CMSC 341
Lecture 6 — STL,, Stacks, & Queues

Based on slides by Lupoli, Dixon & Gibson at UMBC

Templates

Common Uses for Templates

Some common algorithms that easily
lend themselves to templates:

o Swap

a ... what else?
0 Sort

o Search

o FindMax

a FiIndMin

UMBC CMSC 341 Templates

maxx () Overloaded Example

float maxx (const float a, const float b);
int maxx (const int a, const int b);
Rational maxx (const Rational& a, const Rationalé& b);

myType maxx (const myType& a, const myTypeé& b);

Code for each looks the same...
if ((a < b))

return b;

we want to reuse this
else code for all types

return a,

UMBC CMSC 341 Templates 4

What are Templates?

Templates let us create functions and classes
that can work on “generic” input and types

This means that functions like
maxx () only need to be written once

o And can then be used for almost anything

UMBC CMSC 341 Templates 5

Indicating Templates

To let the compiler know you are going to
apply a template, use the following:
template <class T>

What this line means overall is that we plan
to use “T” in place of a data type

o e.d., int, char, myClass, €lcC.

This template prefix needs to be used before
function declarations and function definitions

UMBC CMSC 341 Templates

Template Example

Function Template
template <class T>
T maxx (const T& a, const T& b)
| [| |

{
if (a<b)
return b;
else
return a;

}

Compiler generates code based on the argument type
cout << maxx (4, 7) << endl;

Generates the following:

int maxx (const int& a, const int& b)
I I I

{
if (a < b))
return b;
else
return a;

/

_

Notice how ‘T’ is

mapped to ‘int’

everywhere in the
function...

\

)

UMBC CMSC 341 Templates

Using Templates

When we call these templated functions,
nothing looks different:

SwapVals (intOne, intTwo) ;
SwapVals (charOne, charTwo) ;
SwapVals (strOne, strTwo) ;

SwapVals (myClassA, myClassB);;

UMBC CMSC 341 Templates

Templating Classes

Want to be able to define classes that work with
various types of objects

Shouldn’t matter what kind of object it stores

Generic “collections™ of objects
o Linked List

o Stack

a Vector

o Binary Tree (341)
o Hash Table (341)

UMBC CMSC 341 Templates

Making a Templated Class

Three key steps:
o Add template line
Before class declaration

o Add template line
Before each method in implementation

o Change class name to include template
Add <T> after the class name wherever it appears

UMBC CMSC 341 Templates

10

Example: Templated Node

template <class T> template <class T>
class Node const T& Node<T>: :GetData()
{ {
public: return m _data;
Node (const T& data); }
const T& GetData() ;
void SetData(const T& data); template <class T>
Node<T>*] GetNext () ; void Node<T>: :SetData(const T& data)
void SetNext (Node<T>* next); {
m data = data;
private: }
T m data;
Node<T>* m next; template <class T>
}; Node<T>* |Node<T>: : GetNext ()
{
template <class T> return m next;
Nodé<T>::Node(const T& data) }
1
m_data = data; template <class T>
m_next = NULL; void Node<T>: :SetNext (Node<T>* next)

} {

m;next = next;

}

UMBC CMSC 341 Templates 11

Example: Templated Stack

template <class T> template <class T>
class Stack void Stack<T>::Push(const T& item)
{ {
public: Node<T>*| newNode = new Node<T>(item) ;
Stack() ; newNode->SetNext (m_head) ;
void Push(const T& item) ; m_head = newNode;
T Pop(); }
private: template <class T>
Node<T>* m head; T Stack<T>: :Pop ()

}i {

T data = m_head->GetData() ;
Node<T>* temp = m head;

m head = temp->GetNext() ;
delete temp;

template <class T> return data;

Stack<T> J:Stack () }

1
m_head = NULL;

}

UMBC CMSC 341 Templates 12

Using the Templated Stack

int main ()

