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Merge Sort
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Review of Sorting

Selection-sort:
 Search: search through 

remaining unsorted 
elements for min

 Remove: remove element 
from remainder list

 Append: append next min 
to end of sorted list

Insertion-sort:
 Remove: fetch and remove 

next unsorted item

 Search: find correct position 
in sorted list

 Insert: insert next element 
into sorted list

Heap-sort Uses the fact 
that a sequence of 
RemoveMin ops will return 
items in sorted order
 Construct: build heap by 

inserting each element

 Ordered remove: remove 
each min element 
sequentially
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Divide-and-Conquer (§ 10.1.1)

Divide-and conquer is a 
general algorithm design 
paradigm:
 Divide: divide the input data 

S in two disjoint subsets S1

and S2

 Recur: solve the 
subproblems associated 
with S1 and S2

 Conquer: combine the 
solutions for S1 and S2 into a 
solution for S

The base case for the 
recursion are subproblems of 
size 0 or 1

Merge-sort is a sorting 
algorithm based on the 
divide-and-conquer 
paradigm 

Like heap-sort
 It uses a comparator

 It has O(n log n) running 
time

Unlike heap-sort
 It does not use an 

auxiliary priority queue

 It accesses data in a 
sequential manner 
(suitable to sort data on a 
disk)



© 2004 Goodrich, Tamassia Merge Sort 4

Merge-Sort (§ 10.1)

Merge-sort on an input 
sequence S with n
elements consists of 
three steps:
 Divide: partition S into 

two sequences S1 and S2

of about n/2 elements 
each

 Recur: recursively sort S1

and S2

 Conquer: merge S1 and 
S2 into a unique sorted 
sequence

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted

according to C

if S.size() > 1

(S1, S2)  partition(S, n/2) 

mergeSort(S1, C)

mergeSort(S2, C)

S  merge(S1, S2)
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Merging Two Sorted Sequences
The conquer step of 
merge-sort consists 
of merging two 
sorted sequences A 
and B into a sorted 
sequence S 
containing the union 
of the elements of A 
and B

Merging two sorted 
sequences, each 
with n/2 elements 
and implemented by 
means of a doubly 
linked list, takes 
O(n) time

Algorithm merge(A, B)

Input sequences A and B with
n/2 elements each 

Output sorted sequence of A  B

S  empty sequence

while A.empty()   B.empty()

if A.front() < B.front()

S.addBack(A.front()); A.eraseFront();

else

S.addBack(B.front()); B.eraseFront();

while A.empty()

S.addBack(A.front()); A.eraseFront();

while B.empty()

S.addBack(B.front()); B.eraseFront();

return S
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Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree
 each node represents a recursive call of merge-sort and stores

 unsorted sequence before the execution and its partition

 sorted sequence at the end of the execution

 the root is the initial call 

 the leaves are calls on subsequences of size 0 or 1
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Execution Example

Partition

7  2  9  4   2  4  7  9 3  8  6  1   1  3  8  6

7  2   2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, partition

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2   2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9



© 2004 Goodrich, Tamassia Merge Sort 9

Execution Example (cont.)

Recursive call, partition

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, base case

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, base case

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

Merge

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, …, base case, merge

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4  4  9 3  8   3  8 6  1   1  6

7  7 2  2 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9

9  9 4  4
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Execution Example (cont.)

Merge

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4  4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, …, merge, merge

7  2  9  4  2  4  7  9 3  8  6  1  1  3  6  8

7  2  2  7 9  4  4  9 3  8  3  8 6  1  1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

Merge

7  2  9  4  2  4  7  9 3  8  6  1  1  3  6  8

7  2  2  7 9  4  4  9 3  8  3  8 6  1  1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Analysis of Merge-Sort
The height h of the merge-sort tree is O(log n)

 at each recursive call we divide in half the sequence, 

The overall amount or work done at the nodes of depth i is O(n)

 we partition and merge 2i sequences of size n/2i

 we make 2i+1 recursive calls

Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …
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Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2)

 slow

 in-place

 for small data sets (< 1K)

insertion-sort O(n2)

 slow

 in-place

 for small data sets (< 1K)

heap-sort O(n log n)

 fast

 in-place

 for large data sets (1K — 1M)

merge-sort O(n log n)

 fast

 sequential data access

 for huge data sets (> 1M)


