Red-Black Trees

4

v

© 2004 Goodrich, Tamassia Red-Black Trees 1

From (2,4) to Red-Black Trees

- \bullet A red-black tree is a representation of a (2,4) tree by means of a binary tree whose nodes are colored **red** or **black**
- \bullet In comparison with its associated (2,4) tree, a red-black tree has
	- same logarithmic time performance
	- **simpler implementation with a single node type**

Red-Black Trees

- A red-black tree can also be defined as a binary search tree that satisfies the following properties:
	- Root Property: the root is black
	- External Property: every leaf is black
	- Internal Property: the children of a red node are black
	- Depth Property: all the leaves have the same black depth

Height of a Red-Black Tree

- Theorem: A red-black tree storing *n* entries has height *O*(log *n*)
	- Proof:
		- The height of a red-black tree is at most twice the height of its associated $(2,4)$ tree, which is $O(\log n)$
- \triangle The search algorithm for a binary search tree is the same as that for a binary search tree
- By the above theorem, searching in a red-black tree takes *O*(log *n*) time

Insertion

6

3) (8

z

- \bullet To perform operation $put(k, o)$, we execute the insertion algorithm for binary search trees and color red the newly inserted node *z* unless it is the root
	- **We preserve the root, external, and depth properties**
	- If the parent *v* of *z* is black, we also preserve the internal property and we are done
	- Else (*v* is red) we have a double red (i.e., a violation of the internal property), which requires a reorganization of the tree

Example where the insertion of 4 causes a double red:

 $v \sim$ $v \sim$

6

 $\overline{3}$ (8)

4

z

Remedying a Double Red

- Consider a double red caused by adding new child *z,* parent *v*, and let *w* be the sibling of v (i.e. *z*'s "aunt")
- Case 1: *w* is black
	- The double red is an incorrect replacement of a 4-node
	- **Restructuring:** we change the 4-node replacement

- Case 2: *w* is red
	- The double red corresponds to an overflow
	- **Recoloring:** we perform the equivalent of a split

Restructuring

4

2

w \sqrt{v}

4 6

6

z

7

- A restructuring remedies a child-parent double red when the parent red node has a black sibling
- It is equivalent to restoring the correct replacement of a 4-node

4

w

2

.. 2 ..

6

4 6 7

7

v

The internal property is restored and the other properties are preserved *z*

.. 2 ..

Restructuring (cont.)

There are four restructuring configurations depending on whether the double red nodes are left or right children

Recoloring

- A recoloring remedies a child-parent double red when the parent red node has a red sibling
- The parent *v* and its sibling *w* become black and the grandparent *u* becomes red, unless it is the root
- It is equivalent to performing a split on a 5-node
- The double red violation may propagate to the grandparent *u*

Analysis of Insertion

Algorithm *put*(*k*, *o*)

- 1. We search for key *k* to locate the insertion node *z*
- 2. We add the new entry (*k*, *o*) at node *z* and color *z* red
- 3. **while** *doubleRed*(*z*) *if isBlack***(***sibling***(***parent***(***z***)))** $z \leftarrow$ *restructure* (z) **return else** $\{ \textit{sibling}(\textit{parent}(z) \text{ is red}) \}$ $z \leftarrow \text{recolor}(z)$
- **EXECAL THAT A red-black tree** has *O*(log *n*) height
- \triangle Step 1 takes $O(\log n)$ time because we visit *O*(log *n*) nodes
- \bullet Step 2 takes $O(1)$ time
- \triangle Step 3 takes $O(\log n)$ time because we perform
	- *O*(log *n*) recolorings, each taking $O(1)$ time, and
	- at most one restructuring taking *O*(1) time
- Thus, an insertion in a redblack tree takes *O*(log *n*) time

Deletion

- \bullet To perform operation erase(k), we first execute the deletion algorithm for binary search trees
- Let *v* be the internal node removed, *w* the external node removed (there must be at least one), and *r* the sibling of *w*
	- If either ν or r was red, we color r black and we are done
	- Else (*v* and *r* were both black) we color *r* **double black**, which is a violation of the depth, property requiring a reorganization of the tree

◆ Example where the deletion of 8 causes a double black:

Remedying a Double Black

- The algorithm for remedying a double black node *r* with sibling *y* considers three cases
	- Case 1: *y* is black and has a red child
		- We perform a restructuring, equivalent to a transfer, recolor, and we are done
	- Case 2: *y* is black and its children are both black
		- We perform a recoloring, equivalent to a fusion, which may propagate up the double black violation
	- Case 3: *y* is red
		- We perform an adjustment, equivalent to choosing a different representation of a 3-node, after which either Case 1 or Case 2 applies
- \bullet Deletion in a red-black tree takes $O(\log n)$ time

Deletion: Case 1

Case 1: sibling *y* of **^r** is black and has a red child

We perform a restructuring, equivalent to a transfer, and we are done

Deletion: Case 2

Case 2: sibling *y* is black and its children are both black

We perform a recoloring, equivalent to a fusion, which may propagate up the double black violation

Deletion: Case 3

Case 3: sibling *y* of **^r** is red

- We perform an adjustment, equivalent to a restructuring, which converts the structure to a form of Case 1 or Case 2
- Take child z of y on same side as y is of x : do trinode restructuring, then recolor *x* red, *y* black. Sibling of r is now black: have Case 1 or 2

Red-Black Tree Reorganization

