameter values, therefore the equilibrium ψ̂= 0, if it
exists, is unstable; and

• if ω2 < 2gℓ/a2 then V ′′(π) < 0, therefore the inverted equilibrium, ψ = π, is
unstable; but if ω2 > 2gℓ/a2 then V ′′(π) > 0, therefore the inverted equilibrium,
ψ=π, is stable.

Figure 4.3 shows the graphs of V (ψ) for two representative cases. The graphs are
plotted over the range [−2π, 2π] to give a clear sense of their nature; only the range [0,π]
is of true relevance to us.

Exercises

4.1. Derive the equation of motion (4.1) of Kapitsa’s pendulum.
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4.2. Horizontally oscillating pivot. Consider a pendulum similar to Kapitsa’s, but
whose pivot oscillates horizontally rather than vertically. Derive the equation of
motion and do a stability analysis.



Chapter 5

Lagrangian mechanics

5.1 Newtonian mechanics

Let r(t ) be the position vector at time t of a particle (point mass) of constant mass m
moving in the three-dimensional space under the influence of a force f (t ). According
to Newton, the equation of motion is mr̈ = f , where, to simplify the notation, I have
written r and f for r(t ) and f (t ). A superimposed dot on a variable indicates the time
derivative of that variable. Thus, ṙ is the particle’s velocity and r̈ is its acceleration.

The motion of a collection of N particles is given as a set N vectorial equations

mk r̈k = fk , k = 1,2, . . . ,N , (5.1)

where mk is the mass of the kth particle, rk is its position vector, and fk is the resultant
of all forces acting on mk .

Example 5.1. Consider and idealized “dumbbell” consisting of two particles of masses
m1 and m2, connected with a rigid massless rod, as shown in Figure 5.1(a). In the free
flight of the dumbbell, as when it is tossed up in the air, the force exerted on m1 is the
resultant of the (known) weight vector m1g and the (unknown) push/pull f12 the rod.
That is, f1 = m1g+f12.

Let us write rk = 〈rk ,1, rk ,2, rk ,3〉 and fk = 〈 fk ,1, fk ,2, fk ,3〉 for the Cartesian represen-
tations of the vectors rk and fk . Then the N vector equations above may equivalently be
viewed as 3N scalar equations

mk r̈k , j = fk , j , j = 1,2,3, k = 1,2, . . . ,N . (5.2)

The following obvious trick flattens the doubly-indexed variables into singly-index
quantities and results in a significant algebraic simplification. We introduce the vectors

x= 〈 r1,1, r1,2, r1,3
︸ ︷︷ ︸

r1

, r2,1, r2,2, r2,3
︸ ︷︷ ︸

r2

, . . . rN ,1, rN ,2, rN ,3
︸ ︷︷ ︸

rN

〉, (5.3a)

f = 〈 f1,1, f1,2, f1,3
︸ ︷︷ ︸

f1

, f2,1, f2,2, f2,3
︸ ︷︷ ︸

f2

, . . . fN ,1, fN ,2, fN ,3
︸ ︷︷ ︸

fN

〉, (5.3b)

m= 〈 m1, m1, m1
︸ ︷︷ ︸

m1

, m2, m2, m2
︸ ︷︷ ︸

m2

, . . . , mN , mN , mN
︸ ︷︷ ︸

mN

〉, (5.3c)

25
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ℓ

m1g

m2g
f12

f21
ℓ12

ℓ23

ℓ31
m1g

m2g

m3g

f12

f21
f23

f32

f13
f31

(a) A idealized dumbbell (b) a rigid triangle

Figure 5.1: This idealized dumbbell on the left consists of two points masses connected
through a massless rigid rod of length ℓ. In free flight, the force exerted on
m1 is the resultant of the weight vector m1g and the push/pull of the rod
f12. The rigid triangle on the right consists of three point masses connected
through a massless rigid rods.

and write (5.2) as

mi ẍi = fi , i = 1,2, . . . , 3N . (5.4)

The change from (5.2) to (5.4) may seem merely cosmetic, but it entails a major change
of philosophy and opens the doors to Lagrangian mechanics, as we shall see. Specifically,
we view (5.4) as the differential equation of a motion of a point x in R3N . According
to (5.3a), knowing the position of the single point x ∈ R3N is equivalent to knowing
the positions of the N points r1, r2, . . . , rN in the (physical) three-dimensional space.
Thus, the study of the motion of a system of N points in the three-dimensional space is
equivalent to the study of the motion of a single point in the abstract R3N . Specifying an x

in the R3N amounts to specifying the geometrical configuration of the particle system.

Definition 5.2. The 3N-dimensional space introduced above is called the mechanical system’s
Cartesian configuration space. In analogy with Newton’s equations of motion, the vectors
x, f , m defined in (5.3) are called the position, the force, and the mass of the single abstract
“particle” moving in the configuration space.

Remark 5.1. Although it is tempting to think of the equation of motion (5.4) as a
generalization of Newton’s equation mẍ= f to R3N , the analogy is imperfect. The true
generalization would have been

mẍi = fi , i = 1,2, . . . , 3N ,

involving only a single m. In contrast, (5.4)’s fictitious “particle” exhibits different masses
along different coordinate directions.

5.2 Holonomic constraints

The motion of a particle in the three-dimensional physical space traces a curve, as in the
arc of a thrown ball, or the orbit of a planet. The motion of N particle then traces N
curves in the three-dimensional space. The position x in configuration space, defined
in (5.3a), merges the coordinates of the N particles into one, therefore the motion of the
entire N -particle system appears as a single curve in the configuration space. We call that
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curve the system’s orbit in the configuration space. When there is no risk of confusion, we
will simply call it the orbit.

If there are no impediments in placing the particles independently in arbitrary po-
sitions in space, then the orbit of the system of N particle may reach any point in the
configuration space—all is needed is the application of an appropriate force to get there.
If, however, the relative movements of the points are constrained, as in the dumbbell of
Figure 5.1(a), only a subset of the configuration space may be reached.

Example 5.3. Let r1 = 〈r1,1, r1,2, r1,3〉 and r2 = 〈r2,1, r2,2, r2,3〉. be the position vectors of

the dumbbell of Figure 5.1(a). Then, according to (5.3a) the position vector x ∈ R6 is
given by

x= 〈r1,1, r1,2, r1,3, r2,1, r2,2, r2,3〉.

The constraint of the fixed length ℓ of the connecting rod is expressed as ‖r1 − r2‖ = ℓ,
or more explicitly, as

(r1,1− r2,1)
2+(r1,2− r2,2)

2+(r1,3− r2,3)
2 = ℓ2,

that is,
(x1− x4)

2+(x2− x5)
2+(x3− x6)

2− ℓ2 = 0. (5.5)

This defines a 5-dimensional “surface”—a manifold is the technical term—embedded in R6.
The point orbit cannot roam arbitrarily in R6; it is constrained to stay on that manifold.

Example 5.4. Figure 5.1(b) shows three point masses connected with three massless rigid
rods, and thus forming a rigid triangle. The position vectors ri , i = 1,2,3, of the masses
are constrained through the three constraint equations

‖r1−r2‖= ℓ12, ‖r2−r3‖= ℓ23, ‖r3−r1‖= ℓ31,

which, in terms of the extended variable

x= 〈r1,1, r1,2, r1,3, r2,1, r2,2, r2,3, r3,1, r3,2, r3,3, 〉

= 〈x1, x2, x3, x4, x5, x6, x7, x8, x9, 〉

take on the form

(x1− x4)
2+(x2− x5)

2+(x3− x6)
2 = ℓ2

12,

(x4− x7)
2+(x6− x8)

2+(x7− x9)
2 = ℓ2

23,

(x7− x1)
2+(x8− x2)

2+(x9− x3)
2 = ℓ2

31.

These confine the triangle’s orbit in the configuration space to a 6-dimensional manifold
embedded in R9.

Example 5.5. Reconsider the previous example with a added twist. Suppose that the
triangle’s rods are equipped with remote-controlled motors with may be activated to vary
the rods’ lengths as desired during the flight. The previous example’s constraint equations
take the form

(x1− x4)
2+(x2− x5)

2+(x3− x6)
2 = ℓ12(t )

2,

(x4− x7)
2+(x6− x8)

2+(x7− x9)
2 = ℓ23(t )

2,

(x7− x1)
2+(x8− x2)

2+(x9− x3)
2 = ℓ31(t )

2,
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where ℓ12(t ), ℓ23(t ), and ℓ31(t ) are given. The manifoldM in this case is a 6-dimensional
manifold embedded in R9 whose shape changes with time.

Example 5.6. Recall the bead on the rotating hoop of Exercise 1.3 on page 6. With the
obvious choice of the xy z coordinates, the position vector of the bead is

r = 〈R sinϕ cosΩt , R sinϕ sinΩt , R cosϕ〉.

The manifold M in this case is a the spinning hoop itself. Geometrically it is a one-
dimensional spinning object (a circle) embedded in R3. It is given by the pair of equations

x sinΩt = y cosΩt ,

x2+ y2+ z2 = a2.

The first equation is that of plane that contains the z axis and spins about it with an
angular velocity of Ω. The second equation is that of a sphere of radius a centered at the
origin. The intersection of the two objects is the spinning hoop.

In general, a system of N particles subject to M constraint equations of the form

ϕi (x, t ) = 0, i = 1,2, . . . , M , (5.6)

where ϕi : R3N ×R→R, i = 1,2, . . . , M . These define a (3N −M )-dimensional manifold
M embedded in R3N . The system’s possible orbits are confined to lie in that manifold.
GenerallyM may move/deform with time, as it was the case in Examples 5.5 and 5.6.
However, if the equations (5.6) are independent of time, as it was the case in Examples 5.3
and 5.4, thenM remains unchanged during the motion. That corresponds to a set of
constraints of the form

ϕi (x) = 0, i = 1,2, . . . , M , (5.6’)

Constraints of type (5.6) are not the most general. Some very interesting mechanical
systems impose constraints on the velocity, ẋ, as in ϕi (x, ẋ, t ) = 0. The rolling of a coin
on the floor, for instance, has a constraint that depends on ẋ, therefore (5.6) is inadequate
for that purpose.

Definition 5.7. Constraints of the type (5.6) are called holonomic. All other types of con-
straints are called nonholonomic.

Definition 5.8. A mechanical system whose only constraints are of the holonomic type is
called a holonomic system.

We will begin our study of Lagrangian dynamics with holonomic systems. Nonholo-
nomic constraints will be brought up in the later chapters.

Remark 5.2. You may be interested to know that holonomic constraints of type (5.6)
are called rheonomic while those of type (5.6’) are called scleronomic. I prefer to call them
with the more user-friendly terms “time-dependent” and “time-independent” instead.

Remark 5.3. The term holonomic was introduced by Hertz in [10]:

§123. A material system between whose possible positions all conceivable
continuous motions are also possible motions is called a holonomous system.

The term means that such a system obeys integral (ὅλος) laws (νόμος), whereas
material systems in general obey only differential conditions.
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Admittedly that definition is rather vague, but its meaning is clarified further down:

§132. When from the differential equations of a material system an equal
number of finite equations between the coordinates of the system can be de-
duced, the system is holonomous.

By “finite equations” he means algebraic, as opposed to differential, equations.

5.3 Generalized coordinates

In a holonomic system of N particles subject to M holonomic constraints, the 3N Carte-
sian components of the position vector x are not quite suitable for the analysis of motion
—they cannot serve as independent variables since they are interrelated through the M
constraint equations (5.6). A much better approach is to parametrize the n = (3N −M )-
dimensional configuration manifoldM through a suitably chosen n independent vari-
ables q1, q2, . . . , qn , called the system’s generalized coordinates. The parametrization is cer-
tainly not unique, however in practice there often is an “obvious” choice. We write q

when we wish to refer to the n variables q1, q2, . . . , qn collectively.
The parameters q form a (generally curvilinear) coordinate system onM . Since the

motion’s orbit lies inM , the system’s state as a function of time may be expressed in terms
of q(t ). The purpose of analytical mechanics is to express Newton’s equations of motion (5.4)
in terms of the generalized coordinates q.

Remark 5.4. A familiar example curvilinear coordinates, albeit not directly related to
mechanics, is the system of addressing locations on the surface of the Earth through their
longitude λ and latitude ϕ. In this context,M is the Earth’s surface, and λ and ϕ are the
coordinates q1 and q2.

Any q identifies a point on the manifoldM . SinceM is embedded in R3N , it also
identifies a point x ∈R3N . That is, the system’s configuration vector x is a function of q.
We write this is a x= x(q, t ), or in components:

xi = xi (q, t ), i = 1,2, . . . , 3N . (5.7)

The t in this equations accounts for the possible motion/deformation of the manifold re-
lated to time-dependent constraints (5.6). In the case of time-independent constraints (5.6’),
M is independent of time, and (5.7) reduces to

xi = xi (q), i = 1,2, . . . , 3N . (5.7’)

Differentiating the q to x mapping of (5.7) with respect to time, we obtain an expres-
sion for the velocities in terms of generalized coordinates:

ẋi =
∑

k

∂ xi (q, t )

∂ qk

q̇k +
∂ xi (q, t )

∂ t
. (5.8)

[The last term will be absent in the case of (5.7’).] Let us observe that although the po-
sition xi is a function of q and t only, the velocity ẋi is a function of q, q̇, and t . Let’s
record this here for future reference:

ẋi = ẋi (q, q̇, t ), i = 1,2, . . . 3N . (5.9)

The following theorem establishes a couple of very useful mathematical identities:
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Theorem 5.9. Let xi and ẋi be as in (5.7) and (5.9). Then for any i = 1,2, . . . , 3N and
j = 1,2, . . . , M, we have:

∂ ẋi (q, q̇, t )

∂ q̇ j

=
∂ xi (q, t )

∂ q j

. (5.10)

∂ ẋi (q, q̇, t )

∂ q j

=
d

d t

�
∂ xi (q, t )

∂ q j

�

(5.11)

Proof. The assertion (5.10) is an immediate consequence of (5.8). As to (5.11), it’s a matter
of differentiating (5.8) with respect to q j and then exchanging the differentiation order in

the resulting second order partial derivatives:

∂ ẋi (q, q̇, t )

∂ q j

=
∑

k

∂ 2xi (q, t )

∂ q j∂ qk

q̇k +
∂ 2xi (q, t )

∂ q j∂ t

=
∑

k

∂

∂ qk

�
∂ xi (q, t )

∂ q j

�

q̇k +
∂

∂ t

�
∂ xi (q, t )

∂ q j

�

=
d

d t

�
∂ xi (q, t )

∂ q j

�

.

5.4 Virtual displacements, virtual work, and generalized force

Figure 5.2 depicts a representation of the orbit of a system of N particles on a manifold
M embedded in R3N . Pick an arbitrary point, let’s say x̂, of the orbit and then consider
the tangent at that point to the manifold. We explore that tangent through infinitesimal
excursions away from x̂. Such excursions are called virtual displacements and commonly
written as δx. I should emphasize that we are viewing the whole picture as a fossil frozen
in time. The excursions have nothing to do with the system’s motion which will continue
along the predetermined orbit once we unfreeze the time. The “δx” notation is used to
distinguish between virtual displacements and the actual differential of the motion dx.

The obvious way of producing a virtual displacement is through incrementing the
generalized coordinates q. A change in q amounts to a displacement within the manifold
M . Therefore the differential δq is a displacement withinM ’s tangent. In view of (5.7),
we have:

δxi =
n∑

j=1

∂ xi

∂ q j

δq j . (5.12)

Let f be the force vector, see (5.3b), at the point x̂. Under a virtual displacement δx,
the force performs a work δW , called virtual work, given by

δW = f ·δx=
3N∑

i=1

fiδxi =
3N∑

i=1

fi

� n∑

j=1

∂ xi

∂ q j

δq j

�

=
n∑

j=1

� 3N∑

i=1

fi

∂ xi

∂ q j

�

δq j =
n∑

j=1

Q jδq j .

Letting

Q j =
3N∑

i=1

fi

∂ xi

∂ q j

, j = 1,2, . . . , n, (5.13)
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x̂

the true orbit

virtual displacements at x̂

the manifoldM

Figure 5.2: The system’s orbit lies on a manifoldM determined by the holonomic con-
straints. Virtual displacements at x̂ are tangent to the manifold.

the virtual work is now expressed as

δW = f ·δx=Q ·δq.

The vector Q is called the generalized force at x̂. The component Q j is called the compo-

nent of the generalized force along the generalized coordinate q j .

Example 5.10. Consider the simple pendulum of Figure 1.1. The position vector r =
〈ℓ sinϕ,ℓcosϕ〉, therefore the vector x (see (5.3a)) is

x= 〈x1, x2〉

= 〈ℓ sinϕ,ℓcosϕ〉,

and the constraint is x2
1+x2

2 −ℓ
2, therefore the configuration manifoldM coincides with

the circle swept by the pendulum’s bob, embedded in the configuration space R2. The
angle ϕ plays the role of the generalized coordinate in this case; any value of ϕ identifies
a point onM . Let us write ϕ and Qϕ instead of q1 and Q1 for clarity. The force vector is

〈0, m g 〉. We compute the generalized force by applying (5.13):

Qϕ = f1
∂ x1

∂ ϕ
+ f2

∂ x2

∂ ϕ

= 0× (ℓcosϕ)+m g × (−ℓ sinϕ) =−m gℓ sinϕ.

Observe that Qϕ turns out to be equal to the moment of the weight vector f about the

pendulum’s pivot.

Example 5.11. Consider the double-pendulum of Figure 1.2. The position vectors of its
two masses are given by

r1 = 〈ℓ1 sinϕ,ℓ1 cosϕ〉, r2 = r1+ 〈ℓ2 sinψ,ℓ2 cosψ〉,
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therefore the vectors x and f (see (5.3)) are

x= 〈x1, x2, x3, x4〉

= 〈ℓ1 sinϕ,ℓ1 cosϕℓ1 sinϕ+ ℓ2 sinψ,ℓ1 cosϕ+ ℓ2 cosψ〉,

f = 〈 f1, f2, f3, f4〉

= 〈0, m1 g , 0, m2 g 〉.

The configuration space is R4 in this case. The two constraints

(x1− x2)
2 = ℓ2

1, (x3− x4)
2 = ℓ2

2

result in a two-dimensional configuration manifoldM embedded in R4. The angles ϕ
and ψ serve as generalized coordinates onM . Let us write ϕ and ψ for the generalized
coordinates instead of the generic q1 and q2, for clarity. We write Qϕ and Qψ for the

corresponding generalized forces. forces instead of Q1 and Q2 By applying (5.13) we get

Qϕ = f1
∂ x1

∂ ϕ
+ f2

∂ x2

∂ ϕ
+ f3

∂ x3

∂ ϕ
+ f4

∂ x4

∂ ϕ
=−m1 gℓ1 sinϕ−m2 gℓ2 sinϕ,

Qψ = f1
∂ x1

∂ ψ
+ f2

∂ x2

∂ ψ
+ f3

∂ x3

∂ ψ
+ f4

∂ x4

∂ ψ
=−m2 gℓ2 sinψ.

5.5 External versus reaction forces

In equation (5.1) the force fk applied to particle k is the resultant of all forces acting on
that particle. For instance, in the triangular system of Figure 5.1(b), forces applied to m1

consist of m1g + f12 + f13. The fist term is the gravitational force applied to m1, that
is its weight, which is known. We call it an external force. The other two are generated
dynamically within the rods, and are unknowns to be determined. We call then internal
forces or more frequently, constraint reactions because they arise due to the unchanging
lengths of the rods.

The constraint reactions get eliminated in the Lagrangian formulation as we shall see.
Their elimination reduces the problem’s unknowns, and hence simplifies the equations
of motion significantly. In anticipation of that development, we write the total force fk

in (5.1) as fk + f ′
k
, where, with some abuse of notations, we have recycled the notation

fk to signify the external forces only, and f ′ the internal forces, applied to the particle k.
After flattening the vectors in accordance with (5.3), equation (5.4) takes on the form

mi ẍi = fi + f ′i , i = 1,2, . . . , 3N . (5.14)

The argument that leads to the elimination of the constraint reactions proceeds as
follows. The orbit of (5.14) lies in the constraint manifoldM in R3N . External forces
applied to the particles push and pull the point x in a direction tangent toM . But what
keeps x from flying away from M ? The manifold holds it back, that’s what! If, for
example, x speeds over a round protrusion on the manifold, centrifugal forces will tend
to pull it away from the manifold. The manifold, however, exerts just the right amount
of opposite force, the constraint reaction, which holds x attached toM . In the physical
space, that is R3, the manifold’s reactions manifests itself as the forces that develop in the
system’s interconnecting links, such as f12 and f13 noted above.

