(2,4) Trees

10 14

© 2004 Goodrich, Tamassia

(2,4) Trees

AN

Multi-Way Search Tree

A multi-way search tree is an ordered tree such that

s Each internal node has at least two children and stores d -1
key-element items (k;, 0;), where d is the number of children

= For a node with children v, v, ... v, storing keys k,k, ... ky 4
+ keys in the subtree of v, are less than k,
+ keys in the subtree of v, are between k; ;and k; (i=2, ...,d - 1)
+ keys in the subtree of v, are greater than k, ,

= The leaves store no items and serve as placeholders

N

© 2004 Goodrich, Tamassia (2,4) Trees 2

Multi-Way Inorder Traversal

We can extend the notion of inorder traversal from binary trees
to multi-way search trees

Namely, we visit item (k;, 0;) of node v between the recursive
traversals of the subtrees of v rooted at children v, and v, , ,

An inorder traversal of a multi-way search tree visits the keys in
increasing order

N

o=
1 3 5 7 9 11 13 16 19

15 17
© 2004 Goodrich, Tamassia (2,4) Trees 3

Multi-Way Searching

Similar to search in a binary search tree
A each internal node with children v, v, ... v, and keys kK, ... ky ;
m k=k (i=1,...,d-1): the search terminates successfully
s k <k;: we continue the search in child v,
m k <k<k(i=2,...,d-1): we continue the search in child v;
s k >k, : we continue the search in child v,
Reaching an external node terminates the search unsuccessfully
#® Example: search for 30
11 24D

N

© 2004 Goodrich, Tamassia (2,4) Trees 4

(2,4) Trees

#® A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way
search with the following properties

= Node-Size Property: every internal node has at most four children
= Depth Property: all the external nodes have the same depth

Depending on the number of children, an internal node of a
(2,4) tree is called a 2-node, 3-node or 4-node

N

10 15 24

= e ov =

© 2004 Goodrich, Tamassia (2,4) Trees 5

Height of a (2,4) Tree

Theorem: A (2,4) tree storing n items has height O(log n)

Proof:
= Let h be the height of a (2,4) tree with n items
= Since there are at least 2! items at depthi=0,...,h—-1and no
items at depth h, we have
N>14+2+4+...42M1=2h_1
= Thus, h<log(n+1)

Searching in a (2,4) tree with n items takes O(log n) time

N

depth items

0 I L B B i s

1 7200 s o i W B

h-1 2hl-————m———

h 0 ————————1 — L1111

© 2004 Goodrich, Tamassia (2,4) Trees

Insertion

" & We insert a new item (k, 0) at the parent v of the leaf reached by
searching for k

= We preserve the depth property but
= We may cause an overflow (i.e., node v may become a 5-node)

#® Example: inserting key 30 causes an overflow

N

© 2004 Goodrich, Tamassia (2,4) Trees 7

Overflow and Split

We handle an overflow at a 5-node v with a split operation:
= letv, ... v be the children of vand k; ... k, be the keys of v

= node v is replaced nodes v' and v"
+ V' is a 3-node with keys k; k, and children v, v, v,
+ V" is a 2-node with key k, and children v, v,
m key k; is inserted into the parent u of v (a new root may be created)

The overflow may propagate to the parent node u

N

© 2004 Goodrich, Tamassia (2,4) Trees 8

Analysis of Insertion

N

Algorithm put(k, o) ® Let T be a(2,4) tree
with n items
1. We search for key k to locate
: : = Tree T has O(log n)
the insertion node v height
2. We add the new entry (k, o) at = Step 1 takes O(log n)
node v time because we visit
_ O(log n) nodes
3. while overflow(v) = Step 2 takes O(1) time
if iSROOt(V) = Step 3 takes O(log n)
time because each split
create a new empty root takes O(1) time and we
above v perform O(log n) splits
v < split(v) # Thus, an insertion in a

(2,4) tree takes O(log n)
time
© 2004 Goodrich, Tamassia (2,4) Trees 9

Deletion

We reduce deletion of an entry to the case where the item is at the
node with leaf children

Otherwise, we replace the entry with its inorder successor (or,
equivalently, with its inorder predecessor) and delete the latter entry

#® Example: to delete key 24, we replace it with 27 (inorder successor)

N

10 15 24

27 32 35

© 2004 Goodrich, Tamassia (2,4) Trees 10

Underflow and Fusion

Deleting an entry from a node v may cause an underflow, where
node v becomes a 1-node with one child and no keys

To handle an underflow at node v with parent u, we consider two
cases

Case 1: the adjacent siblings of v are 2-nodes

= Fusion operation: we merge v with an adjacent sibling w and move
an entry from u to the merged node V'

= After a fusion, the underflow may propagate to the parent u

u
C 9 14
W V

N

© 2004 Goodrich, Tamassia (2,4) Trees 11

Underflow and Transfer

To handle an underflow at node v with parent u, we consider
two cases
Case 2: an adjacent sibling w of v is a 3-node or a 4-node
= Transfer operation:
1. we move a child of wto v
2. we move an item from u to v
3. we move an item from w to u
= After a transfer, no underflow occurs

U u

C4 9 4 8
W v = W

N

2> (683 oo

© 2004 Goodrich, Tamassia (2,4) Trees

12

Analysis of Deletion

N

#® Let T be a (2,4) tree with n items
= Tree T has O(log n) height

In a deletion operation

= We visit O(log n) nodes to locate the node from
which to delete the entry

= We handle an underflow with a series of O(log n)
fusions, followed by at most one transfer

= Each fusion and transfer takes O(1) time

Thus, deleting an item from a (2,4) tree takes
O(log n) time

© 2004 Goodrich, Tamassia (2,4) Trees 13

N

Comparison of Map Implementations

Find Put Erase |Notes
o no ordered map
Hash 1 1 1 methods
Table expected | expected expected | _ el (9 sl e
ST [|og n |og n |og n o randomized insertion
P high prob. | high prob. | high prob. | o simple to implement
AVL and | | |
(2,4) ogn ogn Og N | complex to implement
Tree worst-case | worst-case | worst-case
© 2004 Goodrich, Tamassia (2,4) Trees 14

