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AVL Tree Definition

N

* Adelson-Velsky and
Landis

* binary search tree

* balanced

s each internal node v

» the heights of the

children of v can
differ by at most 1

An example of an AVL tree where the
heights are shown next to the nodes
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Fact: The height of an AVL tree storing n keys is O(log n).

Proof (by induction): n(h): the minimum number of internal
nodes of an AVL tree of height h.

®n(l)=1andn(2) =2
#® For n > 2, an AVL tree of height h contains the root node,
one AVL subtree of height n-1 and another of height n-2.

# That is, n(h) = 1 + n(h-1) + n(h-2)

#® Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), ... (by induction),
n(h) > 2in(h-2i)

# Solving the base case we get: n(h) > 2 h/2-1

# Taking logarithms: h < 2log n(h) +2

# Thus the height of an AVL tree is O(log n)
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Insertion

"4 Insertion is as in a binary search tree
# Always done by expanding an external node.
# Insert 54:

N

before insertion

after insertion
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Insertion

" @ Insertion is like a binary search tree
# Always done by expanding an external node.
# Insert 54:

N

Imbalance
Node z

after insertion
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Insertion

N

travelling up the tree from w.
= ¥ = child of z with the larger
= X = child of y with the larger

# trinode restructuring to restore
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" # 7z = first unbalanced node encountered while

neight,
neight

halance at z




Overview of 4 Cases of
Trinode Restructuring

N

Case 1 Case 2 Case 3

X < N
I
V V V
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N

T I

Consider subTree points to y
and we also have x and y

1. y.left = x.right
2. x.right =y
3. subTree = x

© 2014 Goodrich, Tamassia, Goldwasser

AVL Trees

Rotation operation

With a linked structure

« Constant number of updates
« O(1) time




« Keysia<b<c
Trinode Restructuring: - Nodes: grandparent z is not
Case 1 balanced, y is parent, x is
4 node

7 # Single Rotation:

« Not balanced at a, the smallest key
* X has the largest key c

« Result: middle key b at the top
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X < N

Example for Case 1

N

Case 1
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« Keysia<b<c
Trinode Restructuring: - Nodes: grandparent z is not
Case 2 balanced, y is parent, x is
4 node

7 # Single Rotation:
# Not balanced at c, the largest key
# X has the smallest key a

# Result: middle key b at the top

T
© 2014 Goodrich, Tamalssia, Goldwasser AVL Trees 11



Example for Case 2

N

Case 2
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« Keysia<b<c

Trinode Restructuring: -« Nodes: grandparent z is not
Case 3 balanced, y is parent, x is
node

@ double rotation:

Not balanced at a, the smallest key
X has the middle key b

X is rotated above y

X is then rotated above x

Result: middle key b at the top
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Example for Case 3

N
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« Keys;:a<b<c
Trinode Restructuring: - Nodes: grandparent z is not
Case 4 balanced, y is parent, x is
a node

* double rotation

* Not balanced at ¢, the largest key
* X has the middle key b

* X is rotated above y

* X is then rotated above z

* Result: middle key b at the top
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Example for Case 4
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Insert 54 (Case 3 or 4?)

N

| Draw th I
unbalanced... * Cri aw the double
To L1 LI T rotation

...balanced
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Trinode Restructuring

1

2
3
4
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summary

Smallest key a

Largest key ¢

Largest key ¢

Smallest key a

Smallest key a Middle key b
Largest key ¢ Middle key b
AVL Trees

single
single
double

double
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Trinode Restructuring
Summary

_6
1 Smallest key a Largest key ¢ single
2 Largest key ¢ Smallest key a single
3 Smallest key a Middle key b double
4 Largest key ¢ Middle key b double

The resulting balanced subtree has:
« middle key b at the top
« smallest key a as left child
« TO and T1 are left and right subtrees of a
» largest key c as right child
« T2 and T3 are left and right subtrees of c
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Removal

# Removal begins as in a binary search tree

N

= Its parent, w, may cause an imbalance.
# Remove 32, imbalance at 44

before deletion of 32
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= the node removed will become an empty external node.

after deletion
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Rebalancing after a Removal

~ & 7z = first unbalanced node encountered while travelling up the tree from w.

N

= Yy = child of z with the larger height,
= X = child of y with the larger height
# trinode restructuring to restore balance at z—Case 1 in example
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Rebalancing after a Removal

~ & this restructuring may upset the balance of another node
higher in the tree

N

= continue checking for balance until the root of T is reached
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Rebalancing after a Removal

[Slide added —jyp]

# In the case below, restructuring the subtree rooted at 44
created a new subtree (incidentally now rooted at 62) which is
has height decreased by 1

# This might cause an unbalanced situation at an ancestor of this
subtree

N




Balanced tree

N

/

/

W
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Delete 80

N

/

/

W
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/Not balanced at 70
(50,
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Single rotation

N

/
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“Anything wrong?
(50
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/Not balanced at 50!
(50
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/AVL Tree Performance

# n entries
= O(n) space

= A single restructuring takes O(1) time
+ using a linked-structure binary tree

N

Get/search O(log n) Up to height log n
Put/insert O(log n) O(log n): searching & restructuring
Remove/delete O(log n) O(log n): searching & restructuring up to height log n
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AVL Trees

N

#balanced Binary Search Tree (BST)

#Insert/delete operations include
rebalancing if needec

#\Worst-case time complexity: O(log n)
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