
© 2004 Goodrich, Tamassia Quick-Sort 1

Quick-Sort

7 4 9 6 2 2 4 6 7 9

4 2 2 4 7 9 7 9

2 2 9 9

© 2004 Goodrich, Tamassia Quick-Sort 2

Quick-Sort

Quick-sort is a randomized
sorting algorithm based
on the divide-and-conquer
paradigm:

 Divide: pick a random
element x (called pivot) and
partition S into

 L elements less than x

 E elements equal x

 G elements greater than x

 Recur: sort L and G

 Conquer: join L, E and G

x

x

L GE

x

© 2004 Goodrich, Tamassia Quick-Sort 3

Partition
We partition an input
sequence as follows:

 We remove, in turn, each
element y from S and

 We insert y into L, E or G,

depending on the result of
the comparison with the
pivot x

Each insertion and removal
is at the beginning or at the
end of a sequence, and
hence takes O(1) time

Thus, the partition step of
quick-sort takes O(n) time

Algorithm partition(S, p)

Input sequence S, position p of pivot

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G empty sequences

x S.erase(p)

while S.empty()

y S.eraseFront()

if y < x

L.insertBack(y)

else if y = x

E.insertBack(y)

else { y > x }

G.insertBack(y)

return L, E, G

© 2004 Goodrich, Tamassia Quick-Sort 4

Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree

 Each node represents a recursive call of quick-sort and stores

 Unsorted sequence before the execution and its pivot

 Sorted sequence at the end of the execution

 The root is the initial call

 The leaves are calls on subsequences of size 0 or 1

7 4 9 6 2 2 4 6 7 9

4 2 2 4 7 9 7 9

2 2 9 9

© 2004 Goodrich, Tamassia Quick-Sort 5

Execution Example

Pivot selection

7 2 9 4 2 4 7 9

2 2

7 2 9 4 3 7 6 1 1 2 3 4 6 7 8 9

3 8 6 1 1 3 8 6

3 3 8 89 4 4 9

9 9 4 4

© 2004 Goodrich, Tamassia Quick-Sort 6

Execution Example (cont.)

Partition, recursive call, pivot selection

2 4 3 1 2 4 7 9

9 4 4 9

9 9 4 4

7 2 9 4 3 7 6 1 1 2 3 4 6 7 8 9

3 8 6 1 1 3 8 6

3 3 8 82 2

© 2004 Goodrich, Tamassia Quick-Sort 7

Execution Example (cont.)

Partition, recursive call, base case

2 4 3 1 2 4 7

1 1 9 4 4 9

9 9 4 4

7 2 9 4 3 7 6 1 1 2 3 4 6 7 8 9

3 8 6 1 1 3 8 6

3 3 8 8

© 2004 Goodrich, Tamassia Quick-Sort 8

Execution Example (cont.)

Recursive call, …, base case, join

3 8 6 1 1 3 8 6

3 3 8 8

7 2 9 4 3 7 6 1 1 2 3 4 6 7 8 9

2 4 3 1 1 2 3 4

1 1 4 3 3 4

9 9 4 4

© 2004 Goodrich, Tamassia Quick-Sort 9

Execution Example (cont.)

Recursive call, pivot selection

7 9 7 1 1 3 8 6

8 8

7 2 9 4 3 7 6 1 1 2 3 4 6 7 8 9

2 4 3 1 1 2 3 4

1 1 4 3 3 4

9 9 4 4

9 9

© 2004 Goodrich, Tamassia Quick-Sort 10

Execution Example (cont.)

Partition, …, recursive call, base case

7 9 7 1 1 3 8 6

8 8

7 2 9 4 3 7 6 1 1 2 3 4 6 7 8 9

2 4 3 1 1 2 3 4

1 1 4 3 3 4

9 9 4 4

9 9

© 2004 Goodrich, Tamassia Quick-Sort 11

Execution Example (cont.)

Join, join

7 9 7 17 7 9

8 8

7 2 9 4 3 7 6 1 1 2 3 4 6 7 7 9

2 4 3 1 1 2 3 4

1 1 4 3 3 4

9 9 4 4

9 9

© 2004 Goodrich, Tamassia Quick-Sort 12

Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

One of L and G has size n - 1 and the other has size 0

The running time is proportional to the sum

n + (n - 1) + … + 2 + 1

Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n - 1

… …

n - 1 1

© 2004 Goodrich, Tamassia Quick-Sort 13

Expected Running Time
Consider a recursive call of quick-sort on a sequence of size s
 Good call: the sizes of L and G are each less than 3s/4

 Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2

 1/2 of the possible pivots cause good calls:

7 9 7 1 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

© 2004 Goodrich, Tamassia Quick-Sort 14

Expected Running Time, Part 2
Probabilistic Fact: The expected number of coin tosses required in
order to get k heads is 2k

For a node of depth i, we expect
 i/2 ancestors are good calls

 The size of the input sequence for the current call is at most (3/4)i/2n

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

Therefore, we have
 For a node of depth 2log4/3n,

the expected input size is one

 The expected height of the
quick-sort tree is O(log n)

The amount or work done at the
nodes of the same depth is O(n)

Thus, the expected running time
of quick-sort is O(n log n)

© 2004 Goodrich, Tamassia Quick-Sort 15

In-Place Quick-Sort
Quick-sort can be implemented
to run in-place

In the partition step, we use
replace operations to rearrange
the elements of the input
sequence such that
 the elements less than the

pivot have rank less than h

 the elements equal to the pivot
have rank between h and k

 the elements greater than the
pivot have rank greater than k

The recursive calls consider
 elements with rank less than h

 elements with rank greater
than k

Algorithm inPlaceQuickSort(S, l, r)

Input sequence S, ranks l and r

Output sequence S with the
elements of rank between l and r
rearranged in increasing order

if l r

return

i a random integer between l and r

x S.elemAtRank(i)

(h, k) inPlacePartition(x)

inPlaceQuickSort(S, l, h - 1)

inPlaceQuickSort(S, k + 1, r)

© 2004 Goodrich, Tamassia Quick-Sort 16

In-Place Partitioning
Perform the partition using two indices to split S into L
and E U G (a similar method can split E U G into E and G).

Repeat until j and k cross:
 Scan j to the right until finding an element > x.

 Scan k to the left until finding an element < x.

 Swap elements at indices j and k

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

(pivot = 6)

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

© 2004 Goodrich, Tamassia Quick-Sort 17

Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2)
 in-place

 slow (good for small inputs)

insertion-sort O(n2)
 in-place

 slow (good for small inputs)

quick-sort
O(n log n)

expected

 in-place, randomized

 fastest (good for large inputs)

heap-sort O(n log n)
 in-place

 fast (good for large inputs)

merge-sort O(n log n)
 sequential data access

 fast (good for huge inputs)