The crucial observation that leads to the elimination of the constraint reactions from
the equations of motion is that the constraint reaction is orthogonal to the constraint man-
ifold. If it weren’t, then it would have a component tangent to the manifold, which will
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then perform work during the motion. But such a behavior is uncharacteristic of a passive
constraint surface, so we disallow it.

Since a virtual displacement δx is tangent to the constraint manifold (see Figure 5.2),
the orthogonality of the reaction force f ′ toM is expressed naturally as f ′ ·δx = 0 for
all virtual displacements δx, or in expanded form

3N∑

i=1

f ′i δxi = 0 for all virtual displacements δx.

We note that, however, that due to (5.12)

3N∑

i=1

f ′i δxi =
3N∑

i=1

f ′i

 
n∑

j=1

∂ xi

∂ q j

δq j

!

=
n∑

j=1

�
3N∑

i=1

f ′i
∂ xi

∂ q j

�

δq j ,

therefore

n∑

j=1

�
3N∑

i=1

f ′i
∂ xi

∂ q j

�

δq j = 0 for all virtual displacements δq,

from which it follows that

3N∑

i=1

f ′i
∂ xi

∂ q j

= 0, j = 1,2, . . . , n. (5.15)

5.6 The equations of motion for a holonomic system

At this point, the motion of a system consisting of N point masses and M holonomic
constraints has been encapsulated into the 3N +M equations (5.14) and (5.6) in the un-
knowns xi and f ′i . It is the goal of this section to re-express the equations of motions as a
system of only n = 3N −M differential equations for the n generalized coordinates q as
the unknowns. We begin with multiplying the equation (5.14) by ∂ xi/∂ q j and summing
over i :

3N∑

i=1

mi ẍi

∂ xi

∂ q j

=
3N∑

i=1

fi

∂ xi

∂ q j

+
3N∑

i=1

f ′i
∂ xi

∂ q j

.

The second summation on the right-hand side is zero due to (5.15). The first summation
on the right-hand side is the generalized force Q j ; see (5.13). Therefore obtain

3N∑

i=1

mi ẍi

∂ xi

∂ q j

=Q j , j = 1,2, . . . , n. (5.16)

To simplify the left-hand side, we begin with a preliminary preparation. The kinetic
energy of the system is

T̃ (ẋ) =
3N∑

k=1

1

2
mk ẋ2

k .

I have written T̃ rather than the usual T for a reason which will become obvious shortly.
Now observe that for any i

∂ T̃ (ẋ)

∂ ẋi

=
∂

∂ ẋi

3N∑

k=1

1

2
mk ẋ2

k = mi ẋi ,



34 Chapter 5. Lagrangian mechanics

therefore
d

d t

∂ T̃ (ẋ)

∂ ẋi

= mi ẍi .

Then, the left-hand side of (5.16) may be calculated as

3N∑

i=1

mi ẍi

∂ xi

∂ q j

=
3N∑

i=1

d

d t

�

∂ T̃ (ẋ)

∂ ẋi

�

∂ xi

∂ q j

=
3N∑

i=1

d

d t

�

∂ T̃ (ẋ)

∂ ẋi

∂ xi

∂ q j

�

−
3N∑

i=1

∂ T̃ (ẋ)

∂ ẋi

d

d t

�

∂ xi

∂ q j

�

,

where in the last step we have used the differentiation formula u ′v = (uv)′− uv ′. Now
apply (5.10) to the first summation on the right-hand side, and apply (5.11) to the second
summation, to get

3N∑

i=1

mi ẍi

∂ xi

∂ q j

=
3N∑

i=1

d

d t

�

∂ T̃ (ẋ)

∂ ẋi

∂ ẋi

∂ q̇ j

�

−
3N∑

i=1

∂ T̃ (ẋ)

∂ ẋi

∂ ẋi

∂ q j

=
d

d t

�
3N∑

i=1

∂ T̃ (ẋ)

∂ ẋi

∂ ẋi

∂ q̇ j

�

−
3N∑

i=1

∂ T̃ (ẋ)

∂ ẋi

∂ ẋi

∂ q j

.

Let us recall that the Cartesian velocity components ẋ and the generalized velocity
components q̇ are related through (5.8). Therefore the kinetic energy, which we have
taken to be a function of ẋ, may equally well be expressed as a function of q, q̇, and t .

We write the latter as T to distinguish it from the former T̃ :

T̃ (ẋ) = T (q, q̇, t ),

and then note that by the chain rule

∂ T (q, q̇, t )

∂ q̇ j

=
3N∑

i=1

∂ T̃ (ẋ)

∂ ẋi

∂ ẋi

∂ q j

and
∂ T (q, q̇, t )

∂ q j

=
3N∑

i=1

∂ T̃ (ẋ)

∂ ẋi

∂ ẋi

∂ q j

.

Consequently
3N∑

i=1

mi ẍi

∂ xi

∂ q j

=
d

d t

�

∂ T (q, q̇, t )

∂ q̇ j

�

−
∂ T (q, q̇, t )

∂ q j

,

and therefore (5.16) takes the form

d

d t

�

∂ T (q, q̇, t )

∂ q̇ j

�

−
∂ T (q, q̇, t )

∂ q j

=Q j , j = 1,2, . . . , n. (5.17)

These n second order differential equations in the n unknowns q1, q2, . . . , qn are called
Lagrange’s equation of motion for a holonomic systems.

In particular, if the external forcesQ are derived from a potential, that is, if there exists
a scalar function function V (q, t ) so that Q j = −∂ V /∂ q j , then Lagrange’s equation of

motion take on the form

d

d t

�

∂ T (q, q̇, t )

∂ q̇ j

�

−
∂ T (q, q̇, t )

∂ q j

=−
∂ V (q, t )

∂ q j

, j = 1,2, . . . , n.
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a
a

x

ϕ

m

m

O

Figure 5.3: The massless hoop rolls against a horizontal line while remaining in a ver-
tical plane. A point of mass m is affixed to the hoop. The angle ϕ or the
distance x may be used as generalized coordinates in the configuration space
(Exercises 5.2 and 5.3).

In that case we define the system’s Lagrangian as

L(q, q̇, t ) = T (q, q̇, t )−V (q, t )

and observe that since V does not depend on q, we have ∂ L/∂ q̇ j = ∂ T /∂ q̇ , therefore

the equations of motion collapse to

d

d t

�

∂ L(q, q̇, t )

∂ q̇ j

�

−
∂ L(q, q̇, t )

∂ q j

= 0, j = 1,2, . . . , n. (5.18)

Exercises

5.1. Find the gneralized forces Qϕ and Qθ in the spherical pendulum of Figure 1.4
(page 7).

5.2. A massless hoop of radius a rolls without slipping on a horizontal line, while remi-
aning in a vertical plane. A particle of mass m is firmly attached to the hoop, as
seen in Figure 5.3. Use the angle ϕ of the mass’s radius relative to the vertical as
generalized coordinate. Find the generalized force Qϕ .

5.3. In the previous problem use the distance x travelled by the contact point (see the
figure) as generalized coordinate. Find the generalized force Qx .

5.4. Suppose the external forces fi in (5.14) are derived from a potential, that is, there ex-

ists a scalar-valued function Ṽ (x, t ) such that fi =−∂ Ṽ (x, t )/∂ xi for i = 1,2, . . . , 3N .

Let V (q, t ) = Ṽ (x, t ) be the representation of the potential as a function of gen-
eralized coordinates. Show that the generalized forces Q j are derived from the

potential V , that is, Q j = ∂ V (q, t )/∂ q j , for j = 1,2, . . . , n.
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Chapter 6

Constraint reactions

In Chapter 5 we considered a mechanical system consisting of N point masses subject to
M holonomic constraints (5.6), and derived the equation of motion (5.17), where the gen-
eralized forces {Q j }

n
j=1 are related to the externally applied forces { fi }

3N
i=1 through (5.13).

Here n = 3N −M .
In the derivation of the equations we assumed that the generalized coordinates were

independent of each other. This was used in the derivation of equation (5.15) where we as-
sumed thqat the virtual displacements δq were arbitrary. Among other this, this resulted
in the elimination of the internal reaction forces f ′i from the equations of motion.

Suppose, however, that we are interested in finding out the reaction forces. It is the
goal of this chapter to explain how. The key idea is to forgo the assumption of indepen-
dence of the generalized coordinates.

Specifically, we assume that the n generalized coordinates q1, q2, . . . , qn are greater than
the minimum necessary to specify the system’s configuration. This implies that one or
more relationships exists among the q j ’s. Suppose that they are m such relationships:

a11 d q1+ a12 d q2+ · · ·a1n d qn + a1t d t = 0,

a21 d q1+ a22 d q2+ · · ·a2n d qn + a2t d t = 0,

· · ·

am1 d q1+ am2 d q2+ · · ·amn d qn + amt d t = 0,

(6.1)

where each ai j and ai t can be a given function of q and t . For convenience, we write these

set of constraints in the compact form

n∑

k=1

al k (q , t )d qk + al t (q , t )d t = 0, l = 1,2, . . . , m, (6.2)

Remark 6.1. By dividing (6.2) through by d t , we see that

n∑

k=1

al k (q , t )q̇k + al t (q , t ) = 0, l = 1,2, . . . , m, (6.3)

that is, the equations impose restrictions on the system’s velocities.

Repeating (TODO) the calculations of Chapter 5, we arrive at the following equations

37
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of motion:

d

d t

�

∂ L(q, q̇, t )

∂ q̇ j

�

−
∂ L(q, q̇, t )

∂ q j

=
m∑

k=1

ak jλk , j = 1,2, . . . , n. (6.4)

These, together with (6.3), form a system of n + m equations in the m + n unknowns
q1, q2, . . . , qn , λ1,λ2, . . . ,λm . The summation that appeart on the right-hand side gives the
generalized reaction forces

Q ′j =
m∑

k=1

ak jλk . (6.5)

Once the coefficients λk have been computed, we may use (6.5) in conjunction with

Q ′j =
3N∑

i=1

f ′i
∂ xi

∂ q j

(6.6)

to determine the raction force compnents f ′i .

Example 6.1. Let us revisit the simple pendulum of Figure 1.1 in page 2, and calculate
the force within its connecting rod.

In Section 1.3 we derived the equation of motion (1.5) in terms of the angle ϕ which
served as the generalized coordinate. The position vector of the pendulum’s bob relative
to the suspension point was expressed as r = ℓer in that context, where ℓ is the length of
the pendulum’s rod.

Here we change the setting of the problem as follows. We express the configuration
of pendulum in terms of not one, but two genealized coordinates: ϕ, which is the pendu-
lum’s angle as before; and ρ which is the rod’s length and which is viewed as a variable.
We impose the constraint ρ= ℓ retroactively to recover the physical model.

Referring to Figure 1.1 we have r = ρer , therefore the bob’s velocity is given by

v = ṙ = ρ̇er +ρėr = ρ̇er −ρϕ̇ėϕ,

where we have made use of (1.1). The kinetic and potential energies are

T =
1

2
m(ρ̇2+ρ2ϕ̇2), V =−m gρ cosϕ,

which leads to the lagrangian

L= T −V =
1

2
m(ρ̇2+ρ2ϕ̇2)+m gρ cosϕ.

We calculate

∂ L

∂ ρ̇
= mρ̇,

∂ L

∂ ρ
= mρϕ̇2+m g cosϕ

∂ L

∂ ϕ̇
= mρ2ϕ̇,

∂ L

∂ ϕ
=−m gρ sinϕ.

The constraint of inextensibility ρ = ℓ implies that dρ = 0, which we write as (1)dρ+
(0)dϕ+(0)d t = 0 to conform to the genral template (6.1). It follows that a11 = 1, a12 = 0,
a1t = 0, therefore the equations (6.4) take the form

d

d t

�∂ L

∂ ρ̇

�

−
∂ L

∂ ρ
= a11λ1

d

d t

�∂ L

∂ ϕ̇

�

−
∂ L

∂ ϕ
= a12λ1,
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that is

(mρ̇)· − (mρϕ̇2+m g cosϕ) = λ1,

(mρ2ϕ̇)·+m gρ sinϕ = 0,

or in expanded form:

mρ̈− (mρϕ̇2+m g cosϕ) = λ1,

mρ2ϕ̈+ 2mρρ̇ϕ̇+m gρ sinϕ = 0.

Applying the constraint ρ= ℓ reduces these to

−mℓϕ̇2−m g cosϕ = λ1,

mℓ2ϕ̈+m gℓ sinϕ = 0.

The second equation is the usual equation of motion of a simple pendulum. In principle,
we may plug its solution, ϕ(t ), into the first equation to find λ1, but we don’t do it that
way. Instead, we compute the generalized reaction forces Q ′r and Q ′ϕ from (6.5):

Q ′r = (1)λ1 =−mℓϕ̇2−m g cosϕ, Q ′ϕ = (0)λ1 = 0.

Then, we apply (6.6) to translate these into the physical components of the forces. Toward
that end, let us observe that r = ρer , therefore

∂ r

∂ ρ
= er ,

∂ r

∂ ϕ
= ρ

∂ er

∂ ϕ
= ρeϕ,

therefore (6.6) reads

Q ′r = f ′ ·
∂ r

∂ ρ
= f ′ ·er , Q ′ϕ = f ′ ·

∂ r

∂ ϕ
= f ′ ·ρeϕ ,

whence

f ′ ·er =−(mℓϕ̇
2+m g cosϕ) f ′ ·eϕ = 0.

Since f ′ = (f ′ ·er )er = (f
′ ·eϕ)eϕ , we conclude that

f ′ =−(mℓϕ̇2+m g cosϕ)er .

This tells us that the constraint reaction force f ′ lies in the direction of the pendulum’s
rod, and its magnitude equals the sum of the centrifugal force mℓϕ̇2 and the compoment
m g cosϕ of the bob’s weight along the rod.

Example 6.2. Consider a the rolling hoop of Exercise (2) of Chapter 5. Find the force at
contact point between the hoop and the plane.

Referring to Figure 5.3, we use the hoop’s rotation angle ϕ and the horizontal trans-
lation x of its center as a generalized coordinates. The no-slip condition imposes the con-
straint x = aϕ. We will use ϕ and x as overdetermined generalized coordinates subject to
x = aϕ, that is d x − a dϕ = 0, thefore accoring to the template (6.1), a11 = 1, a12 =−a.
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The position vector of the mass m is r = 〈x+a sinϕ,a+a cosϕ〉, therefore the velocity
is v = ṙ = 〈ẋ + aϕ̇ cosϕ,−aϕ̇ sinϕ〉. It follows that ‖v‖2 = ẋ2 + 2aẋϕ̇ cosϕ + a2ϕ̇2,
therefore the kinetic and potential enerigies are

T =
1

2
m(ẋ2 + 2aẋϕ̇ cosϕ+ a2ϕ̇2), V = m ga(1+ cosϕ).

Therefore

L=
1

2
m(ẋ2 + 2aẋϕ̇ cosϕ+ a2ϕ̇2)−m ga(1+ cosϕ).

and

∂ L

∂ ẋ
= m(ẋ + aϕ̇ cosϕ),

∂ L

∂ x
= 0,

∂ L

∂ ϕ̇
= m(aẋ cosϕ+ a2ϕ̇)

∂ L

∂ ϕ
= m(−aẋϕ̇ sinϕ+ ga sinϕ).

Then (6.4) takes the form

m(ẋ + aϕ̇ cosϕ)· = a11λ1 = λ1,

m(aẋ cosϕ+ a2ϕ̇)· −m(−aẋ ϕ̇ sinϕ+ ga sinϕ) = a12λ1 =−aλ1.

Now substitute x = aϕ and simplify:

−ma(1+ cosϕ)ϕ̈+maϕ̇2 sinϕ = λ1,

ma2(1+ cosϕ)ϕ̈+m ga sinϕ =−aλ1.
(6.7)

To eliminate λ1, divide the second equation through by a and add the result to the
first equation. We get

2ma(1+ cosϕ)ϕ̈−ma
� g

a
+ ϕ̇2

�

sinϕ = 0.

This is the hoop’s equation of motion. To compute the constraint force, solve this for ϕ̈:

ϕ̈ =
a
� g

a
+ ϕ̇2

�

sinϕ

2a(1+ cosϕ)

and substitute the result in the first of (6.7). We get:

λ1 =
1

2
ma

�

ϕ̇2−
g

a

�

sinϕ. (6.8)

Now we compute the generalized forces Q ′x and Q ′ϕ from (6.5):

Q ′x = a11λ1 = λ1, Q ′ϕ = a12λ1 =−aλ1.

Then, we apply (6.6) to translate these into the physical components of the forces. Toward
that end, let us observe that

∂ r

∂ x
= 〈1,0〉,

∂ r

∂ ϕ
= 〈a cosϕ,−a sinϕ〉,
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Figure 6.1: whatever

therefore, letting f = 〈 fx , fy 〉, we get

Q ′x = f ·
∂ r

∂ x
= fx Q ′ϕ = f ·

∂ r

∂ ϕ
= a fx cosϕ− a fy sinϕ.

It follows that
fx = λ1, a fx cosϕ− a fy sinϕ =−aλ1.

We solve this as a system of two equations in the two unknowns fx and fy :

fx = λ1, fy =
1+ cosϕ

sinϕ
λ1.

Upon substitution for λ1 from (6.8) we conclude that

fx =
1

2
ma

�

ϕ̇2−
g

a

�

sinϕ,

fy =
1

2
ma

�

ϕ̇2−
g

a

�

(1+ cosϕ),

whence

f =
1

2
ma

�

ϕ̇2−
g

a

�

〈sinϕ, 1+ cosϕ〉.

This result has a significant mechanical/geometric interpretation. Refer to Figure 6.1.
The vector a〈sinϕ, 1+ cosϕ〉 extends from the contact point p to the mass m, therefore
the constraint force f ′ is parallel to that vector.

Exercises

6.1. The hoop of Example 6.2 rolls, without slipping, down an incline which makes an
angle α with respect to the horizontal. See Figure 6.2. Use the angle ϕ as the gen-
eralized coordinate. Derive the equation of motion. Hint: (a) Express the vectors
i′ and j′ in terms of i, j, and the angle α; (b) Express the position vector r of the
mass m in terms of the basis vectors i′ and j′; (c) Apply the results of (a) and (b) to
express r in terms of i and j.

6.2. In the the previous exercise, find the contact force between the hoop and incline.
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i

j

α

i′

j′

m

α
ϕ

r

Figure 6.2: Hoop rolling on an incline. The hoop’s initial position is shown in gray
(Exercise 6.1).



Chapter 7

Angular velocity

When you hurl a rock in the air, or toss a Frisbee, the object spins in general as it moves.
Associated with the motion is a vector ω(t ), called the object’s angular velocity vector,
(or just angular velocity for short,) whose direction and magnitude at any instant of time
t indicate orientation and the rate of rotation. It is the goal of this section to make the
definition of the angular velocity precise.

Toward that end, let {b1,b2,b3} be an orthonormal set of vectors which is firmly af-
fixed to the spinning object, therefore moves with it. The choice of the letter b is this
notation is to remind us that we are dealing with a body coordinate system.9

In elementary linear algebra we learn that the component of an arbitrary vector r in
the direction of the unit vector b j is r ·b j . Therefore the vector r may be expressed in the

basis {b1,b2,b3} as r =
∑3

j=1(r · b j )b j .
10 Therefore, the rate of change, ḃi , of the vector

bi in the basis {b1,b2,b3}may be expressed as

ḃi =
3∑

j=1

(ḃi ·b j )b j .