{

Stack<int> nums ;
Stack<string> names;

nums .Push (7) ;
nums . Push (8) ;
cout << nums.Pop() << endl;
cout << nums.Pop() << endl;

names.Push ("Freeman") ;
names.Push ("Hrabowski") ;
cout << names.Pop () << endl;
cout << names.Pop () << endl;

return 0;

UMBC CMSC 341 Templates

13

Multiple Templated Types

14

Example: Pair

template < class Key, class Data >
class Pair
{
public:
Pair() ;
~Pair(),
Pair(const Pair<Key, Data>& pair);
bool operator== (const Pair<Key, Data>& rhs) const;

private:
Key m key;
Data m data;

};

// Pair's equality operator
template <class K, class D>
bool Pair<K, D>::operator== (const Pair<K,D>& rhs) const

{

return m key == rhs.m key && m data == rhs.m data;

UMBC CMSC 341 Templates

15

Using the Pair Template

int main ()

{

string namel "Thunder";

string name2 "Jasper";
// use pair to associate a string and its length
Pair< int, string > dog (namel.length(), namel);

Pair< int, string > cat (name2.length(), name2);

// check for equality
if (dog == cat)
cout << "All animals are equal!" << endl;

return 0;

UMBC CMSC 341 Templates

16

Using the Pair Template (Example 2)

int main ()

{

// use Pair for names and Employee object

Employee john, mark;

Pair< string, Employee > boss ("John", john);

Pair< string, Employee > worker ("Mark'", mark);

if (boss == worker)

cout << "A real small company" << endl;

return 0;

UMBC CMSC 341 Templates

17

Miscellaneous Extra Template Info

18

Templates as Parameters

Not much different from a “regular” variable

template <class T>
void Sort (SmartArray<T>& theArray)

{
// code here

Make sure that the behaviors used in the
function are defined for the type you're using

UMBC CMSC 341 Templates 19

Standard Template Library (STL)

Standard Template Library (STL)

The Standard Template Library (STL) is a

C++ library of container classes, algorithms,
and iterators

Provides many of the basic algorithms and
data structures of computer science

From: https://www.sgi.com/tech/stl/stl_introduction.html

Considerations of the STL

Containers replicate structures very
commonly used in programming.

Many containers have several member
functions in common, and share
functionalities.

From: http://www.cplusplus.com/reference/stl/

Considerations of the STL

The decision of which type of container to
use for a specific need depends on:

o the functionality offered by the container

0 the efficiency of some of its members
(complexity)

From: http://www.cplusplus.com/reference/stl/

Types of Containers

Sequence containers

Focus of Today

0 lﬁ\rra_y, vector, |deque, forward_list, list

Container adapters
o Stacks, queues|, priority_queues

Associative containers (and the unordered)

o Set, multiset, map, multimap

Standard Containers

Seguences:

o vector: Dynamic array of variables, struct or
objects. Insert data at the end.

o list: Linked list of variables, struct or objects.
Insert/remove anywhere.

0 Sequence means order does matter

Container Adapters

Container adapters:

o stack LIFO

o queue FIFO

o adapter means VERY LIMITED functionality

Wil we use STL.?

Today we are going to talk about the ways
that we can implement stacks and queues

3 Ways to Create a Stack or Queue

o Create a static stack or queue using an array

o Create a dynamic stack or queue using a linked
list

o Create a stack or queue using the STL

Stacks

Stacks

Introduction to Stacks

= A stack Is a data structure that stores and

retrieves items in a last-in-first-out (LIFO)
manner.

Last plate in,

first plate out > ! '
First plate in, y v
last plate out v

Applications of Stacks

Computer systems use stacks during a
program’s execution to store function return
addresses, local variables, etc.

Some calculators use stacks for performing
mathematical operations.

