
www.umbc.edu

CMSC 341
Lecture 9

Introduction to Trees

(Adapted from Profs. Gibson &
Dixon’s slides)

www.umbc.edu

Introduction to Trees

www.umbc.edu

What is a Tree?

• In computer science, a tree is an abstract
model of a hierarchical structure

• Applications:

– Organization charts

– File systems

– Programming environments

www.umbc.edu

Tree Example – Org Chart

John

Mick Rama

Lee Jim Tom TinaLisa

Bob DeeSal Bill

CEO

CTO CFO

www.umbc.edu

What is a Tree?

• A tree is a special form of a graph; it consists of:

– Elements, called nodes or vertices

– Connections, called edges or arcs

• A tree has the following additional properties:

– The edges are directional (have arrows)

– All nodes but one (the root node) have exactly one edge
coming in (i.e., pointing to it) and 0 or more going out

– There are no cycles (loops)

www.umbc.edu

What is a Tree?

A

K Q

Z F

Node or Element
Edge or Link or Branches

www.umbc.edu

Tree Terminology

• There are two main ways that trees are
described.

1. Terms are related to “trees” such as root,
branches, and leaves

2. Terms are related to “ancestry” such as parent,
children, sibling, ancestors, and descendants

www.umbc.edu

What is a Tree?

• Each node may have 0 or more children

A

K Q

Z F The children of A are K and Q.

The children of K are Z and F.

Q, Z, and F have no children.

www.umbc.edu

What is a Tree?

• Each node has exactly one parent
– Except the starting / top node, called the root

A

K Q

Z F

Root

The parent of K is A.
The parent of Q is A.
The parent of Z is K.
The parent of F is K.

www.umbc.edu

What is a Tree?

• Nodes with no children are called leaves

• Which are leaves?

A

K Q

Z F T L

leaves

www.umbc.edu

What is a Tree?

• Nodes with same parent are siblings

• Which are siblings?

A

K Q

Z F T L

siblings siblings

siblings

www.umbc.edu

What is a Tree?
• If there is a path between node A and node Z:

A

K Q

Z F T L

Z is a descendant of A

A is an ancestor of Z

www.umbc.edu

What is a Tree?

• Depth of a node: The number of ancestors excluding
itself.

A

K Q

Z F T L

Depth 0

Depth 1

Depth 2

Count number of edges between root and node for depth

www.umbc.edu

What is a Tree?

• Height of a tree: Number of edges between root and
farthest leaf

A

K Q

Z F T L

R B

What is the
height of this
tree?

1

2

3

Height = 3

3

www.umbc.edu

What is a Tree?

• Height of a node: Number of edges between node
and deepest leaf

A

K Q

Z F T L

R B

What is the height
of node K?

1

2

Height = 2

2

www.umbc.edu

What is a Tree?
• Subtree: A tree that consists of a child and

the child's descendants

A

K Q

Z F T L

Subtree 1

Includes K, Z, and F

Subtree 2

Includes Q, T, and L

Considered recursive
because each sub-tree
can be viewed as the root
of a smaller tree

www.umbc.edu

Tree Terminology Practice

1. How could we describe Z?

Z is a node, a leaf, a sibling of F and a child of K

A

K Q

Z F T L

www.umbc.edu

Tree Terminology Practice

2. How could we describe the relationship between T
and L?

T is a sibling of L and they are both leaves

A

K Q

Z F T L

www.umbc.edu

Tree Terminology Summary
• A tree is a collection of nodes(elements)

• Each node may have 0 or more children

– (Unlike a list, which has 0 or 1 successors)

• Each node has exactly one parent

– Except the starting / top node, called the root

• Links from a node to its successors are called edges
or branches

• Nodes with same parent are siblings

• Nodes with no children are called leaves

www.umbc.edu

Types of Trees

www.umbc.edu

Types of Trees

• Regular Tree

• Regular Binary Tree

• Binary Search Tree (BST)

All regular binary trees are also regular trees.

All binary search trees (BST) are also regular binary trees.

www.umbc.edu

Regular (Non-binary) Tree

• Many links to many children

www.umbc.edu

Regular Binary Tree

• No node can have more than two children.

A

K Q

Z F T L

Average depth is 𝑶(𝒏)

www.umbc.edu

Regular Binary Tree

• No node can have more than two children.