Let ai j = ḃi · b j be the matrix of the coefficients. We claim that the matrix, let’s call it A,

is skew-symmetric. Indeed, we have bi · b j =

¨

1 if i = j ,

0 if i 6= j .
Upon differentiating this we

get ḃi ·b j + ḃ j ·bi = 0, whence ai j + a j i = 0, which proves A is skew-symmetric.

The general form of a 3× 3 skew-symmetric matrix is

A=





0 ω3 −ω2

−ω3 0 ω1
ω2 −ω1 0



 . (7.1)

9As the body rotates, the vectors {b j }
3
j=1 rotate with it, therefore they vary with time from the point of view

of a stationary observer. On occasion we write
�

b j (t )
	3

j=1
to make explicit the dependence of these vectors on

the time t .
10See equation (8.7) on page 49 for a simple proof.
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Therefore

ḃ1 =ω3b2−ω2b3, (7.2a)

ḃ2 =ω1b3−ω3b1, (7.2b)

ḃ3 =ω2b1−ω1b2. (7.2c)

The coefficients ω1, ω2, ω3 measure the rate of change of the triad {b1,b2,b3}, and
consequently, the rate of change of orientation of the body to which the triad is attached.
The angular velocity vector, defined as

ω =ω1 b1+ω2 b2+ω3 b3 (7.3)

encapsulates that rate of change.

Remark 7.1. Actually calling ω a vector is premature. A vector, as defined precisely in
Section 8.1, is a physical object in the sense that it is independent of any coordinate system
which may be used in defining it. Here ω has been defined in terms of its components
on the {b1,b2,b3} triad. But the triad is not an integral part of the rotating body. Does ω
survive if the triad goes away? Does ω remain the same if that triad is replaced by another?

It turns out that the answer to both of those question is in the positive. Indeed, ω
is not an artifact of the arbitrarily chosen triad. It is an intrinsic property of the body’s
motion. The presence of a coordinate triad affixed to the body is immaterial. The proof
of this claim is not too hard but it takes us deeper into tensor analysis, so I will skip it for
now.

Remark 7.2. We leave it as an exercise to show that differentiating (7.3) and applying the
equations (7.2), resutls in

ω = ω̇1 b1+ ω̇2 b2+ ω̇3 b3. (7.4)

Remark 7.3. On the one hand, in (7.1) we have a23 =ω1. On the other hand, we have

the ai j = ḃi ·b j by definition. It follows thatω1 = ḃ2 ·b3. Similar expressions are obtained

for ω2 andω3. Let’s make a record of this:

ω1 = ḃ2 ·b3, ω2 = ḃ3 ·b1, ω3 = ḃ1 ·b2. (7.5)

Remark 7.4. From the definition of ω in (7.3) it follows that

ω× b1 = (ω1 b1+ω2 b2+ω3 b3)× b1 =−ω2 b3+ω3 b2.

Therefore the equations (7.2) may be written as

ḃ1 =ω× b1, ḃ2 =ω× b2, ḃ3 =ω× b3. (7.6)

Remark 7.5. Consider points O and P in the body, and let r =
−→
OP . Then r = α1b1 +

α2b2+α3b3, where α1, α2, α3 are constants. The velocity v of P relative to O is given by
v = ṙ. Let us observe that

v = ṙ = α1ḃ1+α2ḃ2+α3ḃ3

= α1(ω× b1)+α2(ω× b2)+α3(ω× b3) =ω× (α1b1+α2b2+α3b3) =ω×r.

The formula
v =ω×r (7.7)

is used throughout the rest of this book.
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Exercises

7.1. Derive (7.4).
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Chapter 8

The moment of inertia
tensor

8.1 A brief introduction to tensor algebra

In much of our working and thinking, we tend to blur the distinction between a vector
as a pointed arrow in space ր, and an n-tuple of numbers 〈x1, x2, . . . , xn〉. Yet, the two
concepts are drastically different. The former would have been quite a natural object to
Euclid in 300 BC, but the latter would been very foreign to him—for at the time they lay
two millennia in the future.

The blurring between the two ways of looking at vectors is harmless much of the
time, but there are places where a strict distinction between the two views is crucially
important. Tensor algebra makes a bridge between the two and goes substantially beyond.
Tensor algebra, along with tensor analysis, are indispensable tools in differential geometry,
continuum mechanics, and general relativity, and perhaps other disciplines as well. For a
general exposition of tensor algebra and tensor analysis, see [3].

Tensor algebra is not a sine qua non of rigid body mechanics, therefore only rarely it
is brought into play. There is, however, the ubiquitous use of the term moment of inertia
tensor, which hints tantalizingly to a connection to tensors behind the scenes, however
the connection is only rarely brought out. It is the purpose of this section and the next
to introduce the minimal tensor algebra which explains the “tensor” in the “moment of
inertia tensor”.

8.1.1 Tensor algebra

Vectors, dot product, cross product. In the three-dimensional Euclidean space fix
a point called the origin, and consider the set V of all vectors (in the sense of pointed
arrows) whose tails are attached to the origin. We define the sum x+y of two vectors x
and y in V through the parallelogram rule, that is, we form a parallelogram based on the
vectors, and consider the parallelogram’s diagonal as their sum as illustrated in Figure 8.1.
Multiplying a vector by a number stretches/shrinks the vector’s length by the magnitude
of that number. If the number is negative, the resulting vectors flips, that is, it points in
the opposite of the original’s direction. See Figure 8.1 for an illustration.

The length of the vector x is written ‖x‖. The dot product x ·y of a pair of vectors x
and y in V is a number defined by

x ·y = ‖x‖‖y‖cosθ,

where θ is the angle between the vectors; see Figure 8.2. Let us note that (a) the dot
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x

y
x+y

o

x

−0.7x 1.2x
o

Figure 8.1: On the left: The sum x + y of two vectors x and y is formed through
the parallelogram rule. On the right: Multiplication by a number stretch-
es/shrinks/flips a vector. The vector 1.2x is drawn in a slightly displaced
position relative to the origin o for the sake of visualization.

x

y

θo

x

y

θ

x×y

n

o

Figure 8.2: On the left: The dot product of the vectors x and y is the number x ·y =
‖x‖‖y‖cosθ. On the right: The cross product of the vectors x and y is
the vector x × y =

�

‖x‖‖y‖ sinθ
�

n, where n is a unit vector which is
perpendicular to the plane of the vectors x and y, and is oriented according
to the right-hand rule.

product is commutative, that is x · y = y · x; (b) if the vectors are orthogonal to each
other, that is, θ = π/2, then x ·y = 0; and (c) a vector’s length may be expressed as a dot
product: ‖x‖2 = x ·x.

The cross product of x×y of a pair of vectors x and y in V is the vector

x×y =
�

‖x‖‖y‖ sinθ
�

n,

where 0≤ θ≤π is the angle between the vectors, and n is a unit vector which is perpen-
dicular to the plane of the vectors x and y, and is oriented according to the right-hand
rule. The latter means that if you align your right hand’s thumb with n, then a rotation
by an angle θ in the direction pointed at by your fingers will take the vector x to y. It
follows that the cross product is anticommutative, which means that x×y =−y×x.

Tensors. A function L : V →V is said to be linear if

L(x+y) = L(x)+ L(y) for all x,y ∈ V ,

L(αx) = αL(x) for all x ∈ V , α ∈R.

A linear function from V to V is called a tensor on V , or just tensor, for short. It is
customary to write Lx instead of L(x) when L is a tensor, as we will do from now on.
The identity tensor, I , is the tensor with the property

Ix= x for all x ∈ V . (8.1)

The sum L1+ L2 of tensors L1 and L2 is a tensor defined by

(L1+ L2)x= L1x+ L2x for all x ∈ V . (8.2)
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The product αL of a tensor L and a number α ∈R is a tensor defined by

(αL)x = α(Lx) for all x ∈ V . (8.3)

The set of tensors on V , equipped with the operations defined in (8.2) and (8.3), is a
vector space in the sense of an abstract vector space (not to be confused with vectors of the
pointed-arrow kind).

The dyadic product. The dyadic product a⊗ b of vectors a and b in V is a tensor on
V defined by

(a⊗ b)x= (b ·x)a for all x ∈ V . (8.4)

Lemma 8.1. For any pair of vectors a,b ∈ V we have

‖a× b‖2 = a ·
�

‖b‖2I − b⊗ b
�

a, (8.5)

where I is the identity tensor.

Proof. Let θ be the angle between the vectors a and b. We have:

‖a× b‖2 = ‖a‖2‖b‖2 sin2θ

= ‖a‖2‖b‖2(1− cos2θ)

= ‖a‖2‖b‖2−‖a‖2‖b‖2 cos2θ

= ‖b‖2(a ·a)− (a ·b)2

= a ·
�

‖b‖2a− (a ·b)b
�

= a ·
�

‖b‖2a− (b⊗ b)a
�

= a · (‖b‖2I − b⊗ b)a.

8.1.2 Connection with R3 and 3× 3 matrices

Let {e1,e2,e3} be an orthonormal set inV . This means that the three vectors are mutually
perpendicular, and each is of length one. Thus

ei ·e j = δi j =

¨

0 if i 6= j ,

1 if i = j .
(8.6)

The symbol δi j defined above is called the Kronecker delta.

In Exercise 8.1 you will show that an orthonormal set is linearly independent. If
follows that the orthonormal set {e1,e2,e3} forms a basis for the three-dimensional vector
space V . Consequently, any x ∈ V may be expressed as a linear combination of the form

x= c1e1+ c2e2+ c3e3.

Dot-multiplying through by e1 and taking into account the orthonormality of basis vec-
tors, we get x · e1 = c1. Repeating with e2 and e3 we conclude that ci = x · ei , i = 1,2,3.
Thus we have established the identity

x= (x ·e1)e1+(x ·e2)e2+(x ·e3)e3, for all x ∈ V . (8.7)
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For each i , the coefficient x ·ei is called the component of the vector x along ei .

Remark 8.1. Let us state emphatically that the components x · ei are not properties of
the vector x at all! If you replace one basis with another which is rotated in an arbitrary
manner relative to the first, then the components of x will be different in general, while x
has not been touched. Even if you remove the basis altogether, the vector x will happily
continue to exist. Having said all that, it is sometimes useful to work with 〈c1, c2, c3〉 ∈R3

as sort of an “avatar” of x ∈ V , as long you remain cognizant of what it is.

Remark 8.2. Applying the defintion of the diatic product (8.4), the identity (8.7) may
be written in the equivalent form

x= (e1⊗e1)x+(e2⊗e2)x+(e3⊗e3)x,

which has at least two implications. First, upon factoring the x on the right-hand side,
we see that

I = e1⊗e1+e2⊗e2+e3⊗e3.

Second, ei ⊗ei acting on any vector x produces the projection of x in the direction ei .

We noted earlier that the set of tensors on V , equipped with the operations defined
in (8.2) and (8.3), is a vector space of its own. The following lemma shows how to con-
struct a basis for that vector space.

Lemma 8.2. Let {e1,e2,e3} be an orthonormal basis in V . Then {ei ⊗e j }
3
i , j=1 is a basis for

the space of tensors on V .

Proof. We will show that any tensor L is a linear combination of the nine dyadic products
{ei ⊗e j }

3
i , j=1. Toward that end, pick an arbitrary x ∈ V ,

x=
3∑

i=1

(x ·ei )ei ,

and let y = Lx. By the linearity of L we have

y = Lx=
3∑

i=1

(x ·ei )Lei .

it follows that

y ·e j =
3∑

i=1

(x ·ei )(Lei ·ej) =
3∑

i=1

(Lei ·ej)(x ·ei ),

and consequently

y =
3∑

j=1

(y ·e j )e j

=
3∑

j=1

3∑

i=1

(Lei ·ej)(x ·ei )e j

=
3∑

j=1

3∑

i=1

(Lei ·ej)(ei ⊗e j )x,
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where we have made use of the definition (8.4). Since y = Lx, this tells us that

Lx=
3∑

i=1

3∑

j=1

(Lei ·ej)(ei ⊗e j )x for all x ∈ V ,

therefore

L=
3∑

i=1

3∑

j=1

(Lei ·ej )(ei ⊗e j ), (8.8)

which shows that L is a linear combination of the nine dyadic products {ei ⊗e j }
3
i , j=1. In

other words, the set of vectors {ei ⊗ e j }
3
i , j=1 spans the set of all tensors. To show that

the set is a basis, it remains to show that it is linearly independent. You will do that in
Exercise 8.2.

Remark 8.3. The coefficients in (8.8) are called the components of L in the basis {ei ⊗
e j }

3
i , j=1. Letting ℓi j = Lei ·ej , we may write (8.8) in the abbreviated form

L=
3∑

i=1

3∑

j=1

ℓi jei ⊗e j .

At times it is useful to identify the tensor L with the 3× 3 matrix with components ℓi j

but the caveats of Remark 8.1 apply equally well here. The components ℓi j are artifacts

of the choice of the basis vectors. The tensor is an intrinsic property of the system and
will continue to exist even when the basis vectors are obliterated.

Remark 8.4. In view of the one-to-one correspondence between 3× 3 matrices and ten-
sors on V noted above, every property or theorem in matrix algebra finds a counterpart
in tensor analysis. For instance, a nonzero vector x is called and eigenvector of the tensor
L if Lx= λx for some λ ∈R.11 The coefficient λ is the eigenvalue corresponding to that
eigenvector.

8.1.3 Symmetric tensors

A tensor L is said to be symmetric if

a · (Lb) = (La) ·b for all a,b ∈ V .

It is easy to show that if L is symmetric, then the matrix ℓi j of its components (see Re-

mark 8.3) is symmetric, that is ℓi j = ℓ j i for i , j = 1,2,3.

We know from matrix analysis that the eigenvalues of a symmetric matrix are real,
and its eigenvector may selected as an orthonormal set. This, along with what is known
as diagonalization of matrices in linear algebra, lead to the spectral decomposition theorem
in tensor algebra:

Theorem 8.3 (Spectral decomposition, cf. [3, p. 137]). The eigenvalues λ1, λ2, λ3 of a
symmetric tensor L are real, and the corresponding eigenvectors, g1, g2, g3 may be selected as
an orthonormal set. Furthermore,

L= λ1g1⊗g1+λ2g2⊗g2+λ3g3⊗g3. (8.9)

11say something about complex fields
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vi
mi

ω ri

o

Figure 8.3: whatever

Remark 8.5. According to (8.8), a tensor is a linear combination of the nine basis ele-
ments {ei ⊗ e j }

3
i , j=1 in general. In contrast, (8.9) presents L as a linear combination of

only three special elements {g j ⊗g j }
3
j=1 constructed from L’s eigenvectors.

8.2 The moment of inertia tensor

Consider a set of particles of masses mi , i = 1,2, . . . ,N , which are thoroughly intercon-
nected through massless rigid rods, so that the entire assembly forms a rigid, object. Sup-
pose that the object rotates with angular velocity ω about a fixed axis passing through
the origin. Figure 8.3 depicts the vector ω, and a representative particle of mass mi and
position vector Let ri . Then the particle’s velocity is vi = ω× ri , therefore the kinetic
energy of the N -particle system is given by

T =
N∑

i=1

1

2
mi‖vi‖

2 =
N∑

i=1

1

2
mi‖ω×ri‖

2,

which according to Lemma 8.1 is equivalent to

T =
N∑

i=1

1

2
miω ·

�

‖ri‖
2I −ri ⊗ri

�

ω

=
1

2
ω ·

�
N∑

i=1

mi

�

‖ri‖
2I −ri ⊗ri )

�

ω.

We introduce the tensor

I =
N∑

i=1

mi

�

‖ri‖
2I −ri ⊗ri

�

, (8.10)

whereby the kinetic energy takes the simple form

T =
1

2
ω · Iω. (8.11)

The tensor I is called the moment of inertia tensor of the N -particle system. Let us
note that I is independent of ω, so the orientation of the axis about which the system
rotates, or the speed of rotation, is immaterial. However,I does depend on the choice of
the origin of the vectors—changing the origin will affect the position vectors ri , therefore
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the the tensor I . The change, however, obeys a simple translation rule which we will
develop in the next section. For now let us observe another aspect of (8.10). The fact that
the system under consideration consists of N rigidly connected point masses is hardly
of particular importance. A general rigid solid may be approximated by a union a large
number of tiny parts, as one does in the theory of integration, and then pass to the limit
as the number of the parts goes to infinity, and the sizes of the individual parts go to zero,
while maintaining a fix mass for the aggregate.

To be specific, letB be the solid object, d m be the differential mass of the “part” ofB
indicated by the position vector r relative to some origin o. Then the obvious extension
of (8.10) takes the following form for the solid’s moment of inertia:

I =
∫

B

�

‖r‖2I −r⊗r
�

d m. (8.12)

If ρ(r) is the density of the body at the position r, then d m = ρ dV , where V is the
volume element, and the formula above takes the form

I =
∫

B
ρ(r)

�

‖r‖2I −r⊗r
�

dV . (8.13)

8.3 Translation of the origin

As noted above, the moment of inertia tensor of a rigid body depends on the choice of
the origin of the vectors. To see how a translation of the origin affects the tensor, let Io
and Io′ be the moment of inertia tensors of a rigid bodyB relative to two origins o and
o′, respectively. According to (8.12) we have:

Io =
∫

B

�

‖r‖2I −r⊗r
�

d m, Io′ =
∫

B

�

‖r′‖2I −r′⊗r′
�

d m,

where r and r′ are the position vectors of a generic point p ∈ B relative to o and o′, as
seen in Figure 8.4.

Theorem 8.4. Let c ∈ B the the body’s center of mass, and let us write r′c for the position
vector of c relative to o′. Furthermore, let τ = o′−o. Then we have:

Io =Io′ +m
h
�

2r′c ·τ + ‖τ‖
2
�

I −r′c⊗ τ − τ ⊗r
′
c− τ ⊗ τ

i

, (8.14)

where m is the body’s mass.

Proof. Referring to Figure 8.4 we have r = r′+τ, therefore

Io =
∫

B

�

‖r‖2I −r⊗r
�

d m

=

∫

B

�

‖r′+ τ‖2I − (r′+ τ )⊗ (r′+ τ )
�

d m

=

∫

B

h
�

‖r′‖2+ 2r′ ·τ + ‖τ‖2
�

I −r′⊗r′−r′⊗ τ − τ ⊗r′− τ ⊗ τ
i

d m

=

∫

B

�

‖r′‖2I −r′⊗r′
�

d m+

∫

B

h
�

2r′ ·τ + ‖τ‖2
�

I −r′⊗ τ − τ ⊗r′− τ ⊗ τ
i

d m.
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o o′

c

p rc

r

r′c

r′

τ

B

Figure 8.4: The moment of inertia tensor of a rigid solidB depends on the choice of
the origin. The origins o′ and o′ in this illustration are related through
o′−o= τ . The solid’s center of mass is c.

The first intergral on the right-hand side equalsIo′ . The second integral may be simplified
by noting that

m =

∫

B
d m, r′c =

1

m

∫

B
r′ d m,

and consequently
∫

B
r′ d m =mr′c,

Corollary 8.5. Let c ∈ B be the body’s center of mass as before, and let Ic be the moment
of inertia tensor relative to c. Then the moment of inertia tensor Io ofB relative to any
origin o is given by

Io =Ic+m
�

‖rc‖
2I −rc⊗rc

�

. (8.15)

Proof. Apply (8.14) with o′ set to c. Then r′c = 0, and the formula reduces to

Io =Ic+m
�

‖τ‖2
�

I − τ ⊗ τ
�

.

Then the observation that τ = o′−o= c−o= rc completes the proof.

Remark 8.6. The moment of intertia tensor of a rigid system of N point masses is given
in (8.10). In particualr, the moment of intertia tensor of a single point of mass m at a
position r relative to an origin o is

m
�

‖r‖2I −r⊗r
�

.

Therefore the translation formula (8.15) may be interpreted as saying that the moment of
interia of a body relative of any point o equals the moment of inertia relative to its center
of mass, plus the moment of inertia relative to o of a fictitious point of mass m situated
at the center of mass.

Remark 8.7. The moment of inertia tensor Ic of a ridig body relative to its center of
mass is an intrinsic property of the body, just like its total mass or its center of mass are.
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The total mass is a scalar, the center of mass is expressed through its position vector, and
the moment of inertia Ic is a tensor.

