
© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 1

AVL Trees

6

3 8

4

v

z



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 2

AVL Tree Definition

• Adelson-Velsky and 

Landis

• binary search tree

• balanced

 each internal node v 

 the heights of the 

children of v can 

differ by at most 1

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the 

heights are shown next to the nodes



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 3

Height of an AVL Tree
Fact: The height of an AVL tree storing n keys is O(log n).

Proof (by induction): n(h): the minimum number of internal 
nodes of an AVL tree of height h.

n(1) = 1 and n(2) = 2

For n > 2, an AVL tree of height h contains the root node, 
one AVL subtree of height n-1 and another of height n-2.

That is, n(h) = 1 + n(h-1) + n(h-2)

Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),

n(h) > 2in(h-2i)

Solving the base case we get: n(h) > 2 h/2 - 1

Taking logarithms: h < 2log n(h) +2

Thus the height of an AVL tree is O(log n)

3

4 n(1)

n(2)



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 4

Insertion
Insertion is as in a binary search tree
Always done by expanding an external node.
Insert 54:

44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion

after insertion



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 5

Insertion
Insertion is like a binary search tree
Always done by expanding an external node.
Insert 54:

44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion

after insertion

Imbalance
Node z

Insert
Node w



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 6

Insertion
z = first unbalanced node encountered while 

travelling up the tree from w. 

 y = child of z with the larger height, 

 x = child of y with the larger height

trinode restructuring to restore balance at z



© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 7

Overview of 4 Cases of 
Trinode Restructuring

2

4

6

6

2

4

6

4

2

2

6

4

2 6

4

Case 1 Case 2 Case 3 Case 4

z ->
y ->
x ->



© 2014 Goodrich, Tamassia, Goldwasser

Rotation operation

AVL Trees 8

With a linked structure
• Constant number of updates
• O(1) time

Consider subTree points to y 
and we also have x and y

1. y.left = x.right
2. x.right = y
3. subTree = x



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 9

Trinode Restructuring:
Case 1

Single Rotation:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x

b = y

a = z
single rotation

• Keys: a < b < c
• Nodes: grandparent z is not 

balanced, y is parent, x is 
node 

• Not balanced at a, the smallest key
• x has the largest key c

• Result: middle key b at the top



© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 10

Example for Case 1

Case 1

T0 T1 T2 T3

T0

T1

T2 T3

2

6

4

2 6

4

z
y
x



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 11

Trinode Restructuring:
Case 2

Single Rotation:

Not balanced at c, the largest key

x has the smallest key a

Result: middle key b at the top

• Keys: a < b < c
• Nodes: grandparent z is not 

balanced, y is parent, x is 
node 

T3

T2

T1

T0

a = x

b = y

c = z

T
0

T1T 2

T

3

a = x
b = y

c = z
single rotation



© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 12

Example for Case 2

Case 2

T0 T1 T2 T3

T0 T1

T2

T3

6

2

4

2 6

4

z
y
x



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 13

Trinode Restructuring:
Case 3

double rotation:

double rotationa = z

b = x

c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

• Keys: a < b < c
• Nodes: grandparent z is not 

balanced, y is parent, x is 
node 

• Not balanced at a, the smallest key
• x has the middle key b
• x is rotated above y
• x is then rotated above x

• Result: middle key b at the top



© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 14

Example for Case 3

Case 3

T0 T1 T2 T3

T0

T1 T2

T3

T0

T1

T2 T3

2

6

4

2 6

4

2

4

6

z
y
x



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 15

Trinode Restructuring:
Case 4

• double rotation

• Not balanced at c, the largest key

• x has the middle key b

• x is rotated above y

• x is then rotated above z

• Result: middle key b at the top

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y

• Keys: a < b < c
• Nodes: grandparent z is not 

balanced, y is parent, x is 
node 

T0 T0T1 T2

T3 T1
T2

T3



© 2014 Goodrich, Tamassia, Goldwasser Red-Black Trees 16

Example for Case 4

Case 4

T0 T1 T2 T3

T0 T1

T3

T2
T1

T0T2

T3

6

2

4

2 6

4

6

4

2

z
y
x



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 17

Insert 54 (Case 3 or 4?)

