
CMSC 341

Lecture 10 Binary Search Trees

John Park

Based on slides from previous iterations of this course

Review: Tree Traversals

2

Traversal – Preorder, Inorder, Postorder

UMBC CMSC 341 Binary Search Trees 3

B EKA

MX

H

L WGN Y

Preorder Traversal

UMBC CMSC 341 Binary Search Trees 4

B EKA

MX

H

L WGN Y

1

2

3

4 5

6

7

8

9

10

11 12

Display the current node’s value

Traverse the left subtree (may be NULL)

Traverse the right subtree (may be NULL)

LEFT, NODE, RIGHT

Inorder Traversal

UMBC CMSC 341 Binary Search Trees 5

B EKA

MX

H

L WGN Y

6

4

2

1 3

5

9

8

7

11

10 12

Traverse the left subtree (may be NULL)

Display the current node’s value

Traverse the right subtree (may be NULL)

NODE, LEFT, RIGHT

Postorder Traversal

UMBC CMSC 341 Binary Search Trees 6

B EKA

MX

H

L WGN Y 6

4

21

3

5

98

7

11

10

12

Traverse the left subtree (may be NULL)

Traverse the right subtree (may be NULL)

Display the current node’s value

LEFT, RIGHT, NODE

Level Order Traversal

UMBC CMSC 341 Binary Search Trees 7

B EKA

MX

H

L WGN Y

64

2

1

3

5

98

7

1110 12

Requires the use of a Queue

Pointers vs References

8

Passing by Value

 The “default” way to pass variables to functions

// function prototype

void PrintVal (int x);

int x = 5;

int *xPtr = &x;

PrintVal(x); // function call

PrintVal(*xPtr); // also valid call

UMBC CMSC 341 Binary Search Trees 9

Passing a Pointer (Reference by Value)

 Uses pointers (address to the variable)

 Uses * to dereference, and & to get address

void ChangeVal(int *x); //prototype

int x = 5;

int *xPtr = &x;

ChangeVal(&x); // function call

ChangeVal(xPtr); // also valid call

UMBC CMSC 341 Binary Search Trees 10

Passing a Reference

 Uses references (different from pointers)

 Allows called function to modify caller’s variable

void ChangeVal(int &x); //prototype

int x = 5;

int *xPtr = &x;

ChangeVal(x); //function call

ChangeVal(*xPtr); //also valid call

UMBC CMSC 341 Binary Search Trees 11

Passing a Reference

 Uses references (different from pointers)

 Allows called function to modify caller’s variable

void ChangeVal(int &x); //prototype

int x = 5;

int &xRef = x; //create reference

ChangeVal(x); //function call

ChangeVal(xRef); //also valid call

UMBC CMSC 341 Binary Search Trees 12

Pointers vs. References

 How are references different from pointers?

 References must be initialized at declaration

 References cannot be changed

 References can be treated as another

“name” for a variable

 No dereferencing to get the value

 Functions that take values and references

have identical definitions

UMBC CMSC 341 Binary Search Trees 13

Advantages of Passing by Pointer/Ref

 Advantages:

 Allows a function to change the value

 Doesn’t make a copy of the argument (fast!)

 We can return multiple values

 Disadvantages:

 Dereferencing a pointer is slower than direct access

to the value. (References are internally implemented

via pointers)

UMBC CMSC 341 Binary Search Trees 14

From: http://www.learncpp.com/cpp-tutorial/74-passing-arguments-by-address

Advantages of References vs. Pointers

 Reference advantages:

 Can pass as const to avoid unintentional changes

 Values don’t have to be checked to see if they’re

NULL

 Disadvantages:

 Hard to tell if the function is passing by value or

reference without looking at the function itself

UMBC CMSC 341 Binary Search Trees 15

From: http://www.learncpp.com/cpp-tutorial/74-passing-arguments-by-address

Properties of Binary Search Trees

16

Advantages of a BST

 Binary Search Trees are sorted as they’re made

 How quickly does linear binary search find a

value?

 O(log n)

 Binary Search Trees work on the same principle

 What if the tree isn’t “perfect”?