8.4 The principal moments of inertia

In the exercises you will verity that a moment of inertia tensor is a symmetric tensor, that
is:

m · In=n · Im, for all m,n ∈ V .

Then according to the Spectral Decomposition Theorem (page 51)I admits a representa-
tion of the form (8.9). In that context, the eigenvalues λ1, λ2, λ3 ofI are called the object’s
principal moments of inertia, and the eigenvectors g1, g2, g3 are called the principal axes of
the moment of inertia.

Tables of the principal moments of inertia of many common geometric solids are
available in books and websites. Wikipedia has a page for it at:

http://en.wikipedia.org/wiki/List_of_moments_of_inertia

Example 8.6. Consider a solid circular cylinder of radius r , length ℓ, and total mass m.
Assume that the mass is distributed uniformly, that is, the density is constant. The prin-
cipal axes of the moment of inertia tensor Ic relative to the center of mass are: g3 along
the cylinder’s axis; g1 and g2 arbitrary unit vectors so that {g1,g2,g3} forms an orthonor-

mal set. The corresponding principal moments of inertia are λ1 = λ2 =
1
12 m(3r 2 + ℓ2),

λ3 =
1
2 mr 2. Therefore

Ic =
1

12
m(3r 2+ ℓ2)g1⊗g1+

1

12
m(3r 2+ ℓ2)g2⊗g2+

1

2
mr 2g3⊗g3. (8.16)

The limiting case of r = 0 is interesting in its own right. Such an object is called a
slender rod of length ℓ and mass m. In that case we have:

Ic =
1

12
mℓ2g1⊗g1 +

1

12
mℓ2g2⊗g2. (8.17)

The principal moments of inertia I of a slender rod relative to one of its endpoints may
be calculated from the translation formula (8.15).

Exercises

8.1. Show that an orthonormal set of vectors is linearly independent.

8.2. Complete the proof of Lemma 8.2 by showing that the set {ei ⊗e j }
3
i , j=1 is linearly

independent. Hint: It suffices to show that
∑3

i=1

∑3
j=1 ci j (ei⊗e j ) = 0 implies that

every ci j is zero. Begin by applying each side of that equality to ek .

8.3. Show that if the tensor L is symmetric, then the matrix ℓi j of its components (see

Remark 8.3) is symmetric, that is ℓi j = ℓ j i for i , j = 1,2,3.

8.4. Use (8.17) in conjunction with the translation formula (8.15) to calculate the mo-
ment of inertia tensor of a slender rod relative to one of its endpoints.

8.5. Look up the principal moments of inertia of a circular hoop in Wikipedia relative
to the hoop’s center. Then apply the translation formula (8.15) to calculate the
moment of inertia tensor of the hoop relative to a point on its rim.
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Chapter 9

Rigid body dynamics
through the Gibbs-Appell
formulation

9.1 A formula for the Gibbs function

In this chapter we investigate the motion of a right body B of mass m and moment of
inertia tensor I . Let rc be the position vector of the body’s center of mass.

Let P be a generic infinitesimal part of mass d m ofB , and let r be the position vector
of P relative to C . Then, by the definition of center of mass, we have

∫

B
r d m = 0. (9.1)

We assume that an external force f d m acts on the part P . The resultant of forces
applied to the body, and their moments about the center of mass, are

F ≡
∫

B

f d m, M ≡
∫

B

r×f d m. (9.2)

The contribution of the part P to the overall Gibbs function is 1
2‖v̇‖

2 d m−f · v̇ d m,
and therefore the overall Gibbs function is

G=

∫

B

1

2
‖v̇‖2 d m−

∫

B
f · v̇ d m. (9.3)

We now proceed to expand, evaluate, and simplify this expression.
Let ω be the body’s angular velocity. Then ṙ = ω× r, and therefore the velocity of

the point P is v = ṙc + ṙ = ṙc +ω×r, and therefore the acceleration of P is

v̇ = r̈c + ω̇×r+ω× ṙ.

Substituting this in (9.3) and expanding, we get

G=
1

2

∫

B

‖r̈c‖
2 d m+

1

2

∫

B

‖ω̇×r‖2 d m+
1

2

∫

B

‖ω× ṙ‖2 d m

+

∫

B

r̈c · (ω̇×r)d m+

∫

B

r̈c · (ω× ṙ)d m+

∫

B

(ω̇×r) · (ω× ṙ)d m

−
∫

B

f · r̈c d m−
∫

B

f · (ω̇×r)d m−
∫

B

f · (ω× ṙ)d m.

Now let’s analyze each of the nine integrals on the right-hand side.

57
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1. The integrand ‖r̈c‖
2 in the first integral is independent of the position vector r, and

therefore the integral evaluates to

1

2

∫

B

‖r̈c‖
2 d m =

1

2
m‖r̈c‖

2.

2. The integrand ‖ω̇× r‖2 of the second integral may be expanded through the iden-
tity (8.5) into the form ‖ω̇×r‖2 = ω̇ ·

�

‖r‖2I −r⊗r
�

ω̇. The integral of parenthe-
sized expression is the moment of inertia tensor, I , and therefore

1

2

∫

B
‖ω̇×r‖2 d m =

1

2
ω̇ · I ω̇.

3. In the third integral we substitute ṙ =ω×r, and thus obtain

1

2

∫

B
‖ω× ṙ‖2 d m =

1

2

∫

B
‖ω× (ω×r)‖2 d m

This expression contains no acceleration terms, and therefore it will drop out when
applying the Gibbs-Appell equations. Consequently we may safely ignore it. This
is indicated by the ellipses in the final result below.

4. The integrand of the fourth integral consists of a triple vector product. We rotate
the elements to get the r factor out, as in r̈c ·(ω̇×r) = r ·(r̈c ·ω̇). The factor (r̈c ·ω̇)
is independent of r, and therefore

∫

B

r̈c · (ω̇×r)d m =
�∫

B

r d m
�

· (r̈c · ω̇),

which, according to (9.1), evaluates to zero.

5. The integrand of the fifth integral consists of a triple vector product. We rotate the
elements to get the ṙ factor out, then replace ṙ =ω×r, as in

∫

B

r̈c · (ω× ṙ)d m =

∫

B

ṙ · (r̈c ·ω)d m

=

∫

B

(ω×r) · (r̈c ·ω)d m =
�

ω×
∫

B

r d m
�

· (r̈c ·ω),

which, according to (9.1), evaluates to zero.

6. To evaluate the sixth integral, we begin with simplifying the integrand.

(ω̇×r) · (ω× ṙ) = (ω̇×r) ·
�

ω× (ω×r)
�

= (ω̇×r) ·
�

(ω ·r)ω−‖ω‖2r
�

= (ω̇×r) ·
�

(ω ·r)ω
�

= (ω ·r)
�

(ω̇×r) ·ω
�

= (ω ·r)
�

(ω× ω̇) ·r
�

= (ω̇×ω) ·
�

− (ω ·r)r
�

= (ω̇×ω) ·
�

− (r⊗r)ω
�

= (ω̇×ω) ·
�

‖r‖2ω− (r⊗r)ω
�

= (ω̇×ω) ·
�

‖r‖2I − (r⊗r)
�

ω.
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Consequently,

∫

B

(ω̇×r) · (ω× ṙ)d m = (ω̇×ω) · Iω = (ω×Iω) · ω̇.

7. In the seventh integral, the factor r̈c is independent of the position vector r, and
therefore, according to (9.2) we have

∫

B
f · r̈c d m =

�∫

B
f · d m

�

r̈c =F · r̈c .

8. We rotate the elements of the the triple vector product in the integrand of the eighth
integral, integrate, and apply (9.2) to obtain

∫

B
f · (ω̇×r)d m =

∫

B
ω̇ · (r×f )d m = ω̇ ·

∫

B
r×f d m =M · ω̇.

9. In the integrand of the ninth integral we have ω× ṙ=ω× (ω×r), which contains
no acceleration terms and therefore may be ignored.

Putting all the pieces together we arrive at

G=
1

2
m‖r̈c‖

2+
1

2
ω̇ · I ω̇+(ω×Iω) · ω̇−F · r̈c −M · ω̇+ · · · , (9.4)

where the ellipses indicate terms that do not contain accelerations.

9.2 Example: Euler’s equations of motion

If the resultant applied force F is zero, then the body’s center of mass is not accelerated,

that is, r̈c = 0, and therefore then the Gibbs-Appell equations ∂G
∂ ω̇ = 0 reduce to

I ω̇+ω×Iω =M .

These are known as Euler’s equations of the motion of a rigid body. Letting I1, I2, I3 be the
body’s principal moments of inertia, and ω = (ω1,ω2,ω3) and M = (M1, M2, M3) be the
components of the angular velocity and the applied momentum along the principal axes
of inertia, this takes the form





I1 0 0
0 I2 0
0 0 I3









ω̇1

ω̇2

ω̇3



+





ω1

ω2

ω3



×









I1 0 0
0 I2 0
0 0 I3









ω1

ω2

ω3







=





M1

M2

M3



 ,

which simplifies to

I1ω̇1+(I3− I2)ω2ω3 =M1,

I2ω̇2+(I1− I3)ω3ω1 =M2,

I3ω̇3+(I2− I1)ω1ω1 =M3.
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9.3 Rotation about a fixed point

In Section 9.1 we developed a formula for the Gibbs function of the general motion of a
rigid body. In this section we develop the corresponding formula when an arbitrary point
of the rigid body is fixed in lab frame of reference, as in a spinning top.

Let’s write O for the fixed point, and let r be the position vector, relative to O, of an
arbitrary particle P of the body. As before, let ω be the body’s angular velocity. Then
ṙ =ω×r, and therefore the velocity of the point P is v = ṙ = ṙc +ω×r, and therefore
the acceleration of P is

v̇ = ω̇×r+ω× ṙ.

Substituting this in (9.3) and expanding, we get

G=
1

2

∫

B

‖ω̇×r‖2 d m+
1

2

∫

B

‖ω× ṙ‖2 d m+

∫

B

(ω̇×r) · (ω× ṙ)d m

−
∫

B

f · (ω̇×r)d m−
∫

B

f · (ω× ṙ)d m.

Now let’s analyze each of the nine integrals on the right-hand side.

1. The integrand ‖ω̇ × r‖2 of the first integral may be expanded through the iden-
tity (8.5) into the form ‖ω̇×r‖2 = ω̇ ·

�

‖r‖2I −r⊗r
�

ω̇. The integral of parenthe-
sized expression is the moment of inertia tensor, I , with respect to the fixed point
O, and therefore

1

2

∫

B
‖ω̇×r‖2 d m =

1

2
ω̇ · I ω̇.

2. In the second integral we substitute ṙ =ω×r, and thus obtain

1

2

∫

B

‖ω× ṙ‖2 d m =
1

2

∫

B

‖ω× (ω×r)‖2 d m

This expression contains no acceleration terms, and therefore it will drop out when
applying the Gibbs-Appell equations. Consequently we may safely ignore it. This
is indicated by the ellipses in the final result below.

3. To evaluate the third integral, we apply the identity

(ω̇×r) · (ω× ṙ) = (ω̇×ω) ·
�

‖r‖2I − (r⊗r)
�

ω

derived in Section 9.1. Then
∫

B
(ω̇×r) · (ω× ṙ)d m = (ω̇×ω) · Iω = (ω×Iω) · ω̇,

where I is the moment of inertia tensor with respect to the fixed point O.

4. We rotate the elements of the the triple vector product in the integrand of the fourth
integral and integrate apply (9.2) to obtain

∫

B

f · (ω̇×r)d m =

∫

B

ω̇ · (r×f )d m = ω̇ ·
∫

B

r×f d m =M · ω̇,

where M is the moment of the applied forces with respect to the fixed point O.



9.3. Rotation about a fixed point 61

5. In the integrand of the fifth integral we have ω× ṙ =ω× (ω× r), which contains
no acceleration terms and therefore may be ignored.

Putting all the pieces together we arrive at

G=
1

2
ω̇ · I ω̇+(ω×Iω) · ω̇−M · ω̇+ · · · , (9.5)

where the ellipses indicate terms that do not contain accelerations.

Remark 9.1. If the applied force density f is constant, then there is a simple formula for
the moment M . Specifically, we have

M =

∫

B
r×f d m =

�∫

B

r d m
�

×f = mrc ×f = rc ×F ,

where rc is the position vector of the body’s center of mass relative to O, and F is the
resultant of the external forces applied to the body.
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Chapter 10

The Gibbs-Appell
formulation of dynamics

The goal of this chapter is to derive the Gibbs-Appell equations of motion and then show
a few applications. For now, I have two versions of the proof here, one based on the
presentation in Lurie [12] and the other based on the presentation in Gantmacher [8].
The part based on Lurie is not quite finished; the one based on Gantmacher is pretty
complete.

Due to the reliance on two different presentations, the notation in the illustrations/ex-
amples is very inconsistent. At one point I will rewrite this chapter by merging the two
presentations into one, and introduce a consistent notation.

Some of the material from the previous chapters is repeated for the sake of making
this chapter somewhat self-contained.

10.1 Gibbs-Appell according to Lurie [12]

The goal of this (lengthy) section is to derive the Gibbs-Appell equations of motion (10.27).

10.1.1 Acceleration in generalized coordinates

Consider the dynamics of N point masses, whose position vectors relative to an origin o

are ri , i = 1, . . . ,N .
Suppose that the system’s configuration may be specified through n independent gen-

eralized coordinates q = 〈q1, . . . , qn〉. Thus, ri = ri (q, t ), and the velocities are given
by

vi = ṙi =
n∑

s=1

∂ ri

∂ qs

q̇s +
∂ ri

∂ t
, i = 1,2, . . . ,N . (10.1)

We differentiate the velocities to calculate the accelerations wi :

wi = v̇i =
n∑

s=1

∂ ri

∂ qs

q̈s +
n∑

k=1

n∑

s=1

∂ 2ri

∂ qk∂ qs

q̇k q̇s + 2
n∑

s=1

∂ 2ri

∂ qs∂ t
q̇s +

∂ 2ri

∂ t 2
. (10.2)

10.1.2 Ideal constraints and the fundamental equation of dynamics

Continuing the previous subsection’s analysis of the motion of N particles, let Fi+Ri be
the totality of forces acting on the particle i , where Fi is the resultant of the (known) ex-
ternally applied forces and Ri is the resultant of the (unknown) internal forces/reactions.
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Newton’s law of motion states that

miwi =Fi +Ri , i = 1, . . . ,N . (10.3)

We assume that the system’s constraints are ideal, that is, they do not perform work
in any virtual displacement. (See page 271 of Lurie’s book for a discussion.) Thus, for all
virtual displacements δri we have

N∑

i=1

Ri ·δri = 0. (10.4)

As a consequence, multiplying (10.3) by δri and summing over i eliminates the the reac-
tion forces Ri :

N∑

i=1

miwi ·δri =
N∑

i=1

Fi ·δri . (10.5)

Lagrange called this the fundamental equation of dynamics.

10.1.3 Virtual work and generalized force

The virtual displacement δri of particle i is related to the virtual displacement δq of the
generalized coordinates through

δri =
n∑

s=1

∂ ri

∂ qs

δqs .

The expression on the right-hand side of (10.5) is the virtual work performed by all
external forces Fi under the virtual displacements δri . It may be expressed as

N∑

i=1

Fi ·δri =
N∑

i=1

Fi ·

�
n∑

s=1

∂ ri

∂ qs

δqs

�

=
n∑

s=1

�
N∑

i=1

Fi ·
∂ ri

∂ qs

�

δqs =
n∑

s=1

Qs δqs ,

where we have let

Qs =
N∑

i=1

Fi ·
∂ ri

∂ qs

. (10.6)

Qs is called the generalized force corresponding to the generalized coordinate qs .

TODO: It can be shown that

∂ ri

∂ qs

=
∂ ṙi

∂ q̇s

=
∂ r̈i

∂ q̈s

.

In formulating the Gibbs-Appell equations, it works better if we replace (10.6) with

Qs =
N∑

i=1

Fi ·
∂ r̈i

∂ q̈s

. (10.7)
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10.1.4 Constraints

Suppose that the n generalized coordinates are related through l (generally nonholo-
nomic) constraints

n∑

s=1

ak s (q, t )q̇s + ak (q, t ) = 0, k = 1, . . . , l , (10.8)

or equivalently,

n∑

s=1

ak s (q, t )d qs + ak (q, t )d t = 0. k = 1, . . . , l . (10.9)

Consequently, virtual displacements δq satisfy

n∑

s=1

ak s (q, t )δqs = 0, k = 1, . . . , l . (10.10)

We assume that the l × n coefficient matrix ak s is full-rank, therefore (10.8) may be
solved for l of the generalized velocities in terms of the rest. Thus:

q̇r =
n−l∑

s=1

br,l+s (q, t )q̇l+s + br (q, t ), r = 1, . . . , l . (10.11)

Similarly, (10.10) may be solved for l of the virtual displacements in terms of the rest:

δqr =
n−l∑

s=1

br,l+s (q, t )δql+s , r = 1, . . . , l . (10.12)

Differentiating (10.11) we obtain an expression for the accelerations:

q̈r =
n−l∑

s=1

br,l+s (q, t )q̈l+s +
n−l∑

s=1

ḃr,l+s (q, t )q̇l+s +
n−l∑

s=1

ḃr (q, t ), r = 1, . . . , l .

For reasons which will become clear shortly, the terms which involve no generalized ac-
celerations in our calculations are irrelevant, therefore, to simplify the notation, we write
the above as

q̈r =
n−l∑

s=1

br,l+s (q, t )q̈l+s + · · · . (10.13)

From here on, the ellipsis “· · · ” in an equation indicates additive terms that involve no
generalized accelerations.

Now we apply (10.13) to eliminate the accelerations q̈r , r = 1, . . . , l from (10.2). We
have:

wi =
n∑

s=1

∂ ri

∂ qs

q̈s + · · ·

=
l∑

r=1

∂ ri

∂ qr

q̈r +
n−l∑

s=1

∂ ri

∂ ql+s

q̈l+s + · · ·

=
l∑

r=1

∂ ri

∂ qr

�
n−l∑

s=1

br,l+s (q, t )q̈l+s + · · ·

�

+
n−l∑

s=1

∂ ri

∂ ql+s

q̈l+s + · · ·

=
n−l∑

s=1

�

∂ ri

∂ ql+s

+
l∑

r=1

∂ ri

∂ qr

br,l+s (q, t )

�

q̈l+s + · · · .
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Upon introducing the notation

ci ,l+s =
∂ ri

∂ ql+s

+
l∑

r=1

∂ ri

∂ qr

br,l+s (q, t ), i = 1, . . . ,N , s = 1, . . . , n− l , (10.14)

the acceleration takes the form

wi =
n−l∑

s=1

ci ,l+s q̈l+s + · · · , i = 1, . . . ,N .

Since the terms hidden under the ellipsis do not involve the generalized accelerations, we
conclude that

∂ wi

∂ q̈l+s

= ci ,l+s . (10.15)

10.1.5 Virtual displacements

According to (10.12), a virtual displacement δri is given by

δri =
n∑

k=1

∂ ri

∂ qk

δqk =
l∑

r=1

∂ ri

∂ qr

δqr +
n−l∑

s=1

∂ ri

∂ ql+s

δql+s (10.16)

=
l∑

r=1

∂ ri

∂ qr

�
n−l∑

s=1

br,l+s (q, t )δql+s

�

+
n−l∑

s=1

∂ ri

∂ ql+s

δql+s

=
n−l∑

s=1

�

∂ ri

∂ ql+s

+
n−l∑

s=1

∂ ri

∂ qr

br,l+s (q, t )

�

δql+s

=
n−l∑

s=1

ci ,l+s δql+s ,

where ci ,l+s is as in (10.14). Then, in view of (10.15) we conclude that

δri =
n−l∑

s=1

∂ wi

∂ q̈l+s

δql+s , i = 1, . . . ,N . (10.17)

10.1.6 Back to the fundamental equation: Part 1

We use (10.17) to reformulate the fundamental equation of dynamics (10.5):

N∑

i=1

miwi ·δri =
N∑

i=1

miwi ·
n−l∑

s=1

∂ wi

∂ q̈l+s

δql+s ,

=
n−l∑

s=1

�
N∑

i=1

miwi ·
∂ wi

∂ q̈l+s

�

δql+s .

