
© 2004 Goodrich, Tamassia Merge Sort 1

Merge Sort

7 2 9 4 2 4 7 9

7 2 2 7 9 4 4 9

7 7 2 2 9 9 4 4

© 2004 Goodrich, Tamassia Merge Sort 2

Review of Sorting

Selection-sort:
 Search: search through

remaining unsorted
elements for min

 Remove: remove element
from remainder list

 Append: append next min
to end of sorted list

Insertion-sort:
 Remove: fetch and remove

next unsorted item

 Search: find correct position
in sorted list

 Insert: insert next element
into sorted list

Heap-sort Uses the fact
that a sequence of
RemoveMin ops will return
items in sorted order
 Construct: build heap by

inserting each element

 Ordered remove: remove
each min element
sequentially

© 2004 Goodrich, Tamassia Merge Sort 3

Divide-and-Conquer (§ 10.1.1)

Divide-and conquer is a
general algorithm design
paradigm:
 Divide: divide the input data

S in two disjoint subsets S1

and S2

 Recur: solve the
subproblems associated
with S1 and S2

 Conquer: combine the
solutions for S1 and S2 into a
solution for S

The base case for the
recursion are subproblems of
size 0 or 1

Merge-sort is a sorting
algorithm based on the
divide-and-conquer
paradigm

Like heap-sort
 It uses a comparator

 It has O(n log n) running
time

Unlike heap-sort
 It does not use an

auxiliary priority queue

 It accesses data in a
sequential manner
(suitable to sort data on a
disk)

© 2004 Goodrich, Tamassia Merge Sort 4

Merge-Sort (§ 10.1)

Merge-sort on an input
sequence S with n
elements consists of
three steps:
 Divide: partition S into

two sequences S1 and S2

of about n/2 elements
each

 Recur: recursively sort S1

and S2

 Conquer: merge S1 and
S2 into a unique sorted
sequence

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted

according to C

if S.size() > 1

(S1, S2) partition(S, n/2)

mergeSort(S1, C)

mergeSort(S2, C)

S merge(S1, S2)

© 2004 Goodrich, Tamassia Merge Sort 5

Merging Two Sorted Sequences
The conquer step of
merge-sort consists
of merging two
sorted sequences A
and B into a sorted
sequence S
containing the union
of the elements of A
and B

Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes
O(n) time

Algorithm merge(A, B)

Input sequences A and B with
n/2 elements each

Output sorted sequence of A B

S empty sequence

while A.empty() B.empty()

if A.front() < B.front()

S.addBack(A.front()); A.eraseFront();

else

S.addBack(B.front()); B.eraseFront();

while A.empty()

S.addBack(A.front()); A.eraseFront();

while B.empty()

S.addBack(B.front()); B.eraseFront();

return S

© 2004 Goodrich, Tamassia Merge Sort 6

Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree
 each node represents a recursive call of merge-sort and stores

 unsorted sequence before the execution and its partition

 sorted sequence at the end of the execution

 the root is the initial call

 the leaves are calls on subsequences of size 0 or 1

7 2 9 4 2 4 7 9

7 2 2 7 9 4 4 9

7 7 2 2 9 9 4 4

© 2004 Goodrich, Tamassia Merge Sort 7

Execution Example

Partition

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 8

Execution Example (cont.)

Recursive call, partition

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 9

Execution Example (cont.)

Recursive call, partition

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 10

Execution Example (cont.)

Recursive call, base case

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 11

Execution Example (cont.)

Recursive call, base case

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 12

Execution Example (cont.)

Merge

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 13

Execution Example (cont.)

Recursive call, …, base case, merge

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

9 9 4 4

© 2004 Goodrich, Tamassia Merge Sort 14

Execution Example (cont.)

Merge

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 15

Execution Example (cont.)

Recursive call, …, merge, merge

7 2 9 4 2 4 7 9 3 8 6 1 1 3 6 8

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 16

Execution Example (cont.)

Merge

7 2 9 4 2 4 7 9 3 8 6 1 1 3 6 8

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 17

Analysis of Merge-Sort
The height h of the merge-sort tree is O(log n)

 at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth i is O(n)

 we partition and merge 2i sequences of size n/2i

 we make 2i+1 recursive calls

Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …

© 2004 Goodrich, Tamassia Merge Sort 18

Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2)

 slow

 in-place

 for small data sets (< 1K)

insertion-sort O(n2)

 slow

 in-place

 for small data sets (< 1K)

heap-sort O(n log n)

 fast

 in-place

 for large data sets (1K — 1M)

merge-sort O(n log n)

 fast

 sequential data access

 for huge data sets (> 1M)

