
B-Trees 1

B-Trees

© 2014 Goodrich, Tamassia, Goldwasser

Presentation for use with the textbook Data Structures and 
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, 
and M. H. Goldwasser, Wiley, 2014



B-Trees 2

Computer Memory
 In order to implement any data structure on an actual 

computer, we need to use computer memory. 
 Computer memory is organized into a sequence of words, 

each of which typically consists of 4, 8, or 16 bytes 
(depending on the computer). 

 These memory words are numbered from 0 to N −1, where 
N is the number of memory words available to the 
computer. 

 The number associated with each memory word is known 
as its memory address.

© 2014 Goodrich, Tamassia, Goldwasser



Disk Blocks
 Consider the problem of maintaining a large collection of 

items that does not fit in main memory, such as a 
typical database. 

 In this context, we refer to the external memory is 
divided into blocks, which we call disk blocks. 

 The transfer of a block between external memory and 
primary memory is a disk transfer or I/O. 

 There is a great time difference that exists between 
main memory accesses and disk accesses

 Thus, we want to minimize the number of disk transfers 
needed to perform a query or update. We refer to this 
count as the I/O complexity of the algorithm 
involved.© 2014 Goodrich, Tamassia, Goldwasser B-Trees 3



B-Trees 4

(a,b) Trees
 To reduce the number of external-memory accesses 

when searching, we can represent a map using a 
multiway search tree. 

 This approach gives rise to a generalization of the 
(2,4) tree data structure known as the (a,b) tree.

 An (a,b) tree is a multiway search tree such that each 
node has between a and b children and stores between 
a − 1 and b − 1 entries.

 By setting the parameters a and b appropriately with 
respect to the size of disk blocks, we can derive a data 
structure that achieves good external-memory 
performance.

© 2014 Goodrich, Tamassia, Goldwasser



B-Trees 5

Definition

 An (a,b) tree, where parameters a and b are 
integers such that 2 ≤ a ≤ (b+1)/2, is a 
multiway search tree T with the following 
additional restrictions:

 Size Property: Each internal node has at 
least a children, unless it is the root, and has 
at most b children.

 Depth Property: All the external nodes have 
the same depth.

© 2014 Goodrich, Tamassia, Goldwasser



B-Trees 6

Height of an (a,b) Tree

© 2014 Goodrich, Tamassia, Goldwasser



B-Trees 7

Searches and Updates

© 2014 Goodrich, Tamassia, Goldwasser

 The search algorithm in an (a,b) tree is exactly like 
the one for multiway search trees.

 The insertion algorithm for an (a,b) tree is similar to 
that for a (2,4) tree.
 An overflow occurs when an entry is inserted into a b-node w, which 

becomes an illegal (b+1)-node.

 To remedy an overflow, we split node w by moving the median entry 
of w into the parent of w and replacing w with a (b+1)/2-node w 
and a (b+1)/2-node w.

 Removing an entry from an (a,b) tree is similar to 
what was done for (2,4) trees. 
 An underflow occurs when a key is removed from an a-node w, 

distinct from the root, which causes w to become an (a−1)-node. 

 To remedy an underflow, we perform a transfer with a sibling of w 
that is not an a-node or we perform a fusion of w with a sibling that 
is an a-node.



B-Trees 8

B-Trees

 A version of the (a,b) tree data structure, which is the best-known 
method for maintaining a map in external memory, is a “B-tree.”

 A B-tree of order d is an (a,b) tree with a = d/2 and b = d. 

© 2014 Goodrich, Tamassia, Goldwasser



I/O Complexity

© 2014 Goodrich, Tamassia, Goldwasser B-Trees 9

 Proof:

 Each time we access a node to perform a 
search or an update operation, we need 
only perform a single disk transfer.

 Each search or update requires that we 
examine at most O(1) nodes for each level 
of the tree.