This motivates the introduction of a quantityG known as the Gibbs function or the energy
of acceleration:

G=
1

2

N∑

i=1

miwi ·wi ,
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We observe that
∂ G

∂ q̈l+s

=
N∑

i=1

miwi ·
∂ wi

∂ q̈l+s

,

whence
N∑

i=1

miwi ·δri =
n−l∑

s=1

∂ G

∂ q̈l+s

δql+s . (10.18)

Let us note that we consider G as a function of the form G = G(q, q̇l+1, . . . , q̇n , t ),
therefore the nonholonomic constraints (10.8) are automatically accounted for.

10.1.7 Back to the fundamental equation: Part 2

In the previous section we reformulated the left-hand side of the fundamental equation of
dynamics (10.5). In this section we reformulate its right-hand side. According to (10.16)
we have:

N∑

i=1

Fi ·δri =
N∑

i=1

Fi ·
n−l∑

s=1

ci ,l+s δql+s =
n−l∑

s=1

�
N∑

i=1

Fi · ci ,l+s

�

δql+s =
n−l∑

s=1

Q̃l+s δql+s ,

(10.19)
where we have let

Q̃l+s =
N∑

i=1

Fi · ci ,l+s , s = 1, . . . , n− l .

Upon substituting for ci ,l+s from its definition in (10.14), we see that

Q̃l+s =
N∑

i=1

Fi ·

�

∂ ri

∂ ql+s

+
l∑

r=1

∂ ri

∂ qr

br,l+s (q, t ),

�

=
N∑

i=1

Fi ·
∂ ri

∂ ql+s

+
l∑

r=1

�
N∑

i=1

Fi ·
∂ ri

∂ qr

�

br,l+s (q, t ),

which, according to (10.6) reduces to

Q̃l+s =Ql+s +
l∑

r=1

Qr br,l+s (q, t ), s = 1, . . . , n− l .

10.1.8 The Gibbs-Appell equations of motion

Substituting (10.18) and (10.19) in the fundamental equation of dynamics (10.5), we arrive
at

n−l∑

s=1

∂ G

∂ q̈l+s

δql+s =
n−l∑

s=1

Q̃l+s δql+s ,

that is,
n−l∑

s=1

�
∂ G

∂ q̈l+s

δql+s − Q̃l+s

�

δql+s .

Since the variations δql+s are independent, we conclude that

∂ G

∂ q̈l+s

= Q̃l+s , s = 1, . . . , n− l . (10.20)
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These are the Gibbs-Appell equation of motion.
The n− l second order differential equations (10.20), along with the l constraint equa-

tions (10.8) form a system of n differential equation in the n unknowns q1(t ), . . . , qn(t ).

10.1.9 Quasi-velocities

In a mechanical system with generalized coordinates q = 〈q1, . . . , qn〉, expressions of the
type

ωs =
n∑

k=1

ask (q, t )q̇k + as (q, t ), s = 1, . . . , n (10.21)

are called quasi-velocities. At times it is simpler to model a system in terms of suitably
defined quasi-velocities ω1, . . . ,ωn rather than generalized coordinates q1, . . . , qn . If the
number of naturally occurring quasi-velocities is n′ < n, then we extend their number to
n by defining the rest throughωs = q̇s , s = n′+ 1, . . . , n.

We assume that the quasi-velocities are defined so that the coefficient matrix ask is
nonsingular. It follows that (10.21) may be solved for q̇’s in terms of ω’s:

q̇r =
n∑

s=1

br s (q, t )ωs + br (q, t ), s = 1, . . . , n.

Additionally, with each equation in (10.21) we associate a differential as follows

dπs =
n∑

k=1

ask (q, t )d qk + as (q, t )d t , s = 1, . . . , n. (10.22)

Comparing (10.21) and (10.22) we see that

dπs =ωs d t . (10.23)

Remark: There is no reason to expect the expression on the right to be an exact dif-
ferential, therefore although dπs makes sense as defined, it should not be assumed that it
is the differential of a function πs .

For any arbitrary function ϕ(q, t ) we have:

dϕ =
n∑

r=1

∂ ϕ

∂ qr

d qr +
∂ ϕ

∂ t
d t

=
n∑

r=1

∂ ϕ

∂ qr

q̇r d t +
∂ ϕ

∂ t
d t

=
n∑

r=1

∂ ϕ

∂ qr

�
n∑

s=1

br s (q, t )ωs + br (q, t )

�

d t +
∂ ϕ

∂ t
d t

=
n∑

s=1

�
n∑

r=1

br s (q, t )
∂ ϕ

∂ qr

�

dπs +
n∑

r=1

br (q, t )
∂ ϕ

∂ qr

d t +
∂ ϕ

∂ t
d t .

We introduce the purely symbolic notation

∂ ϕ

∂ πs

=
n∑

r=1

br s (q, t )
∂ ϕ

∂ qr

, (10.24)
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whereupon the previous calculation leads to

dϕ =
n∑

s=1

∂ ϕ

∂ πs

dπs +

�
n∑

r=1

br (q, t )
∂ ϕ

∂ qr

+
∂ ϕ

∂ t

�

d t . (10.25)

Applying (10.24) to ri we get:

∂ ri

∂ πs

=
n∑

r=1

br s (q, t )
∂ ri

∂ qr

,

and therefore we obtain an expression for the velocity vector in terms of the quasi-coordinates:

vi = ṙi = TODO .. .

10.1.10 Appell’s equations of motion in terms of quasi-velocities

The main ingredients of Appell’s equations of motion (10.20) are the generalized accel-
erations q̈s . Those equations, however, are rarely used in that form. We will find that
expressing the equations in terms of quasi-velocities, defined below, leads to major simpli-
fication.

Thus, given the l constraints (10.8), define the quasi-velocities

ωk =
n∑

s=1

ak s (q, t )q̇s + ak (q, t ), k = 1, . . . , l , (10.26)

therefore the constraint equations take the form

ωk = 0, k = 1, . . . , l .

We solve (10.26) for the q̇ in terms of the quasi-velocities. Since the first l of the quasi-
velocities are zero, each q̇r is a function of ωl+s , s = 1, . . . , n − l . Then we express the
Gibbs function G as a function of

q1, . . . , qn , ωl+1, . . . ,ωn ω̇l+1, . . . ,ω̇n .

The rest of the derivation is horrendous, so we skip forward. . .

Then, it turns out that the Gibbs-Appell equation of motion take the form

∂ G

∂ ω̇l+s

=Ql+s , s = 1, . . . , l . (10.27)

Despite the complexity of the derivation, equations (10.27) are much easier to apply than
the original (10.20). In particular, these result in first order differential equations in quasi-
velocities, as apposed to the second order differential equations which we were getting
before.

10.2 Gibbs-Appell according to Gantmacher [8]

The goal of this (lengthy) section is to derive the Gibbs-Appell equations of motion (10.47)
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10.2.1 Pseudocoordinates

Consider the motion of N particles of masses mν and position vectors rν subject to d
algebraic and g differential constraints. Utilizing the d algebraic constraints, we inroduce
m = 3N−d generalized idependent coordinates q = 〈q1, . . . , qm〉, and express the system’s
configures in them as

rν = rν (q, t ), ν = 1, . . . ,N . (10.28)

From this it follows that

ṙν =
m∑

i=1

∂ rν
∂ qi

q̇i +
∂ rν
∂ t

, ν = 1, . . . ,N , (10.29)

and

δrν =
m∑

i=1

∂ rν
∂ qi

δqi , ν = 1, . . . ,N . (10.30)

The vectors rν and ṙν should satisfy the g differential constraints:

m∑

ν=1

lβν(rν , t ) · ṙν +Dβ(rν , t ) = 0, β= 1, . . . , g . (10.31)

Substituting for rν and ṙν from (10.28) and (10.29), the constraint equations take the
form

m∑

i=1

Aβi (q, t )q̇i +Aβ(q, t ) = 0, β= 1, . . . , g . (10.32)

Thus, the generalized coordinates q1, . . . , qm can take on arbitrary values, but the gen-
eralized vecocities q̇1, . . . , q̇m are constrained by (10.32).

Assuming that the g constraints in (10.32) are indepdendent, that is, the matrix Aβi

has full rank, we may solve for g of the velocities q̇1, . . . , q̇m in terms of the remaining
n = m − g = 3N − d − g , the number n being the system’s degrees of freedom. Thus,
the velocities q̇1, . . . , q̇n may take on arbitrary values, while the remaining g velocities are
determined from (10.32).

In practice, instead of the n generalized velocities noted above, it is often preferable
to use n linear combination of the generalized velocities, such as

π̇s =
m∑

i=1

fs i q̇i , i = 1, . . . , n. (10.33)

The quantities π̇s defined here are called pseudovelocities. The notation π̇s is entirely pro
forma—there is no requirement that the right-hand side of (10.33) be and exact derivative,
therefore although the notation π̇s is well-defined, there is no function πs which it is the
derivative of. Nevertheless, we will have occasions to refer to the un-dotted symbol πs

which has no predefind meaning, but we will define it in an appropriate and constent way.
The symbol πs is called a pseudocoordinate.

We impose an invertibility requirement on the definitions (10.33) as follows. Con-
sider the system of g + n = m equation obtained as the union of the equations (10.32)
and (10.33), and view it as a system of m linear equaitons in the m unknowns q̇1, . . . , q̇m .
We require that system to be invertible. Thus, the m generalized velocities may be ex-
pressed in terms of the n pseudovelocities:

q̇i =
n∑

s=1

hi s (q, t )π̇s + hi (q, t ), i = 1, . . . , m. (10.34)
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Thus, any set of m generalized velocities that satify the motion constraints (10.32) define
a corresponding set of pseudovelocities π̇s , and conversely, any set of n arbitrary pseu-
dovelocities define a set of generalized velocities that satify the motion constraints. The
important point here is that there is no constraint on the pseudovelocities.

Let us note that due to the constrain (10.32) on generalized velocities, the generalized
displacement are subject to the constraints

m∑

i=1

Aβi δqi = 0, β= 1, . . . , g . (10.35)

Then in view of the equations (10.33) also introduce the notation

δπs =
m∑

i=1

Aβi fs i δqi . s = 1, . . . , n. (10.36)

From what it has been said, the union of the equations (10.35) and (10.36) is invertivle
and the inverse has the form

δqi =
n∑

s=1

hi s δπs , i = 1, . . . , m. (10.37)

Thus, as argumed before, the expressions δπs may take on arbitrary values. The corre-
sponding qi obtained from (10.37) will automatically satisfy the constraints (10.35).

10.2.2 Work and generalized forces

Let us compute the work done by the external forces in a virtual displacement:

δW =
N∑

ν=1

Fν ·δrν =
N∑

ν=1

Fν ·
m∑

i=1

∂ rν
∂ qi

δqi =
m∑

i=1

� N∑

ν=1

Fν ·
∂ rν
∂ qi

�

δqi =
m∑

i=1

Qi δqi , (10.38)

where

Qi =
N∑

ν=1

Fν ·
∂ rν
∂ qi

, i = 1, . . . , m. (10.39)

Thus, we have obtained an expression for the virtual work in terms of the virtual
displacements δqi . Utilizing (10.37), we may express the virtual work in terms of the
δπs :

δW =
m∑

i=1

Qi

n∑

s=1

hi s δπs ,=
n∑

s=1

� m∑

i=1

hi s Qi

�

δπs ,=
n∑

s=1

Πs δπs , (10.40)

where we have let

Πs =
m∑

i=1

hi s Qi , s = 1, . . . , n. (10.41)

TheΠs defined above are called the generalized forces corresponding to the pseudocoordiante
πs , s = 1, . . . , n.
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10.2.3 Newton’s equations in pseudocoordinates

Equations (10.29) express the particle velocities in terms of the generalized velocities. Sub-
stituting for the latter from (10.34) we obtain the particle velocities in terms of the pseu-
dovelocities:

ṙν =
n∑

s=1

eν s (q, t )π̇s +eν (q, t ), ν = 1, . . . ,N . (10.42)

Then it follows that

δrν =
n∑

s=1

eν s (q, t )δπs , ν = 1, . . . ,N , (10.43)

and

r̈ν =
n∑

s=1

eν s (q, t )π̈s + · · · , ν = 1, . . . ,N .

where the ellipsis indicate terms that are free of the pseudoaccelerations π̈s , s = 1, . . . , n.
For future reference, let us note that

∂ r̈ν
∂ π̈s

= eν s . (10.44)

Consider the fundamental equations of dynamics:

δW −
N∑

ν=1

mν r̈ν ·δrν = 0.

Substituting from (10.40) and (10.43) this takes the form

n∑

s=1

Πs δπs −
N∑

ν=1

mν r̈ν ·
� n∑

s=1

eν s (q, t )δπs

�

= 0,

that is
n∑

s=1

Πs δπs −
n∑

s=1

� N∑

ν=1

mν r̈ν ·eν s (q, t )
�

δπs = 0,

and finally
n∑

s=1

�

Πs −
n∑

s=1

� N∑

ν=1

mν r̈ν ·eν s (q, t )
��

δπs = 0,

Since δπs are unconstrained, we conclude that

N∑

ν=1

mν r̈ν ·eν s (q, t ) =Πs , s = 1, . . . , n. (10.45)

10.2.4 The energy of the acceleration

We introduce the “energy of acceleration” which is defined as

U = U (q, π̇, π̈) =
1

2

N∑

ν=1

mν‖r̈ν‖
2. (10.46)
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Then, in view of (10.44), we see that

∂ U

∂ π̈s

=
N∑

ν=1

mν r̈ν ·
∂ r̈ν
∂ π̈s

=
N∑

ν=1

mν r̈ν ·eν s , s = 1, . . . , n,

which, in conjunction with (10.45) leads to

∂ U

∂ π̈s

=Πs , s = 1, . . . , n, (10.47)

This are Appell’s equations of motion.
Upon a close examination, equaions (10.47) are a system of n first order differential

equations in the n unknowns π̇s , s = 1, . . . , n. Note that there are no such things and πs ,
so the equations are indeed first order in π̇s .

The equations are not complete, however, since they also involve the generalized co-
ordinates qi , i = 1, . . . , n. To complete the system, we append to it the g equations (10.32)
and (10.33), as in:

∂ U

∂ π̈s

=Πs , s = 1, . . . , n,

m∑

i=1

Aβi (q, t )q̇i +Aβ(q, t ) = 0, β= 1, . . . , g ,

π̇s =
m∑

i=1

fs i q̇i , i = 1, . . . , n.

This combined set consists of 2n+ g equations. Let us note that n+ g = m, theefore we
have a system of m + n first order differential equations in the m + n unknwns {qi }

m
i=1

and {π̇s}
n
s=1.

10.3 A modification noted by Desloge

The generalized forces Πs in the Gibbs-Appel equations of motion (10.47) are computed
from (10.41), where, in turn, the Qi are computed from (10.39). Desloge [5,6] notes that
if we define

R=
N∑

ν=1

Fν · r̈ν , (10.48)

and express the result in terms of q, π̇, and π̈, then Πs may be computed more easily
through the formula

Πs =
∂ R

∂ π̈s

, s = 1, . . . , n. (10.49)

Consequently, (10.47) takes on the form

∂ U

∂ π̈s

=
∂ R

∂ π̈s

s = 1, . . . , n,

which motivates the introduction of the Gibbs function

G=U −R, (10.50)
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whereby the equations (10.47) are expressed as

∂ G

∂ π̈s

= 0, s = 1, . . . , n. (10.51)

I haven’t checked the details of the reasoning here, but in a couple of applications
which I calculated, (10.47) and (10.51) produce identical results.

10.4 The simple pendulum via Gibbs-Appell

Here we will apply the Gibbs-Appell’s equations (10.20) to derive the familiar equation
of motion of a simple pendulum. This is certainly an overkill; deriving the equations
of motion of a holonomic system such as a simple pendulum is done much more easily
through the Lagrangian approach. The power of the Gibbs-Appell approach manifests
itself when applied to nonholonomic systems, as we will see in the next section.

But for now, let’s look at the simple pendulum as illustrated in Figure 1.1 on page 2.
We take the angle ϕ as the problem’s generalized coordinate, express the position vector
r of the pendulum’s bob in terms of ϕ, then calculate the velocity and the acceleration:

r = ℓ〈sinϕ, cosϕ〉,

v = ṙ = ℓ〈ϕ̇ cosϕ,−ϕ̇ sinϕ〉,

w = v̇ = ℓ〈ϕ̈ cosϕ− ϕ̇2 sinϕ,−ϕ̈ sinϕ− ϕ̇2 cosϕ〉,

whence ‖w‖2 = ℓ2(ϕ̈2 + ϕ̇4). Considering that the force vector is f = 〈0, m g 〉, we are
lead to the Gibbs function

G=
1

2
m‖w‖2−f ·w

=
1

2
ℓ2(ϕ̈2+ ϕ̇4)+m gℓ(ϕ̈ sinϕ+ ϕ̇2 cosϕ).

Since the Gibbs-Appell equations of motion (10.20) reduce to ∂ G/∂ ϕ̈ = 0 in our case,
we conclude that

ℓ2ϕ̈+m gℓ sinϕ = 0,

which is the familiar equation of motion of a simple pendulum.

10.5 The Čaplygin sleigh

The Čaplygin sleigh consists of two point masses m1 and m2 connected through a rigid
massless rod of length ℓ. The two masses slide on a horizontal surface. The mass m2 can
slide freely on the surface with no resistance at all. Mass m1 rides on a sharp blade, as in
an ice hockey skate, which allows motion only in the direction of the rod. We wish to
describe the dynamics of the sleigh. Figure 10.1 depicts the sleigh. The position vectors
r1 and r2 of the masses m1 and m2 may be specified through the generalized coordinates
x(t ), y(t ), and ϕ(t ), shown on the figure. We have:

r1 = 〈x, y〉, r2 = r1+ 〈ℓcosϕ,ℓ sinϕ〉.

Since the mass m1 can slide only along the direction of the rod, the velocity ṙ1 = 〈ẋ , ẏ〉 is
parallel to the vector 〈cosϕ, sinϕ〉, therefore ẋ/cosϕ = ẏ/ sinϕ, that is,

ẋ sinϕ− ẏ cosϕ = 0. (10.52)
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ℓ

ϕ
m1

m2

(x, y)

Figure 10.1: The Čaplygin sleigh’s configuration may be described in terms of the gen-
eralized coordinates x, y , and ϕ.

This is the concrete version of the general constraint (10.8).
To calculate the Gibbs function, with begin with

v1 = ṙ1 = 〈ẋ , ẏ〉, v2 = ṙ2 = 〈ẋ + ℓϕ̇ sinϕ, ẏ + ℓϕ̇ cosϕ〉.

and then

w1 = v̇1 = 〈ẍ , ÿ〉,

w2 = v̇2 = 〈ẍ − ℓϕ̇
2 cosϕ− ℓϕ̈ sinϕ, ÿ − ℓϕ̇2 sinϕ+ ℓϕ̈ cosϕ〉.

Thus, we arrive at

G=
1

2
(m1+m2)(ẍ

2+ ÿ2)+
1

2
m2ℓ

2ϕ̈2

−m2ℓ(ϕ̈ sinϕ+ ϕ̇2 cosϕ)ẍ+m2ℓ(ϕ̈ cosϕ− ϕ̇2 sinϕ)ÿ +
1

2
m2ℓ

2ϕ̇4.