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1

54

1

T0 T1

T2

T3

x

y z

unbalanced...

...balanced

T1

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0
T2

T3

x

y

z

Draw the double 
rotation



© 2014 Goodrich, Tamassia, Goldwasser

Trinode Restructuring 
summary

Case imbalance/
grandparent z

Node x Rotation

1 Smallest key a Largest key c single

2 Largest key c Smallest key a single

3 Smallest key a Middle key b double

4 Largest key c Middle key b double

AVL Trees 18



© 2014 Goodrich, Tamassia, Goldwasser

Trinode Restructuring 
Summary

Case imbalance/
grandparent z

Node x Rotation

1 Smallest key a Largest key c single

2 Largest key c Smallest key a single

3 Smallest key a Middle key b double

4 Largest key c Middle key b double

AVL Trees 19

The resulting balanced subtree has: 
• middle key b at the top
• smallest key a as left child

• T0 and T1 are left and right subtrees of a
• largest key c as right child

• T2 and T3 are left and right subtrees of c



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 20

Removal
Removal begins as in a binary search tree
 the node removed will become an empty external node. 

 Its parent, w, may cause an imbalance.

Remove 32, imbalance at 44

44

17

7832 50

8848

62

54

44

17

7850

8848

62

54

before deletion of 32 after deletion



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 21

Rebalancing after a Removal
z = first unbalanced node encountered while travelling up the tree from w. 

 y = child of z with the larger height, 

 x = child of y with the larger height

trinode restructuring to restore balance at z—Case 1 in example

44

17

7850

8848

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 22

Rebalancing after a Removal
this restructuring may upset the balance of another node 

higher in the tree

 continue checking for balance until the root of T is reached

44

17

7850

8848

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 23

Rebalancing after a Removal
[Slide added –jyp]

In the case below, restructuring the subtree rooted at 44 
created a new subtree (incidentally now rooted at 62) which is 
has height decreased by 1

This might cause an unbalanced situation at an ancestor of this 
subtree

44

17

7850

88

62w

c=x

b=y

a=z

44

17

78

50 88

62



© 2014 Goodrich, Tamassia, Goldwasser

Balanced tree

AVL Trees 24

20

1

30

60

50

70

80

55

35

40

45

10



© 2014 Goodrich, Tamassia, Goldwasser

Delete 80

AVL Trees 25

20

1

30

60

50

70

80

55

35

40

45

10



© 2014 Goodrich, Tamassia, Goldwasser

Not balanced at 70

AVL Trees 26

20

1

30

60

50

70

55

35

40

45

10



© 2014 Goodrich, Tamassia, Goldwasser

Single rotation

AVL Trees 27

20

1

30

55

50

60

70

35

40

45

10



© 2014 Goodrich, Tamassia, Goldwasser

Anything wrong?

AVL Trees 28

20

1

30

55

50

60

70

35

40

45

10



© 2014 Goodrich, Tamassia, Goldwasser

Not balanced at 50!

AVL Trees 29

20

1

30

55

50

60

70

35

40

45

10



© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 30

AVL Tree Performance
n entries

 O(n) space

 A single restructuring takes O(1) time

 using a linked-structure binary tree

Operation Worst-case
Time
Complexity

Get/search O(log n) Up to height log n

Put/insert O(log n) O(log n): searching & restructuring

Remove/delete O(log n) O(log n): searching & restructuring up to height log n



© 2014 Goodrich, Tamassia, Goldwasser

AVL Trees

balanced Binary Search Tree (BST)

Insert/delete operations include 
rebalancing if needed

Worst-case time complexity: O(log n)

AVL Trees 31


