
© 2004 Goodrich, Tamassia (2,4) Trees 1

(2,4) Trees

9

10  142  5  7



© 2004 Goodrich, Tamassia (2,4) Trees 2

Multi-Way Search Tree
A multi-way search tree is an ordered tree such that 
 Each internal node has at least two children and stores  d -1 

key-element items (ki, oi), where d is the number of children 

 For a node with children v1 v2 … vd storing  keys k1 k2 … kd-1

 keys in the subtree of v1 are less than k1

 keys in the subtree of vi are between ki-1 and ki (i = 2, …, d - 1)

 keys in the subtree of vd are greater than kd-1

 The leaves store no items and serve as placeholders
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Multi-Way Inorder Traversal
We can extend the notion of inorder traversal from binary trees 
to multi-way search trees

Namely, we visit item (ki, oi) of node v between the recursive 
traversals of the subtrees of v rooted at children vi and vi + 1

An inorder traversal of a multi-way search tree visits the keys in 
increasing order
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Multi-Way Searching
Similar to search in a binary search tree

A each internal node with children v1 v2 … vd and keys k1 k2 … kd-1

 k = ki (i = 1, …, d - 1): the search terminates successfully

 k < k1: we continue the search in child v1

 ki-1 < k < ki (i = 2, …, d - 1): we continue the search in child vi

 k > kd-1: we continue the search in child vd

Reaching an external node terminates the search unsuccessfully

Example: search for 30
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(2,4) Trees

A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way 
search with the following properties
 Node-Size Property: every internal node has at most four children

 Depth Property: all the external nodes have the same depth

Depending on the number of children, an internal node of a 
(2,4) tree is called a 2-node, 3-node or 4-node
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Height of a (2,4) Tree
Theorem: A (2,4) tree storing n items has height O(log n)

Proof:
 Let h be the height of a (2,4) tree with n items

 Since there are at least 2i items at depth i = 0, … , h - 1 and no 
items at depth h, we have

n  1 + 2 + 4 + … + 2h-1 = 2h - 1

 Thus, h  log (n + 1)

Searching in a (2,4) tree with n items takes O(log n) time
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Insertion
We insert a new item (k, o) at the parent v of the leaf reached by 
searching for k

 We preserve the depth property but 

 We may cause an overflow (i.e., node v may become a 5-node)

Example: inserting key 30 causes an overflow
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Overflow and Split
We handle an overflow at a 5-node v with a split operation:

 let v1 … v5 be the children of v and  k1 … k4 be the keys of v

 node v is replaced nodes v' and v"

 v' is a 3-node with keys k1 k2 and children v1 v2 v3

 v" is a 2-node with key k4 and children v4 v5

 key k3 is inserted into the parent u of v (a new root may be created)

The overflow may propagate to the parent node u
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Analysis of Insertion

Algorithm put(k, o)

1. We search for key k to locate 

the insertion node v

2. We add the new entry (k, o) at 

node v

3. while overflow(v)

if isRoot(v)

create a new empty root 

above v

v  split(v)

Let T be a (2,4) tree 
with n items

 Tree T has O(log n) 

height

 Step 1 takes O(log n)

time because we visit 
O(log n) nodes

 Step 2 takes O(1) time

 Step 3 takes O(log n)

time because each split 
takes O(1) time and we 
perform O(log n) splits

Thus, an insertion in a 
(2,4) tree takes O(log n)

time
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Deletion
We reduce deletion of an entry to the case where the item is at the 
node with leaf children

Otherwise, we replace the entry with its inorder successor (or, 
equivalently, with its inorder predecessor) and delete the latter entry

Example: to delete key 24, we replace it with 27 (inorder successor)
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Underflow and Fusion
Deleting an entry from a node v may cause an underflow, where 
node v becomes a 1-node with one child and no keys

To handle an underflow at node v with parent u, we consider two 
cases

Case 1: the adjacent siblings of v are 2-nodes
 Fusion operation: we merge v with an adjacent sibling w and move 

an entry from u to the merged node v'

 After a fusion, the underflow may propagate to the parent u

9  14

2  5  7 10

u

v

9

10  14

u

v'w
2  5  7



© 2004 Goodrich, Tamassia (2,4) Trees 12

Underflow and Transfer
To handle an underflow at node v with parent u, we consider 
two cases

Case 2: an adjacent sibling w of v is a 3-node or a 4-node

 Transfer operation:

1.  we move a child of w to v

2.  we move an item from u to v

3.  we move an item from w to u

 After a transfer, no underflow occurs
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Analysis of Deletion

Let T be a (2,4) tree with n items
 Tree T has O(log n) height

In a deletion operation
 We visit O(log n) nodes to locate the node from 

which to delete the entry

 We handle an underflow with a series of O(log n)
fusions, followed by at most one transfer

 Each fusion and transfer takes O(1) time

Thus, deleting an item from a (2,4) tree takes 
O(log n) time
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Comparison of Map Implementations

Find Put Erase Notes

Hash 
Table

1
expected

1
expected

1
expected

o no ordered map
methods

o simple to implement

Skip List log n
high prob.

log n
high prob.

log n
high prob.

o randomized insertion

o simple to implement

AVL and 
(2,4) 
Tree

log n
worst-case

log n
worst-case

log n
worst-case

o complex to implement