Now, following the idea in (10.11) of eliminating redundant generalized velocities, we
solve (10.52) for ẏ, and eliminate it from the equations. Substituting ẏ = ẋ tanϕ in the
above expression for G, we obtain

G=
m1+m2

2cos2ϕ
ẍ2+

1

cos3ϕ

�

(m1+m2)ẋ sinϕ−m2ℓϕ̇ cos2ϕ
�

ϕ̇ ẍ

+
1

2
m2ℓϕ̈

2+
1

cosϕ
m2ℓẋϕ̇ϕ̈+ · · · , (10.53)

where, as before, the ellipsis stands for terms that involve no accelerations.
There are no externally applied forces on the sleigh, therefore the equations of mo-

tion (10.20) reduce to
∂ G

∂ ẍ
= 0,

∂ G

∂ ϕ̈
= 0,

that is,

m1+m2

cos2ϕ
ẍ +

1

cos3ϕ

�

(m1+m2)ẋ sinϕ−m2ℓϕ̇ cos2ϕ
�

ϕ̇ = 0, (10.54a)

m2ℓϕ̈+
1

cosϕ
m2ℓẋϕ̇ = 0. (10.54b)

We may solve this system of two second order differential equations for the two un-
knowns x(t ) and ϕ(t ), subject to initial conditions x(0) = x0, ẋ(0) = ẋ0, ϕ(0) = ϕ0,
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and ϕ̇(0) = ϕ̇0. We may compute ẏ retroactively from the constraint equation ẏ(t ) =
ẋ(t ) tanϕ(t ), and then integrate it to find y(t ) subject to the initial condition y(0) = y0.

In practice, when solving the system on a computer, it is easier to adjoin the constraint
equation (10.52) to the two equations, as in

m1+m2

cos2ϕ
ẍ +

1

cos3ϕ

�

(m1+m2)ẋ sinϕ−m2ℓϕ̇ cos2ϕ
�

ϕ̇ = 0,

m2ℓϕ̈+
1

cosϕ
m2ℓẋϕ̇ = 0,

ẋ sinϕ− ẏ cosϕ = 0,

and solve the whole thing in one fell swoop for the three unknowns x(t ), y(t ), and ϕ(t )
by applying the initial conditions

x(0) = x0, ẋ(0) = ẋ0, ϕ(0) = ϕ0, ϕ̇(0) = ϕ̇0, y(0) = y0.

Note that there is no initial condition on ẏ(0) since the ẋ0 and ϕ0 determine ẏ(0) through
the constraint equation (10.52).

10.6 The Čaplygin sleigh revisited

In Section 10.5 we obtained the differential equations of motion of the Čaplygin sleigh
by applying the Gibbs-Appell equations (10.20). Here we solve the same problem by
applying the equations (10.27). Toward that end, let us introduce the generalized velocities
v andω defined through

v =
ẋ

cosϕ
, ω = ϕ̇.

Thus,ω is the rod’s angular velocity. To understand v, note that ẋ = v cosϕ, therefore v
is the speed (not velocity!) of the mass m1.

Now, substitute ϕ̇ =ω and ẋ = v cosϕ in (10.53) and simplify:

G=
1

2
(m1+m2)v̇

2+
1

2
m2ℓ

2ω̇2+m2ℓvωω̇−m2ℓω
2v̇

+
1

2

�

(m1+m2)v
2+m2ℓ

2ω2
�

ω2.

Equations (10.27) in this case take the form

∂ G

∂ v̇
= 0,

∂ G

∂ ω̇
= 0,

and thus,

(m1+m2)v̇ −m2ℓω
2 = 0, (10.55a)

m2ℓ
2ω̇+m2ℓvω = 0. (10.55b)

These are much more pleasant-looking equations compared to (10.54) which we had
obtained before. In fact, they are quite amenable to solving by hand. To wit, multiply the
fist equation by v, the second by ω, and add. We get

(m1+m2)vv̇ +m2ℓ
2ωω̇ = 0,



10.7. The problem from page 63 of Gantmacher 77

that is �
1

2
(m1+m2)v

2+
1

2
m2ℓ

2ω2
�·
= 0,

whence

E =
1

2
(m1+m2)v

2+
1

2
m2ℓ

2ω2 (10.56)

is a constant of the motion. (In fact, it is the sleigh’s kinetic energy.) The value of E is
determined by the initial conditions v(0) andω(0).

Now, multiplying (10.55a) by ℓ/2 and adding to (10.56), we get

1

2
(m1+m2)ℓv̇ +

1

2
(m1+m2)v

2 = E ,

that is,

ℓv̇ + v2 = α2, where α2 =
2E

m1+m2

.

We solve this separable equation for v subject to the initial condition v(0) = v0, and obtain

v(t ) = α tanh
hα

ℓ
t + tanh−1 v0

α

i

. (10.57)

We see that limt→∞ v(t ) = α, that is, the sleigh’s speed approaches α in the long run.
Now that we have v(t ), the angular velocityω(t )may be computed easily. From the

differential equation ℓv̇ + v2 = α2 we get v̇ = 1
ℓ (α

2 − v2). We substitute this expression

for v̇ in (10.55a), then solve forω2:

ω(t )2 =
m1+m2

m2ℓ2

�

α2 − v(t )2
�

, (10.58)

where v(t ) is given in (10.57). Note, in particular, that v(t )→ α implies ω(t )→ 0, that
is, the sleigh’s spin slows down to zero in the long run.

Remark 10.1. Let’s observe that (a) From the definition ẋ = v cosϕ of the speed v we
see that a positive v implies motion in which m1 trails m2; and (b) Since tanh is positive
when its argument is positive, the solution (10.57) indicates that regardless of the initial
conditions, v(t ) will be positive for sufficiently large t . Putting these two observations
together, we conclude that regardless of the sleigh’s initial conditions, in the long run it
will orient itself so that m1 trails m2 in its motion.

10.7 The problem from page 63 of Gantmacher

A “dumbbell” consists of a rigid weighless rod of length ℓ with point masses of m each
attached to its ends. The rod is free to move in a vertical plane, other than the requirement
that the velocity of its center should point along the rod itself. Find the equaitons of
motion.

We introduce a Cartesian coordiante system xy, where x is horizontal and y points
up. Let x(t ) and y(t ) be the coordinates of the rod’s center, and let ϕ(t ) be the rod’s angle
relative to the x axis. We use x, y, and ϕ as the problem’s generalized coordiantes. Then
rc = 〈x, y〉 is the position vector of the rod’s midpoint. The position vectors of the two
masses are

r1 = rc −
ℓ

2
〈cosϕ, sinϕ〉, r2 = rc +

ℓ

2
〈cosϕ, sinϕ〉.
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Now we calculate the velocities of the masses:

ṙ1 = ṙc −
ℓ

2
ϕ̇〈− sinϕ, cosϕ〉, ṙ2 = ṙc +

ℓ

2
ϕ̇〈− sinϕ, cosϕ〉, (10.59)

and their accelerations:

r̈1 = r̈c −
ℓ

2
ϕ̈〈− sinϕ, cosϕ〉−

ℓ

2
ϕ̇2〈−cosϕ,− sinϕ〉,

r̈2 = r̈c +
ℓ

2
ϕ̈〈− sinϕ, cosϕ〉+

ℓ

2
ϕ̇2〈−cosϕ,− sinϕ〉.

It follows that

S =
1

2
m‖r̈1‖

2 +
1

2
m‖r̈2‖

2 = m‖r̈c‖
2+

mℓ

2
(ϕ̈2+ ϕ̇4) = m(ẍ2 + ÿ2) +

mℓ

2
(ϕ̈2+ ϕ̇4)

(10.60)

The formulation above indicates that we have made the tacit choice of using x, y andϕ
as generalized coordiantes for this problem. Although these coordiantes are independent
of each other algebraically, they are related to each other through their derivatives, since
according to the problem’s statement, the velocity of the rod’s midpoint is constrainted
to lie along the rod’s direction. This says that the velocity vector rc = 〈ẋ , ẏ〉 makes an
angle of of ϕ with the x axis, as the rod does, therefore ẏ/ẋ = tanϕ, or equivalently,

ẋ sinϕ = ẏ cosϕ. (10.61)

This is the problem’s nonholonomic constraint.
To relate this to the general theorey developed in the previous sections, the problem

has m = 3 generalized coordinates x, y and ϕ; and it has g = 1 nonholonomic con-
straint (10.61). Therefore its degrees of freedom are n = m− g = 2. Again, acoording to
the preceding general theory, we should express the generalized velocities ẋ, ẏ and ϕ̇, and
the constraint (10.61), in terms of n = 2 independent and unconstrained pseudovelocities
π̇1 and π̇1.

There is no unique choice of the pseudovelocities π̇1 and π̇1. All is needed the require-
ment that the pseudovelocities (10.33) togehter with the constraint equations (10.32) be
solvable for the generalized veclocities (10.34). Table 10.1 shows a few possible choices for
the problem at hand. In Choice (1) we take pseudovelocities π̇1 and π̇1 to be the actual
generalized velocities ẋ and ϕ̇. The generalized velocity ẏ then is determiend through the
constraint (10.61).

Choice (2) defines the pseudovelocity π̇1 to be the left-hand side of the constraint
equation (10.61) which is a reasonable choice to make.

Choice (3) sets π̇1 to the seemingly odd expression ẋ/cosϕ. The resulting expressions
for ẋ and ẏ are quite simple, in the sense that they are easy to differentiate; we are going
to need ẍ and ÿ to calculate the energy of acceleration. The derivatives of ẋ and ẏ will be
messier expressions with the Choices (1) and (2).

On a closer scrutinty, the setting of π̇1 = ẋ/cosϕ is not that odd after all since it has
a pleasant physical interpretation. Let v be the (scalar) speed of the rod’s midpoint. Since
the velocity points along the rod’s direction, then it should be clear that ẋ = v cosϕ and
ẏ = v sinϕ. Comparing the ẋ and ẏ values in Choice (3), we see that π̇1 is the speed v.

We adopt the pseudovelocities of Choice (3) for the rest of this section. To ease the
notational burden, however, we replace the ageneric symbols π̇1 and π̇2 with the more
meaningful notation v = π̇1 andω = π̇2. In particular, according to Choice (3) we have

ẋ = v cosϕ, ẏ = v sinϕ. (10.62)
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Choice (1)







π̇1 = ẋ

π̇2 = ϕ̇

ẋ sinϕ = ẏ cosϕ

⇐⇒







ẋ = π̇1

ẏ = π̇1 tanϕ

ϕ̇ = π̇2

Choice (2)







π̇1 = ẋ sinϕ

π̇2 = ϕ̇

ẋ sinϕ = ẏ cosϕ

⇐⇒







ẋ = π̇1/ sinϕ

ẏ = π̇1/cosϕ

ϕ̇ = π̇2

Choice (3)







π̇1 = ẋ/cosϕ

π̇2 = ϕ̇

ẋ sinϕ = ẏ cosϕ

⇐⇒







ẋ = π̇1 cosϕ

ẏ = π̇1 sinϕ

ϕ̇ = π̇2

Table 10.1: There is no unique choice of pseudovelocities for a given problem. The
choices given here are three out of infinite such possibilities for the dumbbell
problem.

To express the energy of acceleration S in (10.60) in terms of the quasivelocities, we dif-
ferentiate (10.62):

ẍ = v̇ cosϕ− vϕ̇ sinϕ = v̇ cosϕ− vω sinϕ, (10.63a)

ÿ = v̇ sinϕ+ vϕ̇ cosϕ = v̇ sinϕ+ vω cosϕ, (10.63b)

whence ẍ2+ ÿ2 = v̇2+ v2ω2, and (10.60) changes to

S =m(v̇2+ v2ω2)+
mℓ

2
(ω̇2+ω4) = mv̇2+

mℓ

2
ω̇2+ · · · ,

where the ellipses indicates terms which are free of the acceleration terms v̇ and ω̇.
A force of F = 〈0,−m g 〉 acts on each of the two masses. Therefore

F · r̈1+F · r̈2 =F · (r̈1+ r̈2) = 2F · r̈c

= 2〈0,−m g 〉 · 〈ẍ , ÿ〉=−2m g ÿ =−2m g (v̇ sinϕ+ vω cosϕ).

In the last step we have substituted for ÿ from (10.63b).
We conclude that the Gibbs function is

G =mv̇2 +
mℓ

2
ω̇2+ 2m g v̇ sinϕ+ · · · ,

where, as usual, the ellipses indicates terms which are free of the accelerations.
Then the Appell equations ∂ G/∂ v̇ = 0 and ∂ G/∂ ω̇ = 0 lead to

v̇ + g sinϕ = 0, ω̇ = 0.

To complete the system, we append the constraint equations (10.62). Therefore the com-
plete set of differential equations of motion are

ẋ = v cosϕ,

ẏ = v sinϕ.

ϕ̇ =ω,

v̇ + g sinϕ = 0,

ω̇ = 0.
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These form a set of five first order differential equations in the five unknowns x, y, ϕ,ω,
and v.

This system is solvable in terms of elementary functions, as demostrated in Gant-
macher. Plugging the raw system into Maple does not produce a good result immediately,
but we can maneuver it toward the right solution as follows.

The equations above impliy thatω is a constant, and thereforeϕ =ωt+ϕ0. Therefore
the system shrinks to

ẋ = v cosϕ,

ẏ = v sinϕ.

v̇ + g sinϕ = 0,

where ϕ =ωt+ϕ0. In solving this reduced system, Maple distinguishes between the cases
where ω is zero and nonzero. If ω is nonzero, we get something like Gantmacher’s. In
particular, y consists of a linear term in t plus trigonometric function. If, however, ω is
zero and ϕ0 =π/2, we get a −1/2g t 2 term, as expected.

Note: In the above, I calclated the Gibbs function a la Desloge. We may calculate it a la
Gantmacher if we wish. Here is how.

What I have written above as the quasivelocity v, Gantmacher calls it π̇. The equation
ẏ = v sinϕ then takes the form ẏ = π̇ sinϕ, whereby we introduce the virtual displace-
ment of the quasicoordinate π through δy = (sinϕ)δπ.

In accordance with (10.59), the virtual displacements of the masses are

δr1 = δrc −
ℓ

2
〈− sinϕ, cosϕ〉δϕ, δr2 =δrc +

ℓ

2
〈− sinϕ, cosϕ〉δϕ,

A force of F = 〈0,−m g 〉 acts on each of the two masses therefore their virtual work
is

δW =F ·δr1+F ·δr2 =F · (δr1+δr2) = 2F ·δrc

= 2〈0,−m g 〉 · 〈δx,δy〉 =−2m g δy =−2m g sinϕδπ. (10.64)

However δW = Πδπ+Φδϕ, where Π and Φ are the generalized forces corresponding
to the quasicoordinates π and ϕ. We conclude that Π = −2m g sinϕ and Φ = 0. The
equations of motion are

∂ S

∂ π̈
=Π,

∂ S

∂ ϕ̈
= Φ,

which agree with what we obtained earlier.



Chapter 11

Rigid body dynamics

The previous chapter’s formulation of the Gibbs-Appell equations focused on the dy-
namics of point masses. Extending the results to rigid bodies is a matter of replacing
the summations with integrals, which is easy in principle, but provides some challenges
in practice. It is possible, with some work, to systematize the treatment and arrive at a
general formula for the Gibbs function which applies to all rigid bodies. Lurie [12] and
Desloge [5], for instance, have such formulas. Lurie’s formula is packaged quite nicely.
Desloge’s result is a little more general but it is not packaged as nicely. Furthermore,
Desloge’s formula is actually incorrect(!) due to a false assumption made in its derivation.
Desloge [6] points out his error and offers a corrected formula.

In the following sections I will offer a blending of Lurie’s and Desloge’s approaches
which combines the nice packaging of the former with the generality of the latter.

11.1 Three frames of reference

It turns out that to derive the equation of motion of a rigid body, it is quite convenient
to use not one, not two, but three(!) special purpose frames of reference simultaneously.
In most applications a frame of reference takes the form of a right-handed orthonormal
triad and a point called the frame’s origin.

The stationary frame is defined by a triad {i,j,k} and the associated origin O. As the
name implies, the stationary frame is fixed (not moving). Typically the i and j

vectors lie in a horizontal plane and the vector k points upward, but that’s not a
requirement.

With the stationary frame we associate a Cartesian coordinate system whose x, y,
and z axes are aligned with the i, j and k vectors, respectively.

Ultimately, the purpose of rigid body dynamics is to express a body’s motion rela-
tive to the stationary frame.

The body frame of reference is defined by a triad {b1,b2,b3} and an associated origin o.
The triad is firmly attached to the body, and therefore moves with it. There are
no restrictions on the choice of the origin, nor on the triad’s orientation. When-
ever possible, however, we set the origin at the body’s center of mass, and orient
the triad along the body’s principal axes of inertia, since that results in significant
simplifications.

81
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Since the triad {b1,b2,b3} is affixed to the body, the triad’s angular velocity is exactly
the body’s angular velocity ω.

The intermediate frame of reference is defined by a triad {e1,e2,e3} and an associated
origin O ′. The choice of this frame is entirely up to you. You choose it to fit the
specific application at hand. The triad may rotate and the origin may move as you
wish.

Remark 11.1. What’s the purpose of the intermediate frame of reference? In
formulating the equations of motion, some quantities are more easily expressed in
once coordinate system than the other. For instance, the position of the body’s
center of mass is best expressed in terms of the stationary frame, while its spin is
best express in terms of the body reference frame. Some other quantities may be
difficult to express in either of those, but may be easy in terms of a special purpose
intermediate frame of reference. All three frames are related through orthogonal
transformations, therefore we may readily translate the information from one frame
to another, as needed.

11.2 The energy of acceleration for a rigid body

Consider a rigid bodyB of mass m equipped with a body reference frame with an origin
o and a orthonormal triad {b1,b2,b3}, as in Section 11.1. Let ro be the position vector of

the point o relative to the stationary frame, that is ro =
−→
Oo, and letIo be body’s moment

of inertia relative to o. Furthermore, let c be the body’s center of mass, and let ρc =
−→oc .

Then we have12

∫

B

1

2
‖r̈‖2 d m =

1

2
m‖r̈o‖

2+m(r̈o × ω̇) ·ρc +m(r̈o ×ω) · (ω×ρc )

+
1

2
ω̇ · Ioω̇+(ω̇×ω) · Ioω+ · · · , (11.1)

where the ellipsis indicates terms that do not involve accelerations, and are, therefore,
immaterial to the Gibbs-Appell equations of motion.

If the origin o of the body frame is chosen to coincide with the body’s center of mass,
then ρc = 0 and (11.1) reduces to

∫

B

1

2
‖r̈‖2 d m =

1

2
m‖r̈c‖

2+
1

2
ω̇ · Ic ω̇+(ω̇×ω) · Icω+ · · · , (11.2)

where rc is the position vector, relative to the stationary frame, of the body’s center of
mass, and Ic is the moment of inertia tensor relative to the center of mass.

11.3 The rolling coin

Here we analyze the somewhat challenging dynamics of a coin, modeled as a thin homo-
geneous disk of radius a, rolling without slipping on a horizontal floor; see Figure 11.1.

12This is a combination of equation (4.11.8) in Lurie [12] and (22) in Desloge [6]. I haven’t personally verified
them yet.
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x

y

z

i
j

k

ϕ

a
e1

e2

e3,b3

b1

b2

ψ

θ

(x, y,a sinθ)

Figure 11.1: The rolling coin’s configuration is specified through five generalized coor-
dinates x, y , θ, ϕ, and ψ, as shown.. The no-slip conditions at the contact
point with the floor imposes two nonholonomic constraints.

11.4 The three frames

Figure 11.1 depicts the coin along with the three frames of reference discussed in Sec-
tion 11.1. Specifically, the {i,j,k} triad of the stationary frame has its origin on the floor
and the k vector points upward; the {b1,b2,b3} triad of the body frame has its origin at
the disk’s center and the vector b3 is perpendicular to the disk.

We choose an intermediate frame with its origin at the disk’s center, and an associated
orthonormal triad {e1,e2,e3} oriented as follows. The vector e3 is perpendicular to the
disk, and therefore coincides with b3. The vector e1 is horizontal. Then we set e2 =
e3×e1.

The body frame is fixed to the coin, by definition, and rotates with it. The position of
the body frame relative to the intermediate frame is described by a single parameter, the
angle ψ, between the vectors b1 and e1 as indicated on the figure.

The coin’s position relative to the stationary frame is specified through five generalized
coordinates x, y, θ, ϕ, and ψ, where θ is the angle between the coin’s plane and the floor;
ϕ is the angle between the vectors i and e1 (it measures how the coin’s plane is rotated
relative to the k vector); and (x, y,a sinθ) are the coordinates of the coin’s center.