Implementations of Stacks

Static Stacks

o Fixed size
o Can be implemented with an array

Dynamic Stacks
o Grow in size as needed
o Can be implemented with a linked list

Using STL (dynamic)

Stack Operations

Push

o causes a value to be stored in (pushed onto) the
stack

Pop
o retrieves and removes a value from the stack

The Push Operation

Suppose we have an empty integer stack
that is capable of holding a maximum of three
values. With that stack we execute the
following push operations.

push (3) ;
push (10) ;
push (15) ;

‘ The Push Operation

The state of the stack after each of the push operations:

push(3);

push(10);

push(15);

15

10

The Pop Operation

Now, suppose we execute three
consecutive pop operations on the same
stack:

15 +ﬁ\\ 10 *ﬁx\ 5 +ﬁx\

10

POP; 5 POP; POP;

Other Stack Operations

isFull (): A Boolean operation needed for
static stacks. Returns true If the stack is full.
Otherwise, returns false.

isEmpty () : A Boolean operation needed for

all stacks. Returns true if the stack is empty.
Otherwise, returns false.

Static Stacks

Static Stacks

A static stack Is built on an array

o As we are using an array, we must
specify the starting size of the stack

o The stack may become full if the array
becomes full

Member Variables for Stacks

Three major variables:

0 Pointer Creates a pointer to stack
0 size Tracks elements in stack

0 top Tracks top element in stack

Member Functions for Stacks

Cc O 0O O 0 O

CONSTRUCTOR

DESTRUCTOR
push ()

pop ()
isEmpty ()
isFull ()

Creates a stack

Deletes a stack
Pushes element to stack

Pops element from stack
Is the stack empty?
|s the stack full?

Static Stack Definition

#ifndef INTSTACK H
#define INTSTACK H

class IntStack

{ pointer
private: / size () Member Variables
int *stackArray/ top()
int stack_
int top;
Constructor

IntStack (int);

~IntStack()

{delete[] stW push () . Memper
voz:.: pusl'(l.(iztl); — pop () Functions
void pop (in ; .
bool isFull(); < isFull ()
bool isEmpty(); < isEmpty () _

#endif

Dynamic Stacks

Dynamic Stacks

A dynamic stack is built on a linked list instead of
an array.

A linked list-based stack offers two advantages
over an array-based stack.

o No need to specify the starting size of the stack. A
dynamic stack simply starts as an empty linked list,
and then expands by one node each time a value is
pushed.

o A dynamic stack will never be full, as long as the
system has enough free memory.

Member Variables for Dynamic Stacks

Parts:
0 Linked list Linked list for stack (nodes)
0 size Tracks elements in stack

Member Functions for Dynamic Stacks

o0 CONSTRUCTOR Creates a stack

2 DESTRUCTOR Deletes a stack

0 push () Pushes element to stack
0 pop () Pops element from stack
0 isEmpty () s the stack empty?

0 top () What is the top element?

What happened to isFull () ?

Dynamic Stack

class DynIntStack Linked list —

private:
struct StackNode value
{ / |
int value; POlnter

Member
Variables

i

StackNode *top;

Constructor -
DynIntStack (void)
{ top = NUI‘-Lr'/ pop () -
void push (int) ;
top ()

void pop (int &) ;
const Elemé& top()*const throw(StackEmpty) ;]
bool isEmpty (void); = isEmpty ()

Member
Functions

Common Problems with Stacks

Stack underflow
2 no elements Iin the stack, and you tried to pop

Stack overflow

o maximum elements in stack, and tried to add
another

o not an issue using STL or a dynamic
Implementation

STI. Stack

push(e)
pop()
top()
size()

empty()

UMBC CMSC 341 Templates

49

Queues

Introduction to the Queue

Like a stack, a queue Is a data structure that
holds a sequence of elements.

A queue, however, provides access to its
elements in first-in, first-out (FIFO) order.

The elements in a queue are processed like
customers standing in a line: the first customer to
get in line is the first one to be served (and leave

the line).

Example Applications of Queues

In a multi-user system, a queue Is used to hold
print jobs submitted by users, while the printer
services those jobs one at a time.

Communications software also uses queues to
hold information received over networks.
Sometimes information is transmitted to a
system faster than it can be processed, so it is
placed in a queue when it is received.

