
CMSC 341

Lecture 16/17 Hashing, Parts 1 & 2

Prof. John Park

Based on slides from previous iterations of this course

Today’s Topics

 Overview
 Uses and motivations of hash tables

 Major concerns with hash tables

 Properties
 Hash function

 Hash table size

 Load factor

 Operations
 Collision handling

 Resizing/Expanding

 Deletion

UMBC CMSC 341 Hashing 2

Introduction

If we wanted to find one person out of the possible 326,071,600 in the US,

how would we do it?

From: http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk

As of November 2015

With no additional information, we may

have to search through all 322M people!

Introduction

However, if we were to organize each of the people by the

50 states, we may greatly increase the speed to find them.

Introduction

 Now, we know that the populations of the

states are not evenly distributed

When our n = 322,071,600 we would expect

322,071,600 / 50 = 6,441,432 in each state

Introduction

 But, the important concept here is – as long

as we know which state to look in, we can

greatly reduce the data set to look in!

 Hashes take advantage of organizing the

data into buckets or slots to help make the

functions more efficient

Motivation

 We want a data structure that supports fast:

 Insertion

 Deletion

 Searching

 (We don’t care about sorting)

 We could use direct indexing in an array, but

that is not space efficient

 The solution is a hash table

UMBC CMSC 341 Hashing 7

Hash Tables

 A hash table is a data structure for storing

key-value pairs. Unlike a basic array, which

uses index numbers for accessing elements,

a hash table uses keys to look up table

entries.

 Two major components:

 Bucket array (or slot)

 Hash function

From: http://pumpkinprogrammer.com/2014/06/21/c-tutorial-intro-to-hash-tables/

Bucket Array

 A bucket array is an array of size N where each

cell can be thought of as a “bucket” that holds a

collection of key/value pairs

 Obviously, we can also implement this using an

array of linked lists as well

Hash Function

 If the keys are unique integers that fit in the

range [0, N-1] then the bucket array is all we

need – no hash function at all!

 However, this is rarely (i.e., never) the case

UMBC CMSC 341 Hashing 10

Hash Function

 A hash function is needed to take our initial

keys and map them into the range [0, N-1]

 Two parts to a hash function:

 Hash code

 Converts key into an integer

 Compression function

 Converts integer to index in the correct range

 (Often combined into one function)

UMBC CMSC 341 Hashing 11

Hash Function

 In particular, a key value is divided by the

table length to generate an index number in

the table.

 This index number refers to a location, or

bucket, in the hash table.

From: http://pumpkinprogrammer.com/2014/06/21/c-tutorial-intro-to-hash-tables/

Uses of Hash Functions

 Convert non-integer keys (like strings) into an

integer index for easy storage

 Compress sparsely-populated indexes into a

more space-efficient format

 For fast access

 Possibly as fast as O(1)

 As long as sorting is not a concern

UMBC CMSC 341 Hashing 13

Hash Functions

 Suppose we were to come up with a “magic

function” that, given a value to search for, would

tell us exactly where in the array to look

 If it’s in that location, it’s in the array

 If it’s not in that location, it’s not in the array

 This function would have no other purpose

 If we look at the function’s inputs and outputs,

they probably won’t “make sense”

 This function is called a hash function because

it “makes hash” of its inputs

Hash tables vs. Other Data Structures

 We want to implement the dictionary operations Insert(),

Delete() and Search()/Find() efficiently.

 Arrays:

 can accomplish in O(1) time

 but are not space efficient (assumes we leave empty

space for keys not currently in dictionary)

 Binary search trees

 can accomplish in O(log n) time

 are space efficient.

 Hash Tables:

 A generalization of an array that under some reasonable

assumptions is O(1) for Insert/Delete/Search of a key

Major Concerns

 How big to make the bucket array?

 Want to minimize space needed

 Want to minimize number of collisions

 How to choose hash function?

 Want it to be efficient

 Want it to produce evenly distributed indexes

 How to handle collisions?

 Want to minimize time spent searching

UMBC CMSC 341 Hashing 16

Hash Table Properties

17

Hash Function

 The hash function maps the given keys to

integer values in the range of the table size

 These integer values are then used to index into

specific locations in the table

 A good hash function should:

 Be relatively easy/fast to compute

 Create a uniform distribution

 (Very important!)