11.5 The angular velocity

From the geometry of Figure 11.1 it is evident that e1 = cosϕ i+ sinϕ j. The unit vector
e2 makes an angle θ with the floor and its horizontal projection is perpendicular to e1,
therefore its horizontal and vertical projections are (− sinϕ i+ cosϕ j)cosθ and sinθk.
We conclude that e2 = (− sinϕ i+ cosϕ j)cosθ+ sinθk. The vector e3 may be found
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with a similar geometric reasoning, or just by computing e3 = e1×e2. Here is a summary:

e1 = cosϕ i+ sinϕ j, (11.3a)

e2 =− sinϕ cosθ i+ cosϕ cosθ j + sinθk, (11.3b)

e3 = sinϕ sinθ i− cosϕ sinθ j+ cosθk. (11.3c)

We will need the time derivatives of these vectors shortly, so let’s compute them right
now. We have

ė1 =−ϕ̇ sinϕ i+ ϕ̇ cosϕ j.

It follows that

ė1 ·e1 = 0, ė1 ·e2 = ϕ̇ cosθ, ė1 ·e3 =−ϕ̇ sinθ,

therefore, according to (8.7), we have ė1 = ϕ̇ cosθe2− ϕ̇ sinθe3. In a similar manner we
compute ė2 and ė2 and express them in terms of the basis {e1,e2,e3}. Here is what we
get:

ė1 = ϕ̇ cosθe2− ϕ̇ sinθe3, (11.4a)

ė2 =−ϕ̇ cosθe1+ θ̇e3, (11.4b)

ė3 = ϕ̇ sinθe1− θ̇e2. (11.4c)

Now let us examine the body frame. Referring to Figure 11.1 we have:

b1 = cosψe1+ sinψe2, (11.5a)

b2 =− sinψe1+ cosψe2, (11.5b)

b3 = e3. (11.5c)

We differentiate these with respect to t , and substitute from (11.4) for the derivatives of
ei , and obtain

ḃ1 =−(ϕ̇ cosθ+ ψ̇) sinψe1+(ϕ̇ cosθ+ ψ̇)cosψe2+(−ϕ̇ sinθ cosψ+ θ̇ sinψ)e3,
(11.6a)

ḃ2 =−(ϕ̇ cosθ+ ψ̇)cosψe1− (ϕ̇ cosθ+ ψ̇) sinψe2+(ϕ̇ sinθ sinψ+ θ̇ cosψ)e3,
(11.6b)

ḃ3 = ϕ̇ sinθe1− θ̇e2. (11.6c)

Remark 11.2. The expressions for ḃ3 in (11.6c) and ė3 in (11.4c) agree since b3 = e3.

Equations (11.6) may be used in conjunction with (7.5) to calculate the body’s angular
velocity vector. Toward that end we compute

ωb
1 = ḃ2 ·b3 =−(ϕ̇ cosθ+ ψ̇)cosψ (e1 ·b3)− (ϕ̇ cosθ+ ψ̇) sinψ (e2 ·b3)

+ (ϕ̇ sinθ sinψ+ θ̇ cosψ) (e3 ·b3),

where the superscript b is to remind us that ωb
1 is the component of the vector ω in

the the body frame. On the right-hand side we substitute for b3 from (11.5), simplify the
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result, and arrive atωb
1 = ϕ̇ sinθ sinψ+ θ̇ cosψ. Computing theωb

2 andωb
3 components

in the same way, we arrive at:

ωb
1 = ḃ2 ·b3 = ϕ̇ sinθ sinψ+ θ̇ cosψ,

ωb
2 = ḃ3 ·b1 = ϕ̇ sinθ cosψ− θ̇ sinψ,

ωb
3 = ḃ1 ·b2 = ϕ̇ cosθ+ ψ̇.

Then from the definition (7.3) of the angular velocity vector we conclude that

ω = (ϕ̇ sinθ sinψ+ θ̇ cosψ)b1+(ϕ̇ sinθ cosψ− θ̇ sinψ)b2+(ϕ̇ cosθ+ ψ̇)b3. (11.7)

This is the coin’s angular velocity vector expressed in the {b1,b2,b3} basis. By substituting
for {b1,b2,b3} from (11.5), we obtain and expression for ω in the {e1,e2,e3} basis:

ω = θ̇e1+ ϕ̇ sinθe2+(ϕ̇ cosθ+ ψ̇)e3. (11.8)

We see that the components of ω along the intermediate basis are particularly simple.
Therein lies the significance of the choice of our intermediate basis. Those components
play a central role in what comes next, therefore we name them simplyωi ,

13

ω1 = θ̇, ω2 = ϕ̇ sinθ, ω3 = ϕ̇ cosθ+ ψ̇, (11.9)

Note that each ωi is a linear combination of the generalized velocities θ̇, ϕ̇, and ψ̇, and
therefore each ωi is a quasi-velocity as defined in Section 10.1.9. Well, actually ω1 is not

a true quasi-velocity since it is the derivative of the generalized velocity θ̇, but the other
two are honest quasi-velocities since they are not derivatives of anything.

Solving (11.9) as a linear system of three equations for the three unknowns θ̇, ϕ̇, and

ψ̇, we get:

θ̇=ω1, ϕ̇ =
1

sinθ
ω2, ψ̇=ω3−ω2 cotθ. (11.10)

Equations (11.9) and (11.10) establish a one-to-one correspondence between the gen-

eralized velocities θ̇, ϕ̇, ψ̇, and the quasi-velocitiesω1,ω2,ω3. We may formulate the rest
of the analysis in terms of one or the other set of variables. We will do it in terms of the
ω’s since the derivations are easier that way.

For future reference, let us make a note of the following formula whose derivation is
left as an exercise:

ω̇ = [ω̇1+ω2ω3−ω
2
2 cotθ]e1+[ω̇2−ω3ω1+ω1ω2 cotθ]e2+ ω̇3 e3. (11.11)

11.6 The no-slip constraint

The position vector of the coin’s center in the stationary frame is

rc = x i+ y j + a sinθk. (11.12)

The vector ρ = −ae2 extends from the coin’s center to its contact point with the floor.
Therefore, according to (7.7), the velocity, relative to the coin’s center, of a point on the

13To be consistent with the b superscript introduced earlier for the components of ω in the {b1,b2,b3} basis,
we should have named its {e1,e2,e3} components with superscripts e . We refrain from doing that, however, to
reduce clutter.
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coin’s rim at the contact point is given by ω×ρ. Consequently, the velocity of that point
relative to the stationary frame is ṙc + ω × ρ. Since the velocity of the ground at the
contact point is zero, then to prevent slippage, we need

ṙc +ω×ρ= 0. (11.13)

Upon substituting for rc from (11.12), for ω from (11.8), for the ei vectors from (11.3),
and simplifying the result, and we get

�

ẋ−aθ̇ sinϕ sinθ+(ϕ̇ cosθ+ψ̇)cosϕ
�

i+
�

ẏ+aθ̇ cosϕ sinθ+(ϕ̇ cosθ+ψ̇)cosϕ
�

j = 0.

Then we apply (11.10) to change over to quasi-velocities and arrive at

�

ẋ + aω3 cosϕ− aω1 sinϕ sinθ
�

i+
�

ẏ + aω3 sinϕ+ aω1 cosϕ sinθ
�

j = 0.

This leads us to a pair of scalar equations

ẋ =−a(ω3 cosϕ−ω1 sinϕ sinθ), ẏ =−a(ω3 sinϕ+ω1 cosϕ sinθ) (11.14)

which express the rolling coin’s nonholonomic constraints. We use these to eliminate ẋ
and ẏ from the rest of the computations.

11.7 The acceleration of the coin’s center

From (11.12) we have ṙc = ẋ i+ ẏ j+ aθ̇ cosθk.. We substitute for ẋ and ẏ from (11.14),
then we apply (11.10) and arrive at

ṙc =−a(ω3 cosϕ−ω1 sinϕ sinθ) i− a(ω3 sinϕ+ω1 cosϕ sinθ) i+ aω1 cosθk.

Then we differentiate this once again to find the acceleration:

r̈c = a
�

ω̇1 sinϕ sinθ− ω̇3 cosϕ+ω2
1 sinϕ cosθ+ω1ω2 cosϕ+ω2ω3 sinϕ/ sinθ

�

i

+ a
�

− ω̇1 cosϕ sinθ− ω̇3 sinϕ−ω2
1 cosϕ cosθ+ω1ω2 sinϕ−ω2ω3 cosϕ/ sinθ

�

j

+ a
�

ω̇1 cosθ−ω2
1 sinθ

�

k. (11.15)

Here we have applied (11.10) to eliminate the generalized velocities θ̇, ϕ̇, ψ̇ in favor of
the quasi-velocities ω1, ω2, ω3. Finally, we compute ‖r̈c‖

2 which forms a part of the
problem’s Gibbs function:

‖r̈c‖
2 = a2[ω̇2

1 + ω̇
2
3 + 2ω̇1ω2ω3− 2ω1ω2ω̇3]+ · · · , (11.16)

where the ellipsis indicate terms that involve no acceleration terms ω̇1, ω̇2, ω̇3.

11.8 The rotational acceleration

The body frame {b1,b2,b3} is lined up with the coin’s principal moment of inertia axes,
therefore the moment of inertia tensor relative to the coin’s center is

I = αb1⊗ b1+αb2 ⊗ b2+βb3 ⊗ b3.

where

α=
1

4
ma2, β=

1

2
ma2. (11.17)
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Therefore we have:

Iω = α(b1 ·ω)b1+α(b2 ·ω)b2+β(b3 ·ω)b3,

I ω̇ = α(b1 · ω̇)b1+α(b2 · ω̇)b2+β(b3 · ω̇)b3.

Inserting for ω̇ from (11.11) we get:

ω̇ · I ω̇ = α(ω̇1+ω2ω3−ω
2
2 cotθ)2+α(ω̇2 −ω3ω1+ω1ω2 cotθ)2+ ω̇2

3

= αω̇2
1 +αω̇

2
2 +βω̇

2
3 − 2α(ω̇1ω2−ω1ω̇2)(ω2 cotθ−ω3)

+α(ω2
1 +ω

2
2)(ω2 cotθ−ω3)

2. (11.18)

The final term is free of accelerations, therefore it may be dropped when forming the
Gibbs function.

In a similar manner we also calculate

(ω̇×ω) · Iω = (β−α)(ω̇1ω2−ω1ω̇2)ω3

− (β−α)(ω2
1 +ω

2
2)(ω2 cotθ−ω3)ω3. (11.19)

Again, the final term is free of accelerations, therefore it may be dropped when forming
the Gibbs function.

According to (11.2) and (10.7), The Gibbs function is

G=

∫

B

1

2
‖r̈‖2 d m−

∫

B

F · r̈ d m

=
1

2
m‖r̈c‖

2+
1

2
ω̇ · I ω̇+(ω̇×ω) · Iω− (−m gk) · r̈c ,

which may be evaluated by putting together (11.15), (11.16), (11.18), and (11.19):

G=
1

2
ma2[ω̇2

1 + ω̇
2
3 + 2ω̇1ω2ω3− 2ω1ω2ω̇3]+

1

2
αω̇2

1 +
1

2
αω̇2

2 +
1

2
βω̇2

3

− (ω̇1ω2−ω1ω̇2)(αω2 cotθ−βω3)+m gaω̇1 cosθ+ · · · ,

where, as always, we have dropped terms which do not depend on the accelerations. Fi-
nally, substituting for α and β from (11.17), we arrive at

G= ma2
h5

8
ω̇2

1 +
1

8
ω̇2

2 +
3

4
ω̇2

3 −
1

4
ω̇1ω2(ω2 cotθ− 6ω3)

+
1

4
ω1ω̇2(ω2 cotθ− 2ω3)−ω1ω2ω̇3

i

+m gaω̇1 cosθ.

Then from the equations ∂ G/∂ ω̇1 = 0, ∂ G/∂ ω̇2 = 0, ∂ G/∂ ω̇3 = 0 we get

5

4
ω̇1−

1

4
ω2(ω2 cotθ− 6ω3)+

g

a
cosθ = 0,

1

4
ω̇2+

1

4
ω1(ω2 cotθ− 2ω3) = 0,

3

2
ω̇3−ω1ω2 = 0.

Clearly this set of differential equations is under-determined, since it depend on θ which

is also an unknown. However, from (11.10) we see that θ̇ = ω1. Adjoining this to the
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above gives us a system of four first order differential equations in the four unknownsω1,
ω2, ω3, and θ.

In practice, we extend the system by adjoining all three of the equations from (11.10),
and the two equations from (11.14). Thus, we obtain a system of eight first order differ-
ential equations in the eight unknowns ω1, ω2, ω3, θ, ϕ, ψ, x, and y, whose solution
completely determines the coin’s motion. Here is the system in its full glory:

ω̇1−
1

5
ω2(ω2 cotθ− 6ω3)+

4g

5a
cosθ= 0,

ω̇2+ω1(ω2 cotθ− 2ω3) = 0,

ω̇3−
2

3
ω1ω2 = 0,

θ̇ =ω1,

ϕ̇ =
1

sinθ
ω2,

ψ̇=ω3−ω2 cotθ.

ẋ =−a(ω3 cosϕ−ω1 sinϕ sinθ),

ẏ =−a(ω3 sinϕ+ω1 cosϕ sinθ).

(11.20)

Remark 11.3. We need eight initial conditions to go with these equations. The ini-
tial conditions on x, y, θ, ϕ, and ψ determine the coin’s initial position relative to the
stationary axes, so they may be specified in the obvious way. The initial conditions on
ω1,ω2, andω3 require a more careful consideration. You may recall from (11.9) that the
ω’s were defined as the components of the coin’s angular velocity along the intermediate
frame {e1,e2,e3}. Since the intermediate frame has no immediate physical manifesta-
tion, it is not easy to make up meaningful initial values for theω’s. We do note, however,
that (11.9) defines the ω’s in terms of the generalized coordinates and their velocities,

which are easier to grasp. Therefore in practice you will make up initial values for θ̇, ϕ̇,

and ψ̇ as desired, then use (11.9) to determine the initial values for ω1,ω2, andω3.

Exercises

11.1. Derive (11.11).

11.2. Give the details of the computation which leads from (11.13) to (11.14).

11.3. Derive (11.19).

11.4. Equip a rigid body B with a body reference frame {b1,b2,b3} whose origin co-
incides with the body’s center of mass. Additionaly, suppose that the {b1,b2,b3}
is aligned with the body’s moment of inertia axes, so that the moment of inertia
tensor takes the form

I = I1b1⊗ b1+ I2b1⊗ b2+ I3b1⊗ b3.

Letω1,ω2,ω3 be the components of the body’s angular velocity along the {b1 ,b2,b3}
vectors, that is

ω =ω1b1+ω2b2+ω3b3.

Show that:
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1. ω̇ · I ω̇ = I1ω̇1
2+ I2ω̇2

2+ I3ω̇3
2.

2. (ω̇×ω) · Iω = I1(ω̇2ω3− ω̇3ω2)ω1

+I2(ω̇3ω1− ω̇1ω3)ω2+ I3(ω̇1ω2− ω̇2ω1)ω3.

Conclude that the equations of motion of a freely spinning rigid body are

I1ω̇1+(I3− I2)ω2ω3 = 0,

I2ω̇2+(I1− I3)ω3ω1 = 0,

I3ω̇3+(I2− I1)ω1ω2 = 0.

11.5. Solve the system of differential equations (11.20) and produce an animation of the
coin’s motion.
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Chapter 12

Quaternions

12.1 The quaternion algebra

A quaternion, as a mathematical object, is a pair [a,u ], where a ∈R andu ∈ E3. Multipli-
cation by a scalar cp, the sum p+q, and the product p ◦ q of the quaternions p= [a, u ]
and q= [ b , v ] are defined according to

cp= c[a, u ]= [ ca, cu ], (c ∈R) (12.1)

p+ q= [a, u ]+ [ b , v ]= [a+ b , u+v ], (12.2)

p ◦ q= [a, u ] ◦ [ b , v ]= [ab −u ·v, av+ bu+u×v ]. (12.3)

Note that addition is commutative but multiplication, due to the presence of the u× v

term, is not.
As a special case of (12.3), we have

[ c , 0 ] ◦ [a, u ]= c[a, u ] and [a, u ] ◦ [ c , 0 ]= c[a, u ],

therefore the quaternion [ c , 0 ] acts exactly like the scalar c under quaternion multiplica-
tion. In particular, the quaternion [1, 0 ] is the multiplicative identity in the quaternion
algebra.

In view of the observation above, we adopt the convention of writing c instead of
of [ c , 0 ] when there is no chance of confusion. This is analogous to writing α, instead
of α+ 0i when dealing with complex numbers. By the same token, we write u instead
of [0, u ]. The quaternion c = [ c , 0 ] is called a scalar quaternion or just a scalar if the
meaning is clear from the context. Similarly, the quaternionu= [0,u ] is called a vectorial
quaternion, or just a vector, for short.14

As a consequence of the convention adopted above, the notation u ◦ v, where u and
v are vectors, makes sense, and evaluates to

u ◦ v = [0, u ] ◦ [0, v ]= [ −u ·v, u×v ]. (12.4)

You may want to think of u ◦ v as the “quaternion product” of the vectors u and v,
but note that the product is a quaternion, not a vector, unless u · v = 0, in which case
u ◦ v =u×v.

14The terminology is not quite standardized. What we have called a scalar quaternion is also called a real
quaternion, and what we have called a vectorial quaternion is also called a pure quaternion or imaginary quater-
nion.
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The conjugate p∗ of the quaternion p= [a, u ] is defined as p∗ = [a,−u ]. Let us note
that

p∗ ◦ p= [a2+ ‖u‖2, 0 ]= (a2+ ‖u‖2)[1, 0 ]= a2+ ‖u‖2 = |p|2, (12.5)

where we have defined
|p|= (a2+ ‖u‖2)1/2.

The quantity |p| is called the norm (or modulus) of the quaternion p. A quaternion p
such that |p|= 1 is called a unit quaternion.

If |p| is nonzero, then we may rearrange (12.5) into

� 1

|p|2
p∗
�

◦ p= 1,

which shows that the parenthesized expression is the left multiplicative inverse of p. Re-
peating the calculation, beginning with p ◦ p∗, we see that the parenthesized expression
is also the right multiplicative inverse of p. We conclude that if |p| is nonzero, then p has
a multiplicative inverse, p−1, given by

p−1 =
1

|p|2
p∗, (|p| 6= 0).

The special case unit criterion arises quite frequently:

p−1 = p∗, (|p|= 1).

Remark 12.1. This section has touched on just a few basic concepts of the quaternion
algebra which will be needed in what follows. For an in-depth study of quaternions see
Altmann [1]. For a leisurely introduction to quaternions, with applications to computer
graphics, see Hanson [9].

12.2 The geometry of the quaternions

The goal of this section is to elucidate the geometric interpretations of a few features
related to quaternion which play significant roles in the dynamics of rigid bodies.

12.2.1 The reflection operator

As we noted in connection with (12.4), the quaternion product of two vectors is not a
vector in general. Thus, it may come as a surprise that the triple product v ◦ u ◦ v is
always a vector:

v ◦ u ◦ v = ‖v‖2u− 2(v ·u)v, for all u,v ∈ E3. (12.6)

The proof of this identity is left as an exercise.
In particular, if v is a unit vector, let’s call it n, then we have

n ◦ u ◦ n= u− 2(n ·u)n, if ‖n‖= 1. (12.7)

The right-hand side has a well-known geometric interpretation. Suppose the tails of the
vectors n and u are attached to a common point o, and let P be a plane through o and
perpendicular to n, as illustrated in Figure 12.1, and let Q be the plane of the vectors n
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u− 2(n ·u)n

n

u

P

Q

o

Figure 12.1: whatever

and u. Then it is simple exercise to show that u−2(n ·u)n is the mirror reflection of the
vector u through the plane P . Thus, we have established the following:

Theorem 12.1. The reflection operator Rn into a plane with a unit normal n is given by

Rnu=n ◦ u ◦ n, u ∈ E3. (12.8)

12.2.2 The rotation operator

Consider two planes, P1 and P2, which have unit normals n1 and n2 and make a dihedral
angle ϕ/2 with each other. In the sketch shown in Figure 12.2a, the planes are shown
edgewise, therefore they appear as lines. The line of intersection of the two planes appears
as a point in that figure since we are looking at it head on. The unit vector n = (n1 ×
n2)/‖n1×n2‖ lies in the direction of that line of intersection.