A

Q

L

Worst scenario depth is 𝑶(𝒏 − 𝟏)

P

www.umbc.edu

Full Binary Tree

• A binary tree is full if all nodes have exactly 0
or 2 child nodes

A

K Q

Z F
Full

www.umbc.edu

Complete Binary Tree
• A binary tree is complete if:

– Every level but the last must be full

– All leaves are as far to the left as possible

A

K Q

Z F T
Complete

www.umbc.edu

Perfect Binary Tree

• A binary tree is perfect if all interior nodes
have 2 children and all leaves are at the same
level

A

K Q

Z F T L
Full

www.umbc.edu

Complete & Full Binary Trees
• Is each tree full, complete, neither, or both?

From: http://courses.cs.vt.edu/~cs3114/Fall09/wmcquain/Notes/T03a.BinaryTreeTheorems.pdf

Full, but

not complete

Complete,

but not full

Full and

complete

(“perfect”)

Neither full

nor complete

www.umbc.edu

Binary Search Tree (BST)

• A binary search tree (BST) or ordered binary
tree is a type of binary tree where the nodes
are arranged in order:

– For each node, all elements in its left subtree are
less than the node (<)

– All the elements in its right subtree are greater
than the node (>)

BSTs Next Class!

www.umbc.edu

Other Binary Tree Information

• Trees are SHALLOW – they can hold many
nodes with very few levels

• A height of 19 can hold 1,048,575 nodes

• 2(height+1) -1 = How many TOTAL nodes can be
held by this tree

–Can also be expressed as 2(depth+1) - 1

www.umbc.edu

Tree Implementations

www.umbc.edu

Tree Implementation

• There are two ways to construct trees

– Linked Lists

• Use links to connect to the other nodes in the tree

– Array (K-ary)

• Can only use if we know the MAXIMUM number of
children allowed

www.umbc.edu

K-ary Trees (also called M-ary)

• “k” is the number of children (links)

• Built as an array of nodes

• Will only work if we know the MAXIMUM number of children

• Empty spots in the array to denote a missing node

• Useful in coding since we can dictate the number of nodes we
want
– Also since there is a formula to calculate the node’s kids

• Child and grandchild index and corresponding items can be
found in constant time.

From: http://cs.lmu.edu/~ray/notes/orderedtrees/

www.umbc.edu

K-ary Trees

• A k-ary tree is a tree in which the children of a
node appear at distinct index positions in
0..k-1

• This means the maximum number of children
for a node is k

From: http://cs.lmu.edu/~ray/notes/orderedtrees/

www.umbc.edu

K-ary Trees

• Some k-ary trees have special names

– 2-ary trees are called binary trees

– 3-ary trees are called trinary trees or ternary
trees

– 1-ary trees are called lists

From: http://cs.lmu.edu/~ray/notes/orderedtrees/

www.umbc.edu

Array Representation Of A Tree

From: http://cs.lmu.edu/~ray/notes/orderedtrees/

www.umbc.edu

Array Representation Of A Tree

• For k-ary trees, with first node=1:

– parent(i) = (i – 2) / k + 1 (0-origin: (i – 1) / k)
for binary: i / 2

– child(i) = k (i – 1) + 1 + j (0-origin: k * i + j + 1)

• For binary trees, especially simple:

– parent(i) = i/2, child(i) = 2i, 2i+1

www.umbc.edu

Tree Traversals

www.umbc.edu

Traversals of Binary Trees

• To iterate over and process the nodes of a tree

– We walk the tree and visit the nodes in order

– This process is called tree traversal

• Three kinds of binary tree traversal:

– Preorder

– Inorder

– Postorder

www.umbc.edu

Traversals of Binary Trees
• Preorder: Visit root, traverse left, traverse right

• Inorder: Traverse left, visit root, traverse right

• Postorder: Traverse left, traverse right, visit root

Algorithm for

Preorder Traversal
1. if the tree is empty

2. Return
else

3. Visit the root.

4. Preorder traverse

the left subtree.

5. Preorder traverse

the right subtree.

Algorithm for

Postorder Traversal
1. if the tree is empty

2. Return
else

3. Postorder traverse

the left subtree.

4. Postorder traverse

the right subtree.

