
B-Trees 1

B-Trees

© 2014 Goodrich, Tamassia, Goldwasser

Presentation for use with the textbook Data Structures and 
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, 
and M. H. Goldwasser, Wiley, 2014



B-Trees 2

Computer Memory
 In order to implement any data structure on an actual 

computer, we need to use computer memory. 
 Computer memory is organized into a sequence of words, 

each of which typically consists of 4, 8, or 16 bytes 
(depending on the computer). 

 These memory words are numbered from 0 to N −1, where 
N is the number of memory words available to the 
computer. 

 The number associated with each memory word is known 
as its memory address.

© 2014 Goodrich, Tamassia, Goldwasser



Disk Blocks
 Consider the problem of maintaining a large collection of 

items that does not fit in main memory, such as a 
typical database. 

 In this context, we refer to the external memory is 
divided into blocks, which we call disk blocks. 

 The transfer of a block between external memory and 
primary memory is a disk transfer or I/O. 

 There is a great time difference that exists between 
main memory accesses and disk accesses

 Thus, we want to minimize the number of disk transfers 
needed to perform a query or update. We refer to this 
count as the I/O complexity of the algorithm 
involved.© 2014 Goodrich, Tamassia, Goldwasser B-Trees 3



B-Trees 4

(a,b) Trees
 To reduce the number of external-memory accesses 

when searching, we can represent a map using a 
multiway search tree. 

 This approach gives rise to a generalization of the 
(2,4) tree data structure known as the (a,b) tree.

 An (a,b) tree is a multiway search tree such that each 
node has between a and b children and stores between 
a − 1 and b − 1 entries.

 By setting the parameters a and b appropriately with 
respect to the size of disk blocks, we can derive a data 
structure that achieves good external-memory 
performance.

© 2014 Goodrich, Tamassia, Goldwasser



B-Trees 5

Definition

 An (a,b) tree, where parameters a and b are 
integers such that 2 ≤ a ≤ (b+1)/2, is a 
multiway search tree T with the following 
additional restrictions:

 Size Property: Each internal node has at 
least a children, unless it is the root, and has 
at most b children.

 Depth Property: All the external nodes have 
the same depth.

© 2014 Goodrich, Tamassia, Goldwasser



B-Trees 6

Height of an (a,b) Tree

© 2014 Goodrich, Tamassia, Goldwasser



B-Trees 7

Searches and Updates

© 2014 Goodrich, Tamassia, Goldwasser

 The search algorithm in an (a,b) tree is exactly like 
the one for multiway search trees.

 The insertion algorithm for an (a,b) tree is similar to 
that for a (2,4) tree.
 An overflow occurs when an entry is inserted into a b-node w, which 

becomes an illegal (b+1)-node.

 To remedy an overflow, we split node w by moving the median entry 
of w into the parent of w and replacing w with a (b+1)/2-node w 
and a (b+1)/2-node w.

 Removing an entry from an (a,b) tree is similar to 
what was done for (2,4) trees. 
 An underflow occurs when a key is removed from an a-node w, 

distinct from the root, which causes w to become an (a−1)-node. 

 To remedy an underflow, we perform a transfer with a sibling of w 
that is not an a-node or we perform a fusion of w with a sibling that 
is an a-node.



B-Trees 8

B-Trees

 A version of the (a,b) tree data structure, which is the best-known 
method for maintaining a map in external memory, is a “B-tree.”

 A B-tree of order d is an (a,b) tree with a = d/2 and b = d. 

© 2014 Goodrich, Tamassia, Goldwasser



I/O Complexity

© 2014 Goodrich, Tamassia, Goldwasser B-Trees 9

 Proof:

 Each time we access a node to perform a 
search or an update operation, we need 
only perform a single disk transfer.

 Each search or update requires that we 
examine at most O(1) nodes for each level 
of the tree.