 Performance will be better/worse: worst-case O(n)

 But on average, will be O(log n)

UMBC CMSC 341 Binary Search Trees 17

Searching Through a BST

 Easy to locate an element of the tree

 Find arbitrary element:

 Compare to the current node’s value

 If current node is bigger, go left; otherwise, go right

 Minimum:

 Go left until it’s no longer possible

 (It may not be a leaf – it may have a right subtree)

 Maximum:

 Go right until it’s no longer possible

 (It may not be a leaf – it may have a left subtree)

UMBC CMSC 341 Binary Search Trees 18

Practice: BST of Integers

 Describe the values that might appear in the

subtrees A, B, C, and D

UMBC CMSC 341 Binary Search Trees 19

Example: Creating a BST

 Draw the BST that would result from these

values, given in this exact order

 H,F,A,M,G,Z

UMBC CMSC 341 Binary Search Trees 20

H

F

A

M

G Z

Practice: Creating a BST

 Draw the BST that would result from these

values, given in this exact order

 8,2,1,9,6,5,3,7,4

 5,9,1,8,2,6,7,3,4

 8,1,2,6,9,3,4,7,5

 1,2,3,4,5,6,7,8,9

 5,3,7,9,6,1,4

UMBC CMSC 341 Binary Search Trees 21

Great website where you can

practice and learn about BSTs:

http://visualgo.net/bst.html

http://visualgo.net/bst.html

Subtrees and Recursion

 Every node is the root for its own subtree

 (Subtree of the actual root is the whole tree)

 Almost everything we do with trees can be

(and should be) coded using recursion

 For example: traversal of the tree (pre-, in-,

and postorder) can be done recursively

 Which will print out a BST from low to high?

UMBC CMSC 341 Binary Search Trees 22

Implementing a Binary Search Tree

23

Representing a Binary Search Tree

 What data structure would you use for a BST?

 Array? Stack? Queue? ???

 (Modified) implementation of Linked List

 Linked List nodes contain two things:

 Data, and a pointer to the next node

 BST nodes should contain…

 Data, and two pointers: left and right children

UMBC CMSC 341 Binary Search Trees 24

Generic Structure for BST node

struct BinaryNode

{

// Member variables

<AnyType> element; // Data in the node

BinaryNode *left; // Left child

BinaryNode *right; // Right child

// Constructor

BinaryNode(const <AnyType> & theElement,

BinaryNode *lt, BinaryNode *rt)

{

element = theElement;

left = lt;

right = rt;

}

}

UMBC CMSC 341 Binary Search Trees 25

BST Node Functions

 What other functions might we want for a node?

 Constructor that just takes in data (no children)

 Initializes children to NULL automatically

 print() function

 May be mostly handled if the data is really
simple or another class with a print() function

 Destructor (again, may already be handled)

 Getters and setters (mutators/accessors)

UMBC CMSC 341 Binary Search Trees 26

Generic Class for BST
class BinarySearchTree

{

public:

BinarySearchTree() :root(NULL)

{ }

BinarySearchTree(const BinarySearchTree

&rhs) : root(NULL)

{

*this = rhs;

}

private:

// this private BinaryNode is within BST

BinaryNode *root;

}

UMBC CMSC 341 Binary Search Trees 27

Binary Search Tree Operations

28

Basic BST Operations

 (BST Setup) → set up a BST

 (Node Setup) → set up a BST Node

 void insert(x) → insert x into the BST

 void remove(x) → remove x from the BST

 <type> findMin() → find min value in the BST

 <type> findMax() → find max value in the BST

 boolean contains(x) → is x in the BST?

 boolean isEmpty() → is the BST empty?

 void makeEmtpy() → make the BST empty

 void PrintTree() → print the BST

UMBC CMSC 341 Binary Search Trees 29

Public and Private Functions

 Many of the operations we want to use will

have two (overloaded) versions

 Public function takes in zero or one arguments

 Calls the private function

 Private function takes in one or two arguments

 Additional argument is the “root” of the subtree

 Private function recursively calls itself

 Changes the “root” each time to go further down the tree

UMBC CMSC 341 Binary Search Trees 30

Insert

void insert(x)

31

Inserting a Node

 Insertion will always create a new leaf node

 In determining what to do, there are 4 choices

 Insert the node at the current spot
 The current “node” is NULL (we’ve reached a leaf)

 Go down the left subtree (visit the left child)
 Value we want to insert is smaller than current

 Go down the right subtree (visit the right child)
 Value we want to insert is greater than current

 Do nothing (if we’ve found a duplicate)

UMBC CMSC 341 Binary Search Trees 32

Insert Functions

 Two versions of insert

 Public version (one argument)

 Private version (two arguments, recursive)

 Public version immediately calls private one
void insert(const Comparable & x)

{

// calls the overloaded private insert()

insert(x, root);

