
How Accessible is the Process of Web Interface Design?

Kirk Norman, Yevgeniy Arber and Ravi Kuber

UMBC

knorman1@umbc.edu

ABSTRACT

This paper describes a data gathering study, examining the

experiences and day-to-day challenges faced by blind web

interface developers when designing sites and online

applications. Findings have revealed that considerable amounts

of time and cognitive effort can be spent checking code in text

editing software and examining the content presented via the

web browser. Participants highlighted the burden experienced

from committing large sections of code to memory, and the

restrictions associated with assistive technologies when

performing collaborative tasks with sighted developers and

clients. Our future work aims to focus on the development of a

multimodal web editing and browsing solution, designed to

support both blind and sighted parties during the design process.

Categories and Subject Descriptors

H.5.2 User Interfaces – User-centered design

General Terms

Human Factors.

Keywords

Accessibility, blind, HTML, screen reader, web development.

1. INTRODUCTION
While the accessibility barriers encountered by individuals who

are blind have been well documented by researchers, relatively

limited attention has been given to the needs of interface

developers who use assistive technologies to support their work.

Research suggests that the greatest challenges facing blind

developers include (1) the cognitive burden of committing the

structure of program to memory to reduce parsing errors, (2)

verifying program consistency using a screen reader, (3)

difficulties accessing controls on editors, (4) lack of assistive

tools integrating the environment for compiling and debugging

programs, (5) once compiled, determining the position of content

on the interface [1-5]. Furthermore, the restrictive nature of

screen readers can impact the process of spatially-distributing

content on a graphical user interface (e.g. a web page), resulting

in designs which may not look as visually-appealing as those

developed by sighted developers. As a result of the accessibility

challenges faced, blind developers are thought to be at a

competitive disadvantage in the workplace [5].

In this paper, we describe the findings from a data gathering

study conducted to identify the ways in which blind web

developers develop and edit web sites and online applications.

We examined the difficulties faced when designing interfaces

independently or when working as part of a team with sighted

peers.

2. RELATED WORK
Non-visual interfaces have been developed to overcome the

digital divide experienced accessing programming environments.

Examples include the development of a scripting tool to create

graphical forms in Visual Basic, without needing the ‘point and

click’ approach used by sighted users [4]. Speech cues enable

the user to manipulate the size the forms and objects. Tran et al.

[5] developed a code editor and accessible interface to compile

C# programs. Compiling errors are outputted using speech,

which can then be remedied by the user. Sanchez and Agauyo [3]

developed the Audio Programming Language, where commands

are dynamically presented in a circular command list. The aim

was to alleviate the need to commit commands to memory,

enabling the programmer to focus their attention on the design

process itself.

Assistive solutions have yet to focus upon supporting the process

of web interface design. We aim to identify the experiences of

web interface designers who are blind. The long-term goal is to

design a solution to better support their needs.

3. DATA GATHERING STUDY
Six legally-blind participants who had experience with web

development were recruited for the study. Interviews were

conducted with each participant, either by telephone or by video

conference. Questions covered a range of areas including use of

assistive technologies, experience coding web pages/applications

using HTML, scripting languages, and strategies to design for

both blind and sighted audiences.

3.1 Participant Demographics

Participants recruited for the study were aged between 29 and 48

(6 male 0 female). Two participants described themselves as

congenitally blind, while the other four lost their sight in later

life. All six identified themselves as intermediate to expert users

of screen reading technologies. Five used JAWS as their primary

assistive screen reading tool, with one participant alternating

between JAWS and NVDA.

4. RESULTS AND DISCUSSION
4.1 Developing and Checking Content

All six participants favored using simple text editing tools such

as Notepad to code web pages using HTML. The code could be

then checked within the text editor itself using JAWS, and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ASSETS’13, October 21-23, 2013, Bellevue, WA, USA.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

rkuber
Typewritten Text

rkuber
Typewritten Text

rkuber
Typewritten Text
Pre-print for educational or research purposes onlyNorman, K., Arber, Y. & Kuber, R. 2013: How Accessible is the Process of Web Interface Design? In proceedings of the 15th International ACM Conference on Computers and Accessibility – ASSETS’13, Bellevue, USA, Article No: 51

rkuber
Typewritten Text

amended as appropriate. Participants could then proof the

content displayed on the page through the web browser. This

check was performed to ensure that all objects were presented

(e.g. images, hyperlinks etc.), information contained within

tables or lists were correctly ordered, and that no items or objects

seemed out of place. For example, if a string of characters listing

part of a tag was presented via the browser (e.g. “</p”), the code

would be amended to ensure that the tag was closed (e.g.

