
© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 1

Bucket-Sort and Radix-Sort

0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 2

Bucket-Sort
Let be S be a sequence of n
(key, element) entries with
keys in the range [0, N - 1]

Bucket-sort uses the keys as
indices into an auxiliary array B
of sequences (buckets)
Phase 1: Empty sequence S by

moving each entry (k, o) into
its bucket B[k]

Phase 2: For i = 0, …, N - 1, move
the entries of bucket B[i] to the
end of sequence S

Analysis:
 Phase 1 takes O(n) time

 Phase 2 takes O(n + N) time

Bucket-sort takes O(n + N) time

Algorithm bucketSort(S, N)

Input sequence S of (key, element)
items with keys in the range
[0, N - 1]

Output sequence S sorted by
increasing keys

B array of N empty sequences

while S.empty()

(k, o) S.front()

S.eraseFront()

B[k].insertBack((k, o))

for i 0 to N - 1

while B[i].empty()

(k, o) B[i].front()

B[i].eraseFront()

S.insertBack((k, o))

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 3

Example
Key range [0, 9]

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2

0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 4

Properties and Extensions

Key-type Property

 The keys are used as
indices into an array
and cannot be arbitrary
objects

 No external comparator

Stable Sort Property

 The relative order of
any two items with the
same key is preserved
after the execution of
the algorithm

Extensions
 Integer keys in the range [a, b]

 Put entry (k, o) into bucket
B[k - a]

 String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
 Sort D and compute the rank

r(k) of each string k of D in
the sorted sequence

 Put entry (k, o) into bucket
B[r(k)]

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 5

Lexicographic Order

A d-tuple is a sequence of d keys (k1, k2, …, kd), where
key ki is said to be the i-th dimension of the tuple

Example:

 The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively

defined as follows

(x1, x2, …, xd) < (y1, y2, …, yd)

x1 < y1 x1 = y1 (x2, …, xd) < (y2, …, yd)

I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 6

Lexicographic-Sort
Let Ci be the comparator
that compares two tuples by
their i-th dimension

Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C

Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension

Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Algorithm lexicographicSort(S)

Input sequence S of d-tuples
Output sequence S sorted in

lexicographic order

for i d downto 1

stableSort(S, Ci)

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 7

Radix-Sort
Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm
in each dimension

Radix-sort is applicable
to tuples where the
keys in each dimension i

are integers in the
range [0, N - 1]

Radix-sort runs in time
O(d(n + N))

Algorithm radixSort(S, N)

Input sequence S of d-tuples such

that (0, …, 0) (x1, …, xd) and
(x1, …, xd) (N - 1, …, N - 1)
for each tuple (x1, …, xd) in S

Output sequence S sorted in
lexicographic order

for i d downto 1

bucketSort(S, N)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 8

Radix-Sort for
Binary Numbers

Consider a sequence of n
b-bit integers

x = xb - 1 … x1x0

We represent each element
as a b-tuple of integers in
the range [0, 1] and apply
radix-sort with N = 2

This application of the
radix-sort algorithm runs in
O(bn) time

For example, we can sort a
sequence of 32-bit integers
in linear time

Algorithm binaryRadixSort(S)

Input sequence S of b-bit
integers

Output sequence S sorted

replace each element x
of S with the item (0, x)

for i 0 to b - 1

replace the key k of
each item (k, x) of S
with bit xi of x

bucketSort(S, 2)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 9

Example

Sorting a sequence of 4-bit integers

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110

