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CMSC 341
Lecture 20 Disjointed Sets

Prof. John Park

Based on slides from previous iterations of this course
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Introduction to Disjointed Sets
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Disjoint Sets

• A data structure that keeps track of a set of 
elements partitioned into a number of disjoint 
(non-overlapping) subsets

From: https://en.wikipedia.org/wiki/Disjoint-set_data_structure



www.umbc.edu

Universe of Items

• Universal set is made up of all of the items 
that can be a member of a set

A B

C

DE

Universe of Items

From: https://www.youtube.com/watch?v=UBY4sF86KEY
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Disjoint Sets

A B

C

DE

Universe of Items

S1

S2

S3

S4

From: https://www.youtube.com/watch?v=UBY4sF86KEY

• A group of sets where no item can be in more 
than one set
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Disjoint Sets
• Supports the following operations as 

efficiently as possible (O(1) would be nice):
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S4

MakeSet()

Find()

Union()
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Uses for Disjointed Sets

• Maze generation

• Kruskal's algorithm for computing the 
minimum spanning tree of a graph 

– Given a set of cities, C, and a set of roads, R, that 
connect two cities (x, y) determine if it’s possible 
to travel from any given city to another given city

• Determining if there are cycles in a graph
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Operations of a Disjoint Set
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MakeSet()

• Makes a set containing only a given element 
(a singleton)

• Implementation is generally trivial
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Find()

• Determine which subset an element is in

• Returns the name of the subset

• Find() typically returns an item from this 
set that serves as its "representative“

– By comparing the result of two Find()
operations, one can determine whether two 
elements are in the same subset
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Find()

• Asks the question, what set does item E 
belong to currently?

A B

C

DE

S1

S2

S3

S4What does 
Find(E) return?

Returns S2

From: https://www.youtube.com/watch?v=UBY4sF86KEY
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Union()

• Union()

– Merge two sets (each w/ one or more items) 
together

– One of the roots from the 2 sets will become the 
root of the merged set
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Union()

• Join two subsets into a single subset.

A B

C

DE

S1

S2

S3

S4
Before Union(S2, S1)

After Union(S2, S1)

From: https://www.youtube.com/watch?v=UBY4sF86KEY
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• So, how would you implement it?
(Remember: always consider time and space 
efficiency)

BRAINSTORM!
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Implementations of Disjoint Sets
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Types of Disjoint Sets

• There are two types of disjoint sets

1. Array Based Disjoint Sets

2. Tree Based Disjoint Sets

– (We can also implement with a linked list)
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Array Based Disjoint Sets

• We will assume that elements are 0 to n - 1 

• Maintain an array A: for each element i, 
A[i] is the name of the set containing i
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Array Based Disjoint Sets

• Find(i) returns A[i]

– Runs in O(1) 

• Union(i,j) requires scanning entire array

– Runs in O(n)

for (k = 0;k < n; k++)

if (A[k] == A[j])

A[k] = A[i];
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Disjoint Set with No Unions

0 1 2 3 4 5 6 7 8 9 10 11 12

a b c d e f g p q r s x y z

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

• Key in array indicates “name” of set element is member of
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Disjoint Set with Some Unions

0 1 2 3

4

5 6 7 8

9

10 11 12

a b c e e f g q q q s x y z

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

• Key in array indicates “name” of set element is member of

• Identical key indicates membership in common set

(exact value of key not important)
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Tree Based Disjoint Sets

• Disjoint-set forests are data structures

– Each set is represented by a tree data structure

– Each node holds a reference to its parent node

• In a disjoint-set forest, the representative of 
each set is the root of that set's tree
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Tree Based Disjoint Sets

• Like binary heaps, we can represent tree 
structure using a flat array

(Why don’t we do this for all binary trees?)
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Disjoint Set with No Unions

0 1 2 3 4 5 6 7 8 9 10 11 12

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

• A negative number means we are at the root

• A positive number means we need to move or “walk” to that index to find our root

• The LONGER the path, the longer it takes to find, and moves farther away from 

our goal of a constant timed function
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Disjoint Set with Some Unions

0 1 2 3

4

5 6 7

8

9

10 11 12

-1 -1 4 -1 -1 -1 -1 8 9 -1 -1 -1 -1 -1

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Notice:

• Value of index is where the index is linked to
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Tree Based Disjoint Sets

• Find() follows parent nodes until it reaches 
the root

• Union() combines two trees into one by 
attaching the root of one to the root of the 
other
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Animation

• Disjoint Sets

• https://www.cs.usfca.edu/~galles/visualizatio
n/DisjointSets.html

https://www.cs.usfca.edu/~galles/visualization/DisjointSets.html
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Optimization of Disjointed Sets
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Optimization

• Three main optimization operations:

1. Union-by-rank (size)

2. Union-by-rank (height)

3. Path Compression
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• Be very clear about how the array 
representations change for different things 
(union by size, union by height, etc.)
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Union-by-Rank (size)

• Size = number of nodes (including root) in 
given set

• A strategy to keep items in a tree from getting 
too deep (large paths) by uniting sets 
intelligently

• At each root, we record the size of its sub-tree 

– The number of nodes in the collective tree  
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Union-by-Rank (size)

0 1 2 3

4

5 6 7

8

910

11

12

-1 -1 4 -1 -2 -1 -1 8 9 -5 9 9 -1 -1

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Notice two things:

1. Value of index is where the index is linked to

2. As the size of the set increases, the negative number size

of the root increases (see 4 and 9)
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Union-by-Rank (height)

• A strategy to keep items in a tree from getting too 
deep (large paths) by uniting sets intelligently

• At each root, we record the height of its sub-tree 

• When uniting two trees, make the smaller tree a sub-
tree of the larger one

– So that the tree that is larger does not add 
another level!!
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Union-by-Rank (height)

0 1 2 3

4

5 6 7

8

9

10 11 12

-1 -1 4 -1 -2 -1 -1 8 9 -3 -1 -1 -1 -1

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Notice two things:

1. Value of index is where the index is linked to

2. As the size of the set increases, the negative number height

of the root increases (see 4 and 9)
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Union-by-Rank (height)

0 1 2 3

4

5 6 7

8

9

10 11 12

-1 -1 4 -1 -2 -1 -1 8 9 -3 -1 -1 -1 -1

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

What if we merge {2,4} with {7, 8, 9}?

Because 9 has a greater height than 4, 4 would be absorbed into 9.
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Union-by-Rank (height)

0 1

2

3

4

5 6 7

8

9

10 11 12

-1 -1 4 -1 -2 -1 -1 8 9 -3 -1 -1 -1 -1

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

When uniting two trees, make the smaller tree a sub-tree of the larger 

one so that the one tree that is larger does not add another level!!

Update 4 to point to 9

9
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Example of Unions

• If we union 5 and 9, how will they be joined?
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Example of Unions
• By rank (size)?

– 9 becomes a child of 5

• By rank (height)?

– 5 becomes a child of 9
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Path Compression

• If our path gets longer, operations take longer

• We can shorten this (literally and figuratively) 
by updating the element values of each child 
directly to the root node value

– No more walking through to get to the root 

• Done as part of Find()

– So the speed up will be eventual
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Path Compression

• Theoretically flattens out a tree

• Uses recursion

• Base case

– Until you find the root

– Return the root value

• Reassign as the call stack collapses
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Path Compression

7

8

910

11

12

6

-1 -1 4 -1 -1 -1 10 8 9 -1 9 9 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3

4

5

13

During a Find(), we update the index to point to the root

Before Path 

Compression
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Path Compression

7

8

910

11

12
6

-1 -1 4 -1 -1 -1 9 8 9 -1 9 9 9 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3

4

5

13

After Path 

Compression

After we run Find(6)we update it to point to 9

After we run Find(13)we update it to point to 9

Along with all other nodes between 13 and 9!
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Code for Disjoint Sets
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Generic Code
function MakeSet(x)

x.parent := x

function Find(x)

if x.parent == x

return x

else

return Find(x.parent)

function Union(x, y)

xRoot := Find(x)

yRoot := Find(y)

xRoot.parent := yRoot
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C++ Implementation
class UnionFind {

int[] u;

UnionFind(int n) {

u = new int[n];

for (int i = 0; i < n; i++)

u[i] = -1;

}

int find(int i) {

int j,root;

for (j = i; u[j] >= 0; j = u[j]) ;

root = j;

while (u[i] >= 0) { j = u[i]; u[i] = root; i = j; }

return root;

}

void union(int i,int j) {

i = find(i);

j = find(j);

if (i !=j) {

if (u[i] < u[j])

{ u[i] += u[j]; u[j] = i; }

else 

{ u[j] += u[i]; u[i] = j; }

}

}

}
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The UnionFind class

class UnionFind {
int[] u;

UnionFind(int n) {
u = new int[n];
for (int i = 0; i < n; i++)
u[i] = -1;

}

int find(int i) { ... }

void union(int i,int j) { ... }
}
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Trick 1: Iterative find
int find(int i) {

int j, root;

for (j = i; u[j] >= 0; j = u[j]) ;

root = j;

while (u[i] >= 0)

{ j = u[i]; u[i] = root; i = j; }

return root;

} 
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Trick 2: Union by size

void union(int i,int j) {

i = find(i);

j = find(j);

if (i != j) {

if (u[i] < u[j])

{ u[i] += u[j]; u[j] = i; }

else 

{ u[j] += u[i]; u[i] = j; }

}

}
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Disjointed Sets Performance



www.umbc.edu

Performance
• In a nutshell

– Running time complexity: O(1) for union 

• Using ONE pointer to connect from one root to another

– Running time of find depends on implementation

• Union by size: Find is O(log(n))

• Union by height: Find is O(log(n))

• Union operations obviously take Θ(1) time

– Code has no loops or recursion

• Θ(f(n)) is when the worst case and best case are identical
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Performance

• The average running time of any find and 
union operations in the quick-union data 
structure is so close to a constant that it's 
hardly worth mentioning that, in an asymptotic 
sense, it's slightly slower in real life



www.umbc.edu

Performance

– A sequence of f find and u union operations (in any order 
and possibly interleaved) takes Theta(u + f α(f + u, u)) time 
in the worst case

– α is an extremely slowly-growing function 

– Known as the inverse Ackermann function. 
• This function is never larger than 4 for any values of f and u you 

could ever use (though it can get arbitrarily large—for 
unimaginably large values of f and u). 

• Hence, for all practical purposes think of quick-union as having 
find operations that run, on average, in constant time.


