(2,4) Trees

10 14

© 2004 Goodrich, Tamassia

(2,4) Trees

AN




Multi-Way Search Tree

# A multi-way search tree is an ordered tree such that

s Each internal node has at least two children and stores d -1
key-element items (k;, 0;), where d is the number of children

= For a node with children v, v, ... v, storing keys k,k, ... ky 4
+ keys in the subtree of v, are less than k,
+ keys in the subtree of v, are between k; ;and k; (i=2, ...,d - 1)
+ keys in the subtree of v, are greater than k, ,

= The leaves store no items and serve as placeholders
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Multi-Way Inorder Traversal

# We can extend the notion of inorder traversal from binary trees
to multi-way search trees

# Namely, we visit item (k;, 0;) of node v between the recursive
traversals of the subtrees of v rooted at children v, and v, , ,

# An inorder traversal of a multi-way search tree visits the keys in
increasing order
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Multi-Way Searching

# Similar to search in a binary search tree
# A each internal node with children v, v, ... v, and keys kK, ... ky ;
m k=k (i=1,...,d-1): the search terminates successfully
s k <k;: we continue the search in child v,
m k  <k<k(i=2,...,d-1): we continue the search in child v;
s k >k, : we continue the search in child v,
# Reaching an external node terminates the search unsuccessfully
#® Example: search for 30
11 24D
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(2,4) Trees

#® A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way
search with the following properties

= Node-Size Property: every internal node has at most four children
= Depth Property: all the external nodes have the same depth

# Depending on the number of children, an internal node of a
(2,4) tree is called a 2-node, 3-node or 4-node

N

10 15 24

= e ov =

© 2004 Goodrich, Tamassia (2,4) Trees 5




Height of a (2,4) Tree

# Theorem: A (2,4) tree storing n items has height O(log n)

Proof:
= Let h be the height of a (2,4) tree with n items
= Since there are at least 2! items at depthi=0,...,h—-1and no
items at depth h, we have
N>14+2+4+...42M1=2h_1
= Thus, h<log(n+1)

# Searching in a (2,4) tree with n items takes O(log n) time
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Insertion

" & We insert a new item (k, 0) at the parent v of the leaf reached by
searching for k

= We preserve the depth property but
= We may cause an overflow (i.e., node v may become a 5-node)

#® Example: inserting key 30 causes an overflow

N
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Overflow and Split

# We handle an overflow at a 5-node v with a split operation:
= letv, ... v be the children of vand k; ... k, be the keys of v

= node v is replaced nodes v' and v"
+ V' is a 3-node with keys k; k, and children v, v, v,
+ V" is a 2-node with key k, and children v, v,
m key k; is inserted into the parent u of v (a new root may be created)

# The overflow may propagate to the parent node u

N
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Analysis of Insertion

N

Algorithm put(k, o) ® Let T be a(2,4) tree
with n items
1. We search for key k to locate
: : = Tree T has O(log n)
the insertion node v height
2. We add the new entry (k, o) at = Step 1 takes O(log n)
node v time because we visit
_ O(log n) nodes
3. while overflow(v) = Step 2 takes O(1) time
if iSROOt(V) = Step 3 takes O(log n)
time because each split
create a new empty root takes O(1) time and we
above v perform O(log n) splits
v < split(v) # Thus, an insertion in a

(2,4) tree takes O(log n)
time
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Deletion

# We reduce deletion of an entry to the case where the item is at the
node with leaf children

# Otherwise, we replace the entry with its inorder successor (or,
equivalently, with its inorder predecessor) and delete the latter entry

#® Example: to delete key 24, we replace it with 27 (inorder successor)

N
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Underflow and Fusion

# Deleting an entry from a node v may cause an underflow, where
node v becomes a 1-node with one child and no keys

# To handle an underflow at node v with parent u, we consider two
cases

# Case 1: the adjacent siblings of v are 2-nodes

= Fusion operation: we merge v with an adjacent sibling w and move
an entry from u to the merged node V'

= After a fusion, the underflow may propagate to the parent u

u
C 9 14
W V
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Underflow and Transfer

# To handle an underflow at node v with parent u, we consider
two cases
# Case 2: an adjacent sibling w of v is a 3-node or a 4-node
= Transfer operation:
1. we move a child of wto v
2. we move an item from u to v
3. we move an item from w to u
= After a transfer, no underflow occurs

U u

C4 9 4 8
W v = W
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Analysis of Deletion

N

#® Let T be a (2,4) tree with n items
= Tree T has O(log n) height

# In a deletion operation

= We visit O(log n) nodes to locate the node from
which to delete the entry

= We handle an underflow with a series of O(log n)
fusions, followed by at most one transfer

= Each fusion and transfer takes O(1) time

# Thus, deleting an item from a (2,4) tree takes
O(log n) time
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Comparison of Map Implementations

Find Put Erase |Notes
o no ordered map
Hash 1 1 1 methods
Table expected | expected expected | _ el (9 sl e
ST [ |og n |og n |og n o randomized insertion
P high prob. | high prob. | high prob. | o simple to implement
AVL and | | |
(2,4) ogn ogn Og N | complex to implement
Tree worst-case | worst-case | worst-case
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