}

UMBC CMSC 341 Binary Search Trees 33

Starting at the Root of a (Sub)tree

 First check if the “root” of the tree is NULL

 If it is, create and insert the new node

 Send left and right children to NULL

// overloaded function that allows recursive calls

void insert(const Comparable & x, BinaryNode * & t)

{

if(t == NULL) // no node here (make a leaf)

t = new BinaryNode(x, NULL, NULL);

// rest of function…

}

UMBC CMSC 341 Binary Search Trees 34

Insert New Node (Left or Right)

 If the “root” we have is not NULL

 Traverse down another level via its children

 Call insert() with new sub-root (recursive)

// value in CURRENT root 't' < new value

else if(x < t->element) {

insert(x, t->left); }

// value in CURRENT root 't' > new value

else if(t->element < x) {

insert(x, t->right); }

else; // Duplicate; do nothing

UMBC CMSC 341 Binary Search Trees 35

Full Insert() Function

 Remember, this function is recursive!

// overloaded function that allows recursive calls

void insert(const Comparable & x, BinaryNode * & t)

{

if(t == NULL) // no node here (make a new leaf)

t = new BinaryNode(x, NULL, NULL);

// value in CURRENT root 't' < new value

else if(x < t->element) { insert(x, t->left); }

// value in CURRENT root 't' > new value

else if(t->element < x) { insert(x, t->right); }

else; // Duplicate; do nothing

}

UMBC CMSC 341 Binary Search Trees 36

What’s Up With BinaryNode * & t?

 The code “ * & t ” is a reference to a pointer

 Remember that passing a reference allows us

to change the value of a variable in a function

 And have that change “stick” outside the function

 When we pass a variable, we pass its value

 It just so happens that a pointer’s “value” is the

address of something else in memory

UMBC CMSC 341 Binary Search Trees 37

Find Minimum

Comparable findMin()

41

Finding the Minimum

 What do we do?

 Go all the way down to the left

Comparable findMin(BinaryNode *t)
{

// empty tree
if (t == NULL) { return NULL; }

// no further nodes to the left
if (t->left == NULL) {

return t->value; }
else {

return findMin(t->left); }
}

UMBC CMSC 341 Binary Search Trees 42

Find Maximum

Comparable findMax()

43

Finding the Minimum

 What do we do?

 Go all the way down to the right

Comparable findMax(BinaryNode *t)
{

// empty tree
if (t == NULL) { return NULL; }

// no further nodes to the right
if (t->right == NULL) {

return t->value; }
else {

return findMax(t->right); }
}

UMBC CMSC 341 Binary Search Trees 44

Recursive Finding of Min/Max

 Just like insert() and other functions,

findMin() and findMax() have 2 versions

 Public (no arguments):

 Comparable findMin();

 Comparable findMax();

 Private (one argument):

 Comparable findMax (BinaryNode *t);

 Comparable findMax (BinaryNode *t);

UMBC CMSC 341 Binary Search Trees 45

Delete the Entire Tree

void makeEmpty ()

46

Memory Management

 Remember, we don’t want to lose any

memory by freeing things out of order!

 Nodes to be carefully deleted

 BST nodes are only deleted when

 A single node is removed

 We are finished with the entire tree

Call the destructor

UMBC CMSC 341 Binary Search Trees 47

Destructor

 The destructor for the tree simply calls the
makeEmpty() function

// destructor for the tree

~BinarySearchTree()

{

// we call a separate function

// so that we can use recursion

makeEmpty(root);

}

UMBC CMSC 341 Binary Search Trees 48

Make Empty

 A recursive call will make sure we hang onto

each node until its children are deleted

void makeEmpty(BinaryNode * & t)
{

if(t != NULL)
{

// delete both children, then t
makeEmpty(t->left);
makeEmpty(t->right);
delete t;
// set t to NULL after deletion
t = NULL;

}
}

UMBC CMSC 341 Binary Search Trees 49

Find a Specific Value

boolean contains(x)

50

Finding a Node

 Only want to know if it’s in the tree, not where

 Use recursion to traverse the tree

bool contains(const Comparable & x) const {

return contains(x, root); }

bool contains(const Comparable & x, BinaryNode *t) const

{

if(t == NULL) { return false; }

// our value is lower than the current node's

else if(x < t->element) { return contains(x, t->left); }

// our value is higher than the current node's

else if(t->element < x) { return contains(x, t->right);}

else { return true; } // Match

}

UMBC CMSC 341 Binary Search Trees 51

Finding a Node

 Only want to know if it’s in the tree, not where

 Use recursion to traverse the tree

bool contains(const Comparable & x) const {

return contains(x, root); }

bool contains(const Comparable & x, BinaryNode *t) const

{

if(t == NULL) { return false; }

// our value is lower than the current node's

else if(x < t->element) { return contains(x, t->left); }

// our value is higher than the current node's

else if(t->element < x) { return contains(x, t->right);}

else { return true; } // Match

}

UMBC CMSC 341 Binary Search Trees 52

We have to have a defined
overloaded comparison
operator for this to work!