“</p>”). Participants described the process of verifying code and

content as time-consuming, as they would need to switch

continuously between the code in the text editor to the browser

page to ensure that all errors had been fixed. If further errors

were identified, participants would often leave comments in the

code to repair them at a later point in time. Two participants had

previous experience with web development software (e.g.

Dreamweaver and Frontpage). They suggested that after trying to

learn these technologies, frustrations from not being able to

access components in the software led them to using alternative

solutions. Web editing technologies were thought to be designed

with sighted users in mind, often encouraging users to drag-and-

drop. However, for non-mouse users, performing these tasks

using keystrokes could be difficult.

Participants were aware that web editors offer graphical cues to

support the interface design process. For example, web editors

clearly delineate different types of code from each other using

color-coded variables (e.g. comments in green etc). However,

these cues are not always accessible to screen reader users,

meaning that individuals who are blind may not be benefiting

from the support provided to sighted users.

To reduce the number of coding errors, participants stated that

they often committed sections of HTML or scripting code to

memory. Alternatively, they would create template files which

could be reused within web pages. In contrast to web editing

solutions, text editors (e.g Notepad) do not offer features such as

autocomplete or automatic closure of tags once opened, meaning

that the user would need to concentrate on the task to reduce the

likelihood of errors.

4.2 Determining the spatial layout of objects

Participants were found to design web pages for both sighted and

blind audiences, and were aware that information would need to

be spatially-distributed across the page to be visually appealing

to the users. To gain an overview of layout, one participant

mentioned using the Screen Layout mode in JAWS, enabling him

to explore the objects present. Two developers kept a CSS file on

hand, created by sighted designers that would provide the

formatting required for a sighted audience. One participant who

developed content management systems favored the use of

Drupal templates for layout. Separation from style and substance

of web pages appeared to be a common theme arising from the

interviews.

While the participants wanted to perform tasks independently,

some asked sighted colleagues to double-check the visual

appearance of the site, just to ensure that content was

appropriately displayed. However, for sites tailored to blind

audiences, it appeared that the majority preferred to develop

content without assistance from sighted peers, utilizing

commands such as the Simple Layout function in JAWS,

enabling the user to identify table-based content present on the

page. Participants highlighted workarounds that they had

employed to work with color on a web site. One participant had

memorized pantone colors from when he could still depend on

his residual sight. These colors could then be coded.

4.3 Scripting Languages

Participants highlighted difficulties with screen readers

interpreting Javascript output, making it challenging in certain

instances to verify whether the scripting code which they had

written was appropriate. As a result, scripting languages were

often used with caution.

4.4 Collaborative design

For nearly all participants surveyed, sites had been created

collaboratively, either with other sighted developers or clients.

Participants suggested that it was difficult to modify the layout of

objects using the screen reader, due to the lack of

synchronization between the visual and non-visual presentation

of web page content. This was particularly an issue when

prototyping on-the-fly. A need was identified for additional

support in this process.

5. DESIGN IMPLICATIONS
Analysis of the data revealed that web interface developers who

are blind may benefit from the following features:

 An editing tool that can check code, in addition to providing

information about the layout of objects. The aim would be

to reduce the time and effort spent verifying output.

 Synchronization between visual and non-visual presentation

of web pages, enabling blind and sighted users to

collaborate more effectively in the web design process.

 Providing more support to assist the process of coding. For

example, non-visual methods of conveying different

variables, and autocomplete of tags.

 Alleviating the memory burden, by reducing the need to

remember commands and pieces of programming code.

Future work will focus on the development of a multimodal web

editing and browsing solution to assist the development of code

generation and to provide the structural information needed to

support decisions associated with layout of content. We aim to

identify whether the assistive solution can provide an effective

alternative to current methods of developing sites, and to

specifically examine whether it can augment the process of

prototyping on-the-fly.

6. REFERENCES
[1] Hayhoe, S., 2011. Non-Visual Programming, Perceptual

Culture and Mulsemedia. In: Multiple Sensorial Media

Advances and Applications. IGI Global, 80-98.

[2] Konecki, M. et al. 2011. Making Programming Accessible

to the Blinds. In Proc. MIPRO, 820-824.

[3] Sanchez, J. and Agauyo, F. 2006. APL: Audio Programming

Language for Blind Learners. In Proc. ICCHP, 1334-1341.

[4] Siegfried, R.M. 2006. Visual Programming and the Blind:

the Challenge and the Opportunity. In ACM SIGCSE

Bulletin, 38, 275-278.

[5] Tran, D. et al. 2007. Text-to-Speech Technology-Based

Programming Tool. In Proc. SSIP, 173-176.