Implementations of Queues

Static Queues Just like
o Fixed size stacks!
o Can be implemented with an array
Dynamic Queues

o Grow In size as needed

o Can be implemented with a linked list

Using STL (dynamic)

Queue Operations

Think of queues as having a front and a
rear.
o rear: position where elements are added

o front: position from which elements are
removed

Front Rear

N

Queue Operations

The two primary queue operations are
engueuing and degueuing.

To engueue means to insert an element at
the rear of a queue.

To degueue means to remove an element
from the front of a queue.

Queue Operations

Suppose we have an empty static integer
gueue that is capable of holding a maximum
of three values. With that queue we execute
the following enqueue operations.

Enqueue (3) ;
Enqueue (6) ;
Enqueue (9) ;

Queue Operations - Enqueue

Enqueue(3);
FFCQ ;aar

The state of the queue ;

after each of the

engqueue operations. Enqueue(6);

/
3|6

Enqueue(9);

Front Rear

3[6 |9

Queue Operations - Dequeue

Now let's see how
dequeue operations are
performed. The figure
on the right shows the
state of the queue after
each of three
consecutive dequeue
operations

An important remark

o After each dequeue,
remaining items shift
toward the front of the
gueue.

Dequeue();

Front Rear

3
removed FG 9

Dequeue();

Front Rear

6
removed

9

Dequeue();

Front = -1 Rear = -1

9
removed

FEtticiency Problem of Dequeue & Solution

Shifting after each dequeue operation
causes inefficiency.

Solution
o Let front index move as elements are removed

o let rear index "wrap around" to the beginning of
array, treating array as circular

Similarly, the front index as well

o Yields more complex enqueue, dequeue code,
but more efficient

o Let's see the trace of this method on the board
for the enqueue and dequeue operations given
on the right (queue size is 3)

Enqueue (3) ;
Enqueue (6) ;
Enqueue (9) ;
Dequeue () ;
Dequeue () ;
Enqueue (12) ;
Dequeue () ;

Implementation ot a Static Queue

The previous discussion was about static
arrays

o Container is an array

Class Implementation for a static integer
gueue

o Member functions
enqueue ()
dequeue ()
isEmpty ()
isFull ()

clear ()

Member Variables for Static Queues

Five major variables:

0 queueArray Creates a pointer to queue
0 queueSize Tracks capacity of queue
0 numItems Tracks elements in queue
o front

a rear

The variables front and rear are used when
our queue “rotates,” as discussed earlier

Member Functions for Queues

o O O O

U

CONSTRUCTOR
DESTRUCTOR
enqueue ()

dequeue ()
gueue

isEmpty ()
isFull ()

clear ()

Creates a queue
Deletes a queue
Adds element to queue
Removes element from

Is the queue empty?
Is the queue full?
Empties queue

Static Queue Example

#ifndef INTQUEUE_ H
#define INTQUEUE H po inter

class IntQueue

{

queueSize ()
front

private:
. Year
int *queueArray;
int queueSize; numItems
int front;
int xear; Constructor
int numItems;
public: *___,————”’—————————————enqueue()
IntQueue (int) ; ‘——__________———"‘——_———————_——_
void enqueue (int) ; dequeue ()
void dequeue (int &) ; *—
bool isEmpty() const; € isEmpty ()
bool isFull() const; . .
void clear(); - lSFUll ()
% — clear ()

#fendif

S—

Member
Variables

Member
Functions

STL. Queues

STL Queues

Another way to implement a gqueue Is by
using the standard library

An STL queue leverages the pre-existing
library to access the data structure

Much easier to use

STL Queue

push(e)
pop()
front()

back()
size()

empty()

UMBC CMSC 341 Templates

66

#include <iostream> // std::cin, std::cout
#include <queue> // std::queue

using namespace std; ESﬁIﬁI

int main ()

{
std: : queue<int> myqueue; Queue

int myint;

std: :cout << "Please enter some integers (enter 0 to EXZLII]pl@

end) :\n";

do {
std: :cin >> myint;
myqueue.push (myint);
} while (myint);

std: :cout << "myqueue contains: ";
while (!'myqueue.empty())

{
std: :cout << ' ' << myqueue. front() ;

myqueue.pop () ;
}
std: :cout << '\n';

return 0;

lterators

lterators

An iterator In C++ Is a concept that refines
the iterator design pattern into a specific set
of behaviors that work well with the C++
standard library.