Let Rn1
and Rn2

be the reflection operators, as in the previous subsection, into the

planes P1 and P2. Pick an arbitrary vector u, apply Rn1
to it, and then apply Rn2

the the

result. Figure 12.2b shows the effect.
To gain insight into the structure of this geometric construction, it helps to introduce

the plane P ′1 which is the reflection of P1 into P2. The plane P ′1, seen edgewise, is shown
as a dashed line in Figure 12.2c.

In Figure 12.2d we have added the vector Rn2
u. It should be evident from the sym-

metries of the diagram that Rn2
u coincides with the reflection of Rn2

Rn1
u into P ′1.

As a rotation by the angle ϕ about the vector n takes the plane P1 to the plane P ′1, it is
evident that the same rotation takes the vector u to the vector Rn2

Rn1
u. Thus, we have

established the following:

Lemma 12.2. Suppose the planes P1 and P2, with unit normals n1 and n2, make a dihedral
angle ofϕ/2 with each other. Let Rn1

and Rn2
be the reflection operators into the planes P1 and

P2, and let Rn,ϕ be the rotation operator by angleϕ about the vectorn= (n1×n2)/‖n1×n2‖.
Then Rn,ϕ = Rn2

Rn1
.

In the previous section we characterized a reflection operator as a triple quaternion
product. That, along with the lemma above enables us to express a rotation operator in
terms of quaternions. This is the subject of the following:
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P1

n1

P2

n2

ϕ

2

n

(a) Planes P1 and P2, shown edge-
wise, have unit normals n1 and
n2, and make a dihedral angle
of ϕ/2. The unit vector n =
(n1×n2)/‖n1×n2‖ lies along
their intersection, and points
out of the picture, toward you,
therefore it is not visible.

P1

n1

P2

n2

ϕ

2
u

Rn1
u

Rn2
Rn1

u

(b) Reflecting the arbitrary vector u into the
plane P1 produces R

n1
u. Reflecting the lat-

ter into the plane P2 results in R
n2

R
n1

u.

P1

n1

P2

n2

ϕ

2
u

Rn1
u

Rn2
Rn1

u

P ′1

ϕ

2

(c) We introduce the auxiliary plane P ′1 (shown as a
dashed line) which is the reflection of the plane P1
into the plane P2, therefore it makes a dihedral an-
gle of ϕ/2 with P2.

P1

n1

P2

n2

ϕ

2
u

Rn1
u

Rn2
Rn1

u

Rn2
u

P ′1

ϕ

2

n

(d) The vector R
n2

produced by reflecting u into P2 coin-

cides with the reflection of R
n2

R
n1

u into P ′1. From

the symmetries of the diagram it is evident that a rota-
tion by an angle ϕ about the vector n takes the plane
plane P1 to the plane P ′1. It follows that the same ro-
tation takes the vector u to the vector R

n2
R
n1

u, thus

proving that R
n,ϕ = R

n2
R
n1

.

Figure 12.2: The sequence of diagrams is in effect a “proof without words” of
Lemma 12.2. It shows clearly that the composition of the two reflections
R

n1
and R

n2
into the planes P1 and P2 is equivalent to a rotation by an

angle ϕ about the vector n which lies in the intersection of those planes.
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Theorem 12.3. The operator Rn,ϕ of rotation by angle ϕ about a unit vector n has an

associated unit quaternion

q= [ cos
ϕ

2
, n sin

ϕ

2
] (12.9)

so that

Rn,ϕu= q ◦ u ◦ q∗, for all u ∈ E3. (12.10)

Proof. Pick any two planes P1 and P2 which intersect along a line parallel to n, and whose
dihedral angle is ϕ/2. Then according to Theorem 12.1 we have

Rn1
u=n1 ◦ u ◦ n1. Rn2

u=n2 ◦ u ◦ n2,

and according to Lemma 12.2 we have Rn,ϕ = Rn2
Rn1

. Thus, we compute

Rn,ϕu= Rn2
Rn1

u

= Rn2
(n1 ◦ u ◦ n1)

=n2 ◦ (n1 ◦ u ◦ n1) ◦ n2

= (n2 ◦ n1) ◦ u ◦ (n1 ◦ n2).

Let q=n2 ◦n1. We leave it as an exercise for you to show that q∗ =n1 ◦n2. We conclude
that Rn,ϕ = q ◦ u ◦ q∗, which proves (12.10). To show that q has the form given in (12.9),

observe that the dihedral angle between the planes P1 and P2 is ϕ/2, therefore the vectors
n1 and n2, which are perpendicular to those planes, also form an angle of ϕ/2. Then
applying (12.4) we see that

q=n2 ◦ n1 = [ −n2 ·n1, n2×n1 ]= [ − cos
ϕ

2
, −n sin

ϕ

2
]=−[ cos

ϕ

2
, n sin

ϕ

2
].

The negative sign in the final expression is immaterial since q appears twice in the rotation
formula (12.10). Finally, the assertion that q is a unit quaternion follows immediately from
the form of (12.9).

Remark 12.2. The planes P1 and P2 and their associated unit normals n1 and n2 which
enter the proof above are conveniences for the proof. They do not appear in the theorem’s
final result.

Remark 12.3. If we split the quaternion q in (12.10) in (12.10) into components, as in
q= [ q0, q ], and expand the triple quaternion product, we get

Rn,ϕu= q ◦ u ◦ q∗ = (q2
0 −‖q‖

2)u+ 2(q ·u)q+ 2q0(q×u). (12.11)

We may be more explicit by setting q0 = cosϕ/2 and q =n sinϕ/2 and simplifying (12.10)
to get

Rn,ϕu= q ◦ u ◦ q∗ = (n ·u)n+
�

u− (n ·u)n
�

cosϕ+(n×u) sinϕ,

which has an obvious geometric interpretation if you look at it closely.
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12.3 Angular velocity

Theorem 12.3 shows that a rotation operator in E3 may be expressed in terms of an as-
sociated unit quaternion q defined in (12.9). A rotation that varies with the time t then
may be expressed in terms of a time-dependent unit quaternion q(t ) of that form. An
arbitrarily fixed vector r0 ∈ E3 then rotates to the position r(t ) according

r(t ) = q(t ) ◦ r0 ◦ q∗(t ). (12.12)

Suppose that the instantaneous angular velocity vector under this rotation at time t is
ω(t ). Then, according to (7.7), we have:

ṙ(t ) =ω(t )×r(t ). (12.13)

Comparing (12.12) and (12.13) we expect a relationship between q(t ) and ω(t ). This is
stated in the following:

Theorem 12.4. Let q(t ) be any time-varying unit quaternion, and let ω(t ) the angular
velocity of the rotation (12.12) engendered by q(t ). Then we have

ω = 2q̇ ◦ q∗. (12.14)

Proof. Since q(t ) is a unit quaternion, we have |q(t )|2 = q(t ) ◦ q∗(t ) = 1, and therefore
q̇ ◦ q∗+q ◦ q̇∗ = 0. But since q ◦ q̇∗ = (q̇ ◦ q∗)∗, it follows that q̇ ◦ q∗+(q̇ ◦ q∗)∗ = 0, which
indicates that the scalar part of the quaternion q̇ ◦ q∗ is zero, that is, q̇ ◦ q∗ is a vectorial
quaternion. This justifies defining the vector ω through the quaternion product (12.14).
It remains to show that ω thus defined is indeed the motion’s angular velocity.

Toward that end, let us compute ṙ by differentiating (12.12):

ṙ = q̇ ◦ r0 ◦ q∗+ q ◦ r0 ◦ q̇∗.

We note q−1 = q∗ by virtue of q being a unit quaternion, therefore r = q ◦ r0 ◦ q
∗ implies

that

r0 ◦ q∗ = q∗ ◦ r and q ◦ r0 = r ◦ q.

Therefore, the expression for ṙ takes the form

ṙ = q̇ ◦ q∗ ◦ r+r ◦ q ◦ q̇∗

= q̇ ◦ q∗ ◦ r+r ◦ (q̇ ◦ q∗)∗

=
�1

2
ω

�

◦ r+r ◦
�1

2
ω

�∗
=

1

2
(ω ◦ r+r ◦ ω∗).

We leave it as an easy exercise to show that evaluating the right-hand side with the help of
the identity (12.4) leads to

ṙ =ω×r (12.15)

which shows that ω defined in (12.14) is indeed the sought-after angular velocity.
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12.4 A differential equation for the quaternion rotation

Recall the definitions of the three frames of reference in Section 11.1 in connection with
the motion of a rigid body. The stationary frame is equipped with a non-moving orthonor-
mal triad {i,j,k}. The body frame is equipped with an orthonormal triad {b1,b3,b3}
which is fixed to the body and movies with it.

At any time t , the body triad {b1,b3,b3} may be viewed as the rotated version of the
stationary triad {i,j,k}. Let q(t ) be the unit quaternion associated with that rotation.
Thus,

b1(t ) = q(t ) ◦ i ◦ q∗(t ), b2(t ) = q(t ) ◦ j ◦ q∗(t ), b3(t ) = q(t ) ◦ k ◦ q∗(t ), (12.16)

which may be expanded with the help of (12.11), if desired.
Let ω be the body’s angular velocity vector, and ω1, ω2, and ω3 be ω’s components

in the body frame:

ω =ω1b1+ω1b2+ω1b3. (12.17)

Substituting from (12.16) we get

ω =ω1q ◦ i ◦ q∗+ω2q ◦ j ◦ q∗+ω3q ◦ k ◦ q∗

= q ◦ (ω1i+ω2j+ω3k) ◦ q∗.

Then from (12.14) it follows that

2q̇ ◦ q∗ = q ◦ (ω1i+ω2j+ω3k) ◦ q∗,

whence

q̇=
1

2
q ◦ (ω1i+ω2j+ω3k). (12.18)

This system of first order differential equations expresses the evolution of q in time. To-
gether with the equations in (12.16), these determine the body’s orientation in space. We
will adjoin them to the differential equations of dynamics to obtain a complete system of
differential equations that describes the body’s motion.

The differential equation’s initial condition, q(0), which specifies the body’s initial
orientation, is a unit quaternion, as any quaternion associated with a rotation ought to be.
A question arises whether the solution q(t ) of the differential equation is a unit quaternion
for all t . The answer is yes, as it follows from Theorem 12.5 below.

Remark 12.4. Equation (12.17) defines the components ω1, ω2, ω3 of the angular
velocity vectorω along the body triad. Beware that the sumω1i+ω2j+ω3k that appears
in (12.18) does not add up to ω.

Theorem 12.5. The differential equation

q̇(t ) = q(t ) ◦ a(t ), q(0) = q0

for the quaternion q(t ), where a(t ) is an arbitrary time-dependent vector, preserves the norm,
that is |q(t )| = |q0| for all t . In particular, if q0 is a unit quaternion, then q(t ) is a unit
quaternion for all t .

Proof. We calculate the derivative of |q(t )|2 and substitute for q̇ from the differential
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equation:

d

d t
|q|2 =

d

d t
(q ◦ q∗) = q̇ ◦ q∗+ q ◦ q̇∗

= (q ◦ a) ◦ q∗+ q ◦ (q ◦ a)∗ = (q ◦ a) ◦ q∗+ q ◦ (a∗ ◦ q∗).

In the last step we have used the quaternion conjugation property (p ◦ q)∗ = q∗ ◦ p∗; see
Exercise 12.5. Now note that for any vector a we have a∗ = [0, a ]∗ = [0, −a ] = −a.

Then it follows that d
d t
|q|2 = 0, therefore the norm of q remains constant.

For computing purposes, we express q in components, as in

q= [ q0, q1i+ q2j+ q3k ],

whereby (12.18) expands to the system of differential equations

d

d t







q0

q1

q2
q3






=

1

2







0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1
ω3 ω2 −ω1 0













q0

q1

q2
q3







. (12.19)

12.5 Unbalanced ball rolling on a horizontal plane

Consider a solid ball of radius R and uniformly distributed total mass of M . We know
that the ball’s moment of inertia tensor relative to its center is 2/5M R2 times the identity
tensor.

We embed a point of mass m, let’s call it a “slug”, within that ball at a distance a ≤ R
away from its center. We wish to study the motion of the composite object when it rolls
without slipping on a horizontal plane.

We set up the usual {i,j,k} orthonormal triad as a stationary frame, with the origin
on the horizontal plane and k pointing upward. We set up the body frame with its origin
at the ball’s center, and the body triad {b1,b2,b3} oriented so that the slug is at ab3 relative
to the ball’s center, and we let q(t ) be the unit quaternion associated with the rotation that
takes {i,j,k} to {b1,b2,b3}.

Let rc = x i+y j+Rk be the position vector of the ball’s center relative to the station-
ary frame. The body’s position at any time is given by the vector rc and the quaternion
q.

We express the ball’s angular velocity ω in terms of its components along the body
triad as in (12.17), and note that the derivative ω̇ is given by (7.4) on page 44.

12.5.1 The no-slip condition

The velocity of the point on the ball which is at contact with the horizontal plane is
ṙc +ω× (−Rk), which should be zero if there is to be no slippage at the contact point.
Therefore we have ṙc = Rω×k, that is, ẋ i+ ẏ j = Rω×k. It follows that ẋ = Rω×k ·i=
Rk× i ·ω = Rj ·ω. Similarly, ẏ =−R i ·ω. The conditions

ẋ = Rj ·ω and ẏ =−R i ·ω (12.20)

are this problem’s nonholonomic constraints.
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The from ṙc = ẋ i+ ẏ j and r̈c = ẍ i+ ÿ j it follows that

ṙc = R
�

(j ·ω) i− (i ·ω)j
�

, (12.21a)

r̈c = R
�

(j · ω̇) i− (i · ω̇)j
�

. (12.21b)

We will use (12.21b) to eliminate ẍ and ÿ from the Gibbs function.

12.5.2 The Gibbs function and the equations of motion

The Gibbs function of the system is the sum of the Gibbs functions corresponding to the
homogeneous ball and to the slug. We calculate them separately, and then add them up.

The Gibbs function of the homogeneous ball is

G1 =
1

2

�

M‖r̈c‖
2+

2

5
M R2(ω̇2

1 + ω̇
2
2 + ω̇

2
3)
�

.

Let us note that due to (12.21b) we have

‖r̈c‖
2 = R2

�

(j · ω̇)2+(i · ω̇)2
�

= R2
�

‖ω̇‖2− (k · ω̇)2
�

= R2
�

ω̇2
1 + ω̇

2
2 + ω̇

2
3 − (k · ω̇)

2
�

, (12.22)

therefore

G1 =
1

2
M R2

�7

5
(ω̇2

1 + ω̇
2
2 + ω̇

2
3)− (k · ω̇)

2
�

.

To compute the slug’s Gibbs function, let us write r for its position vector. We have:

r = rc + ab3.

Then we calculate the slug’s velocity

ṙ = ṙc + aḃ3 = ṙc + aω× b3,

and its acceleration

r̈ = r̈c + a
�

ω̇× b3+ω× ḃ3

�

= r̈c + a
�

ω̇× b3+ω× (ω× b3)
�

= r̈c + a
�

ω̇× b3+(ω ·b3)ω− (ω ·ω)b3

�

.

Noting that ω ·b3 =ω3 and

ω̇× b3 = (ω̇1b1+ ω̇2b2+ ω̇3b3)× b3 =−ω̇1b2+ ω̇2b1,

the acceleration simplifies to

r̈ = r̈c + a
�

− ω̇1b2+ ω̇2b1+ω3ω−‖ω‖
2b3

�

= r̈c + a
�

− ω̇1b2+ ω̇2b1+ω3(ω1b1+ω2b2+ω3b3)− (ω
2
1 +ω

2
2 +ω

2
3)b3

�

,

which we group as

r̈ = r̈c + a
�

(ω̇2+ω3ω1)b1− (ω̇1−ω2ω3)b2− (ω
2
1 +ω

2
2)b3

�

,

and then substitute from (12.21b), for r̈c and arrive at

r̈ = R
�

(j · ω̇) i− (i · ω̇)j
�

+ a
�

(ω̇2+ω3ω1)b1− (ω̇1−ω2ω3)b2− (ω
2
1 +ω

2
2)b3

�

.
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Finally, we compute

G2 =
1

2
m‖r̈‖2− (−m g k) · r̈,

and then substitute for b1, b2, and b3 from (12.16).
The fully expanded expression ofG2 is horrendously large. For all practical purposes

it is impossible to compute it with bare hands. Doing it with a symbolic computational
software, such as MAPLE or MATHEMATICA, however, is not a problem.

The composite ball’s Gibbs function os G=G1+G2. The equations of motion are

∂ G

∂ ω̇1

= 0,
∂ G

∂ ω̇2

= 0,
∂ G

∂ ω̇3

= 0,

These along with the two equations (12.20) and the four equations (12.19) form a system
of nine first order differential equations in the nine unknowns x, y, ω1, ω2, ω3, q0, q1,
q2, q3.

The initial conditions for the first five have immediate physical meanings and their
specifications are intuitive and easy. The x and y place the ball’s center at a desired loca-
tion, and ω1, ω2, ω3 impart it an initial velocity. (Remember that are the components
of the angular velocity in the body triad. The ball’s initial orientation is specified through
q0, q1, q2, q3 as follows.

Begin with the ball oriented so that the body triad {b1,b2,b3} is lined up with the
stationary {i,j,k} triad. Then apply a rotation Rn,ϕ about a unit vector n and rotation

angle ϕ to orient the ball as desired. Any orientation in space may be achieved through
the appropriate choices of n and ϕ. The quaternion associated with that rotation is given
in (12.9). Therefore

q0(0) = cos
ϕ

2
, q1(0) = n1 sin

ϕ

2
, q2(0) = n2 sin

ϕ

2
, q3(0) = n3 sin

ϕ

2
. (12.23)

Don’t forget that n= n1 i+ n2 j + n3 k must be a unit vector.

Remark 12.5. To make an animation of the rolling ball, it is suffices to design the ball
graphics in a reference position, say where the body axes is aligned with the stationary
axes. Then, after having solved the differential equations and computed x(t ), y(t ), q0(t ),
q1(t ), q2(t ), q3(t ), rotate the reference ball about the vector q1(t ) i+ q2(t )j+ q3(t )k by
the angle ϕ(t ) obtained from q0(t ) = cosϕ(t )/2, that is, ϕ(t ) = 2cos−1 q0(t ). Then trans-
late the rotated ball’s center to the location x(t ) i+ y(t )j+ Rk. MAPLE’s plottools
package provides the commands rotate() and translate() for rotating and trans-
lating graphics objects. Figure 12.3 shows the ball in its reference position (on the left),
and a frame from an animation sequence (on the right).

Exercises

12.1. Prove the identity (12.6).

12.2. In Figure 12.1, n is a unit vector to the plane P , and u is an arbitrary vector. Why
is u− 2(n ·u)n the mirror reflection of u through the plane P?

12.3. Let q=n2 ◦ n1, where n1 and n2 are any two vectors. Show that q∗ =n1 ◦ n2.
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Figure 12.3: On the left is a sample graphics of the unbalanced ball in the reference
position. On the right is a frame from an animation sequence which in-
cludes the trace of the ball’s contact point with the floor. This particular
animation was produced with the parameters R = 1, a =−3/5. M = 100,
m = 25, g = 1. The initial orientation was set through n = i, ϕ = π/2;
see (12.23). The remaining initial conditions were x(0), y(0),ω1(0),ω3(0)
all zeros, andω2(0) = 0.1.

12.4. Verify that the quaternion multiplication is associative, that is

p ◦ (q ◦ r) = (p ◦ q) ◦ r.

12.5. Show that (p ◦ q)∗ = q∗ ◦ p∗ for all quaternion p and q.

12.6. Show that |p ◦ q|= |p| |q| for all quaternions p and q.

12.7. Show that n ◦ n=−1 for all unit vectors n. Note the parallel with the imaginary
numbers: i2 =−1.

12.8. Supply the details that lead to (12.15).

12.9. Produce an animation of the unbalanced ball of Section 12.5.
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