UMBC CMSC 341 Hashing 18

Hash Functions – Trivial

 Some “obvious” hash functions:

 With SSN as a key, use the last 4 as the hash

 Convert a string key to ASCII and sum values

 Use first three letters of a string key as the hash

 These functions perform very poorly at

creating a uniform distribution

 Leads to lots of collisions

 Which is something we want to avoid

UMBC CMSC 341 Hashing 19

Hash Function–Trivial ASCII Example

 Suppose the hash function takes in a string as

its parameter, and then it adds up the ASCII

values of all of the characters in that string to get

an integer.

int hash(string key)

{

int value = 0;

for (int i = 0; i < key.length(); i++)

value += key[i];

return value % tableLength;

}

From: http://pumpkinprogrammer.com/2014/06/21/c-tutorial-intro-to-hash-tables/

 If the key is “pumpkin,” then the sum of the

ASCII values would be 772.

 After that, the hash function takes the modulus

of this number by the table length to get an

index number.

Char Dec

p 112

u 117

m 109

p 112

k 107

i 105

n 110

Hash Function – Example 1

Hash Function – Example 1

 If the table length is 13, then 772 modulo 13 is 5.

 So the item with the key “pumpkin,” would go

into bucket # 5 in the hash table.

 This isn’t a great algorithm because words tend

to use certain letters more often than others and

tend to be rather short. The algorithm will also

map anagrams (same letters, different order) to

the same index; it just illustrates one way that

we could implement the hash function

From: http://pumpkinprogrammer.com/2014/06/21/c-tutorial-intro-to-hash-tables/

Hash Function – Example 2

 A social security application keeping track of people
where the primary search key is a person’s social
security number (SSN)

 You can use an array to hold references to all the person
objects

 Use an array with range 0 - 999,999,999

 Using the SSN as a key, you have O(1) access to any person
object

 Unfortunately, the number of active keys (Social Security
Numbers) is much less than the array size (1 billion
entries)

 Over 60% of the array would be unused

 Maybe use last 4 digits?

Hash Functions

 Taking the remainder is called the Division-

remainder technique (MOD) and is an

example of a uniform hash function

 A uniform hash function is designed to

distribute the keys roughly evenly into the

available positions within the array (or hash

table).

Hash Function – Integers

 Here is a decent hash for integer keys

((a * key + b) % P) % N)

a, b: positive integers

N : number of buckets

P : large prime, P >> N

 Having a prime number somewhere in the

hash function is important

 So values aren’t easily divisible by some number

UMBC CMSC 341 Hashing 25

Polynomial Hash Codes

 X0a
k-1 + x1a

k-2 + … + xk-1

 Actually, easy to compute: just multiply partial

sum by a, then add next x

Hash Functions – Strings

 Here is a decent hash for string keys

int hashVal = 0;

for(char in string):

hashVal = (37 * hashVal + ASCII_of_char

% 16908799);

hashVal % = tableSize;

 Prime number (16908799) is very large so
hashVal doesn’t go over size for integers

UMBC CMSC 341 Hashing 27

Designing Hash Functions

 Hash functions can perform differently on

different types of input

 Should always test a hash function on sample

input to evaluate performance

 Probably not a good idea to design your own

hash function when you need one

 There are good hash functions available, that

were created by more experienced programmers

and have been extensively tested

UMBC CMSC 341 Hashing 28

Hash Table Size

 Important to keep in mind two things when

choosing a hash table size

 Interaction with hash function

 Either table size needs to be prime

 Or hash function needs to contain a prime

 (Preferably both)

 Load factor

 How full the table will be, and the rate of collisions

UMBC CMSC 341 Hashing 29

Load Factor

 Load factor refers to the percentage of

buckets in the array containing entries

 General rule is below 75% - 80%

 Balance between minimizing the space needed

for storage and the number of collisions

 For implementations with multiple entries per

bucket, want to consider list size as well

 If actual load factor is much higher/lower than

ideal, we might consider resizing hash table

UMBC CMSC 341 Hashing 30

Collisions

 If no two values map into the same position

in the hash table, we have what is known as

an “perfect hashing”.

Collisions

 Usually, perfect hashing is not possible (or at

least not guaranteed). Some data is bound

to hash to the same table element, in which

case, we have a collision.

 Most hash table designs assume that hash

collisions — pairs of different keys with the

same hash values — are normal

occurrences, and accommodate them in

some way.