The standard library uses iterators to expose
elements in a range, in a consistent, familiar
way.

From: https://cise.ufl.edu/class/cop3530fal0/ITERATORS.ppt

lterators

Anything that implements this set of
behaviors Is called an iterator.

o Allows Generic Algorithms

o Easy to implement your own iterators and have
them integrate smoothly with the standard library.

From: https://cise.ufl.edu/class/cop3530fal0/ITERATORS.ppt

Encapsulation

Encapsulation is a form of information hiding
and abstraction

Data and functions that act on that data are
located in the same place (inside a class)

ldeal: separate the interface/implementation
so that you can use the former without any
knowledge of the latter

Iterator Pattern

The Iiterator pattern describes a set of
requirements that allows a consumer of some
data structure to access elements in it with a
familiar interface, regardless of the internal
details of the data structure.

The C++ standard library containers (data
structures) supply iterator interfaces, which
makes them convenient to use and
Interoperable with the standard algorithms.

From: https://cise.ufl.edu/class/cop3530fal0/ITERATORS.ppt

lterators

The Iiterator pattern defines a handful of

simple requirements. An iterator should allow
Its consumers to:

o Move to the beginning of the range of elements
o Advance to the next element

o Return the value referred to, often called the
referent

o Interrogate it to see if it Is at the end of the range

From: https://cise.ufl.edu/class/cop3530fal0/ITERATORS.ppt

Using Iterators

begin () returns a bidirectional iterator that
represents the first element of the container.

end () returns an iterator that represents the
end of the elements (not the "last" element)
o The end is a position behind the last element

o Defining it this way gives us a simple ending criteria
for our loops (as we'll see) and it avoids special
handling for empty ranges of elements

Iterators in C++

The C++ standard library provides iterators for the standard
containers (for example, list, vector, deque, and so on) and
a few other noncontainer classes. You can use an iterator
to print the contents of, for example, a vector like this:

vector<int> v;

/[fill up v with data...

for (vector<int>::iterator it = v.begin(); it = v.end(); ++it)
{

cout << *it << end!;

}

From: https://cise.ufl.edu/class/cop3530fal0/ITERATORS.ppt

C++ Iterators

C++ Iterators permit the same operations as the
iterator pattern requires, but not literally.

It's all there: move to the beginning, advance to
the next element, get the referent, and test to
see If you're at the end.

In addition, different categories of iterators
support additional operations, such as moving
backward with the decrement operators (--it or it-
-), or advancing forward or backward by a
specified number of elements.

From: https://cise.ufl.edu/class/cop3530fal0/ITERATORS.ppt

Iterator Types

5 main types of Iterators in C++
o Read only

o Write only

o Forward Iterator

o Reverse or Backwards Iterator
o Random Access Iterator

With exception of Read and Write, as we go down every

iterator Is a superset of the previous one in terms of
functionality.

Common e.g. -> Pointers are a type of random access
iterators.

From: https://cise.ufl.edu/class/cop3530fal0/ITERATORS.ppt

Forward Iterators

Essentially only need to traverse over
elements

However to make STL — compliant, or to be
able to interface with STL Algorithms, an
iterator over a data structure needs to
Implement the following functionality

From: https://cise.ufl.edu/class/cop3530fal0/ITERATORS.ppt

Forward Iterators

Required Functionality (Forward Iterator)
o Assignment
o Tests for Equality

o Forward advancement using the prefix and
postfix forms of the ++ operator

o dereferencing that returns an rvalue (value) or
an lvalue (address)