(Both of the else if statements
use < so we only need to write one)

Removing a Node

void remove(x)

54

Complicated Removal

 Similar to a linked list, removal is often much

more complicated than insertion or complete

deletion

 We must first traverse the tree to find the

target we want to remove
 If we “disconnect” a link, we need to reestablish

 Possible scenarios
 No children (leaf)

 One child

 Two children

UMBC CMSC 341 Binary Search Trees 55

Removing A Node – Example 1

 Remove 4

 Any issues?

UMBC CMSC 341 Binary Search Trees 56

Removing A Node – Example 2

 Remove 6

 Any issues?

UMBC CMSC 341 Binary Search Trees 57

Removing A Node – Example 3

 Remove 8

 Any issues?

UMBC CMSC 341 Binary Search Trees 58

Removing a Node – No Children

 Simplest scenario for removal

 No children to worry about managing

 Reminder: nodes with no children are leaves

 We still have to find the target node first

 To remove a node with no children, we need

to do the following:

 Cut the link from the parent node

 Free the memory

UMBC CMSC 341 Binary Search Trees 59

Removing a Node – One Child

 Second easiest scenario for removal
 Only one child is linked to the node

 The node can only be deleted after its parent

adjusts the link to bypass the node to the child
 The “grandparent” node takes custody

 To remove a node with one child, we need to

do the following:
 Connect node’s parent to its child (custody)

 Free the memory

UMBC CMSC 341 Binary Search Trees 60

Example Removal – One Child

 Remove “18” from this BST:

 Grandparent takes custody

UMBC CMSC 341 Binary Search Trees 61

Source: http://www.algolist.net/Data_structures/Binary_search_tree/Removal

Code for Removal

void remove(const Comparable & x, BinaryNode * & t)

{

// code to handle two children prior to this

else

{

// "hold" the position of node we'll delete

BinaryNode *oldNode = t;

// ternary operator

t = (t->left != NULL) ? t->left : t->right;

delete oldNode;

}

}

UMBC CMSC 341 Binary Search Trees 62

Removing a Node – Two Children

 Most difficult scenario for removal
 Everyone in the subtree will be affected

 Instead of completely deleting the node, we

will replace its value with another node’s
 The smallest value in the right subtree
 Use findMin() to locate this value

 Then delete the node whose value we moved

 Using the minimum of a subtree ensures it

does not also have two children to handle

UMBC CMSC 341 Binary Search Trees 64

Remove Function

65

void remove(const Comparable & x, BinaryNode * & t)

{

if(t == NULL) { return; } // item not found; do nothing

// continue to traverse until we find the element

if(x < t->element) { remove(x, t->left); }

else if(t->element < x) { remove(x, t->right); }

else if(t->left != NULL && t->right != NULL) // two children

{

// find right’s lowest value

t->element = findMin(t->right)->element;

// now delete that found value

remove(t->element, t->right);

}

else // zero or one child

{

BinaryNode *oldNode = t;

// ternary operator

t = (t->left != NULL) ? t->left : t->right;

delete oldNode;

}

} UMBC CMSC 341 Binary Search Trees

Printing a Tree

void printTree()

66

Printing a Tree

 Printing is simple – only question is which

order we want to traverse the tree in?

// ostream &out is the stream we want to print to

// (it maybe cout, it may be a file – our choice)

void printTree(BinaryNode *t, ostream & out) const

{

// if the node isn't null

if(t != NULL)

{

// print an in-order traversal

printTree(t->left, out);

out << t->element << endl;

printTree(t->right, out);

}

}

UMBC CMSC 341 Binary Search Trees 67

Performance

Run Time of BST Operations

68

Big O of BST Operations

Operation Big O

contains(x) O(log n)

insert(x) O(log n)

remove(x) O(log n)

findMin/findMax(x) O(log n)

isEmpty() O(1)

printTree() O(n)

UMBC CMSC 341 Binary Search Trees 69