 How do we solve this problem?

Collisions

 Collisions are when two keys map to the

same index in the hash table

 Affected by function, table size, and load factor

 Collisions are unavoidable in practice

 Collision-resolution strategy greatly affects

effectiveness and performance of hash table

 Many different strategies are available

UMBC CMSC 341 Hashing 33

Perfect Hashing

 If all of the keys that will be used are known ahead

of time, and there are no more keys than can fit the

hash table, a perfect hash function can be used to

create a perfect hash table, in which there will be no

collisions. If minimal perfect hashing is used, every

location in the hash table can be used as well.

 Perfect hashing allows for constant time lookups in

the worst case. This is in contrast to most chaining

and open addressing methods, where the time for

lookup is low on average, but may be arbitrarily

large.

Handling Collisions

35

Methods of Handling Collisions

 Chaining

 Lists (linked list, array, etc.)

 Data structures (BST)

 Only worth it if minimizing delay is super important

 Open addressing (probing)

 (Entries stored directly in the bucket array)

 Linear probing

 Quadratic probing

 Double hashing

UMBC CMSC 341 Hashing 36

Chaining

 Chaining “accepts” the collisions, and allows

storage of multiple entries in one index

 The bucket array

contains pointers to a

data structure that can

hold multiple entries

(array, list, BST, etc.)

UMBC CMSC 341 Hashing 37

Chaining Example

 Exercise:

 For a table of size 7, insert the following keys
(where the hash function is just key % 7)

 1, 4, 7, 8, 9, 10, 14, 15, 17, 20, 21, 24, 27, 29

UMBC CMSC 341 Hashing 38

1

0 1 2 3 4 5 6index

47

8

9 10

14

15

17

20

21 24

27

29

Chaining Performance

 Insert

 For linked lists is O(1)

(also amortized O(1) for vectors!)

 For BSTs is O(log n)

 Delete and Find

 Worst case for linked lists: O(n)

 All of the entries are in one index’s list

 (This means the hash function is pretty terrible)

 Average case for linked lists:

O(1) when load factor is less than 100%

UMBC CMSC 341 Hashing 39

Probing

 Other option is open addressing, or “probing”

 Each index holds only one entry

 If an index already holds an entry, the question

becomes – what index do we try next?

 Random would be great – but isn’t repeatable

 Three common choices

 Linear Probing

 Quadratic Probing

 Double Hashing

UMBC CMSC 341 Hashing 40

Linear Probing

 Have you ever been to a theatre or sports

event where the tickets were numbered?

 Has someone ever sat in your seat?

 How did you resolve this problem?

Linear Probing

 Linear probing handles collisions by finding

the next available index in the bucket array

 If it reaches the end of the bucket array,

it wraps back around to the first index

 Each table cell inspected is one “probe”

 Linear probing is normally sequential, but can

be implemented to probe with larger “jumps”

UMBC CMSC 341 Hashing 42

Linear Probing Example

 Exercise:

 For a table of size 13, insert the following keys
(where the hash function is just key % 13)

 1, 14, 3, 15, 2, 9, 22, 4, 7

 What do you notice?

UMBC CMSC 341 Hashing 43

0 1 2 3 4 5 6index 7 8 9 10 11 12

1 14 2153 9

1pushed off by:

224 7

2 3 2 1

Clustering

 Clustering is when indexes in the hash table

become filled in long unbroken stretches

 Most commonly occurs with linear probing

 Especially sequential probing

 Severely degrades performance of all the

operations of the hash table

 Drops from ideal O(1) to close to O(n)

 We can help with this problem by choosing our

divisor carefully in our hash function and by

carefully choosing our table size.

UMBC CMSC 341 Hashing 44

Designing a Good Hash Function

 If the divisor is even and there are more even
than odd key values, the hash function will
produce an excess of even values. This is also
true if there are an excessive amount of odd
values.

 However, if the divisor is odd, then either kind of
excess of key values would still give a balanced
distribution of odd/even results.

 Thus, the divisor should be odd. But, this is not
enough.

Designing a Good Hash Function

 If the divisor itself is divisible by a small odd
number (like 3, 5, or 7) the results are
unbalanced again.

 Ideally, it should be a prime number

 If no such prime number works as our table
size, we should at least use an odd number with
no small factors.