5. Visit the root.

Algorithm for

Inorder Traversal
1. if the tree is empty

2. Return
else

3. Inorder traverse

the left subtree.

4. Visit the root.

5. Inorder traverse

the right subtree.

www.umbc.edu

Preorder Traversals

Preorder:

F, B, A, D, C, E, G, I, H

1. Display the data part of root element (or current element)

2. Traverse the left subtree by recursively calling the pre-order function.

3. Traverse the right subtree by recursively calling the pre-order function.

From: https://en.wikipedia.org/wiki/Tree_traversal

Display a node’s data

as soon as you see it

www.umbc.edu

Inorder Traversals

Inorder:

A, B, C, D, E, F, G, H, I

1. Traverse the left subtree by recursively calling the in-order function

2. Display the data part of root element (or current element)

3. Traverse the right subtree by recursively calling the in-order function

From: https://en.wikipedia.org/wiki/Tree_traversal

Display the nodes in

order (sort of from left

to right, with the lower

nodes first)

www.umbc.edu

Postorder Traversals

Postorder:

A, C, E, D, B, H, I, G, F

1. Traverse the left subtree by recursively calling the post-order function.

2. Traverse the right subtree by recursively calling the post-order function.

3. Display the data part of root element (or current element).

From: https://en.wikipedia.org/wiki/Tree_traversal

Display a node’s data

the last time you see it

www.umbc.edu

Tree Traversal Example

bj

c

d
g

k

m l

i h f e

a

a j k m l b c g i h d f e

What would the preorder traversal look like?

From: http://people.cs.clemson.edu/~pargas/courses/cs212/common/notes/ppt/07Trees.ppt

www.umbc.edu

Tree Traversal Example

bj

c

d
g

k

m l

i h f e

a

m k l j a b i g h c f d e

What would the inorder traversal look like?

From: http://people.cs.clemson.edu/~pargas/courses/cs212/common/notes/ppt/07Trees.ppt

www.umbc.edu

Tree Traversal Example

bj

c

d
g

k

m l

i h f e

a

m l k j i h g f e d c b a

What would the postorder traversal look like?

From: http://people.cs.clemson.edu/~pargas/courses/cs212/common/notes/ppt/07Trees.ppt

www.umbc.edu

Preorder Traversals

preorder (Node t)

if (t == null)

return;

visit (t.value());

preorder (t.lchild());

preorder (t.rchild());

} // preorder

Preorder
N L R

From: http://people.cs.clemson.edu/~pargas/courses/cs212/common/notes/ppt/07Trees.ppt

www.umbc.edu

Inorder Traversals

inorder (Node t)

if (t == null)

return;

inorder (t.lchild());

visit (t.value());

inorder (t.rchild());

} // inorder

Inorder
L N R

From: http://people.cs.clemson.edu/~pargas/courses/cs212/common/notes/ppt/07Trees.ppt

www.umbc.edu

Postorder Traversals

postorder (Node t)

if (t == null)

return;

postorder (t.lchild());

postorder (t.rchild());

visit (t.value());

} // postorder

Postorder
L R N

From: http://people.cs.clemson.edu/~pargas/courses/cs212/common/notes/ppt/07Trees.ppt

www.umbc.edu

Another Tree Traversal

• A level-order walk iterates over all the nodes
level-by-level, starting from the root (level 0)–
this is known as a breadth-first search

• Nodes are traversed level by level

– Root node is visited first

– Followed by its direct child nodes

– Followed by its grandchild nodes

– Until all nodes in the tree have been traversed

www.umbc.edu

Tree Functions

www.umbc.edu

Binary Tree Functions

Node Setup

void insert(x) --> Insert x

void remove(x) --> Remove x

boolean contains(x) --> Return true if x is present

Comparable findMin() --> Return smallest item

Comparable findMax() --> Return largest item

boolean isEmpty() --> Return true if empty; else false

void makeEmpty() --> Remove all items

void printTree() --> Print tree in sorted order

www.umbc.edu

Generic Struct for Binary Tree
private struct BinaryNode

{

Comparable element; // Data in the node

BinaryNode *left; // Left child

BinaryNode *right; // Right child

// Constructors

BinaryNode(const Comparable & theElement,

BinaryNode *lt, BinaryNode *rt)

{

element = theElement;

left = lt;

right = rt;

}

}