Advantages

 Fast – average constant time (O(1)) for finding

information – esp apparent when the table is

large.

 If the key/value pairs are known before

programming (disallowing insertions/deletions of

new data into the table), the programmer can

reduce average lookup cost by a careful choice

of the hash function, bucket table size, and

internal data structures. (Sometimes this allows

for “perfect hashing”)

Linear Probing Performance

 Insert and Find
 Best case is O(1)

 Worst case can become O(n)—starting at hash

index, must examine every sequential slot until

we find, or hit our first empty bucket

 Delete is complicated
 We can’t just delete the entry! (Why not?)

 The empty space will confuse future probing

 Use lazy deletion
 We’ll discuss the details of deleting later

UMBC CMSC 341 Hashing 48

Quadratic Probing

 Quadratic probing is similar to linear probing

 Rather than checking in sequence, “jump”

further away with each consecutive probe

 Helps to prevent clustering problems

 Quadratic function implementation can vary

 (k + i2), . i >= 1: 1, 4, 9, 16, 25, etc.

 (k + 2i), i >= 0: 1, 2, 4, 8, 16, etc.

 (k + i + i2), i >= 1: 2, 6, 12, 20, 30, etc.

UMBC CMSC 341 Hashing 49

Quadratic Probing Example

 Exercise:

 For a table of size 7, insert the following keys:

8, 16, 15, 2, 23

 Using quadratic formula (k + i * i)

UMBC CMSC 341 Hashing 50

0 1 2 3 4 5 6index

8 16 152 23

Quadratic Probing Concerns

 With many common quadratic functions, it is

best to keep the table less than half full

 No guarantee of finding an empty cell!

 (Depends on interaction between size and probe)

 Trade off

 Faster probing and clustering is less common

 Table cannot have a load factor greater than 50%

UMBC CMSC 341 Hashing 51

Double Hashing

 Double hashing is a form of collision-handling

where a second hash function determines how

much the probe “jumps” by for each probe

 Both hash functions should give uniform

distributions, and should be independent

 Second hash function cannot evaluate to 0! Why?

 We will continually probe the same index

 Even values that map to the same initial index are

likely to have a unique probe interval

UMBC CMSC 341 Hashing 52

Double Hashing Example

 Exercise:

 For a table of size 7, insert numbers 9, 16, 23, 30

h1 = key % 7 h2 = 11 – (key % 11)

UMBC CMSC 341 Hashing 53

0 1 2 3 4 5 6index

916 2330

16 % 7 = 2

11-(16%11) = 6

(2 + 6) % 7 = 1

23 % 7 = 2

11-(23%11) = 10

(2 + 10) % 7 = 5

9 % 7 = 2

30 % 7 = 2

11-(30%11) = 3

(2 + 3) % 7 = 5

(5 + 3) % 7 = 1

(1 + 3) % 7 = 4

Hash Tables: Other Details

54

When to Use a Hash Table?

 Good for when you need fast access

 Average find/insert/delete is O(1)

 Very poor choice if sorting is a concern

 Indexing is essentially random based on value

 Used in dictionaries, maps in various languages

 Hash functions are also used in cryptography

 The primary goal with crypto is to have hash

functions that can’t be reverse-engineered

UMBC CMSC 341 Hashing 55

Deleting from a Hash Table

 With open addressing, deletion is a concern
 “Empty” indexes affect search pattern

 Lazy deletion
 Mark an element as deleted

 Treat element as empty when inserting

 Treat element as occupied when searching

 Rehash the entire table
 Time consuming, but makes sense in some cases

UMBC CMSC 341 Hashing 56

Resizing a Hash Table

 Ideally, hash tables should be resized when

the load factor becomes too high

 May also be resized if load factor is very low

 Performance of resizing a hash table?

 O(n)

 All (key, value) pairs are rehashed to new indexes

 If run-time is critical (such as in real-time

systems) we may use another option

UMBC CMSC 341 Hashing 57

Incremental Resizing

 Incremental resizing is a method of resizing

a hash table that is done incrementally

 Often used for real-time and disk-based tables

 Allocate a new hash table, but keep old one

 Find and Delete look for value in both tables

 Insert new values only into new table

 At each insertion, also move some number of

elements from the old table to the new table

 “Incrementally” rehashing the values

UMBC CMSC 341 Hashing 58

