
CMSC 341

Lecture 16/17 Hashing, Parts 1 & 2

Prof. John Park

Based on slides from previous iterations of this course

Today’s Topics

 Overview
 Uses and motivations of hash tables

 Major concerns with hash tables

 Properties
 Hash function

 Hash table size

 Load factor

 Operations
 Collision handling

 Resizing/Expanding

 Deletion

UMBC CMSC 341 Hashing 2

Introduction

If we wanted to find one person out of the possible 326,071,600 in the US,

how would we do it?

From: http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk

As of November 2015

With no additional information, we may

have to search through all 322M people!

Introduction

However, if we were to organize each of the people by the

50 states, we may greatly increase the speed to find them.

Introduction

 Now, we know that the populations of the

states are not evenly distributed

When our n = 322,071,600 we would expect

322,071,600 / 50 = 6,441,432 in each state

Introduction

 But, the important concept here is – as long

as we know which state to look in, we can

greatly reduce the data set to look in!

 Hashes take advantage of organizing the

data into buckets or slots to help make the

functions more efficient

Motivation

 We want a data structure that supports fast:

 Insertion

 Deletion

 Searching

 (We don’t care about sorting)

 We could use direct indexing in an array, but

that is not space efficient

 The solution is a hash table

UMBC CMSC 341 Hashing 7

Hash Tables

 A hash table is a data structure for storing

key-value pairs. Unlike a basic array, which

uses index numbers for accessing elements,

a hash table uses keys to look up table

entries.

 Two major components:

 Bucket array (or slot)

 Hash function

From: http://pumpkinprogrammer.com/2014/06/21/c-tutorial-intro-to-hash-tables/

Bucket Array

 A bucket array is an array of size N where each

cell can be thought of as a “bucket” that holds a

collection of key/value pairs

 Obviously, we can also implement this using an

array of linked lists as well

Hash Function

 If the keys are unique integers that fit in the

range [0, N-1] then the bucket array is all we

need – no hash function at all!

 However, this is rarely (i.e., never) the case

UMBC CMSC 341 Hashing 10

Hash Function

 A hash function is needed to take our initial

keys and map them into the range [0, N-1]

 Two parts to a hash function:

 Hash code

 Converts key into an integer

 Compression function

 Converts integer to index in the correct range

 (Often combined into one function)

UMBC CMSC 341 Hashing 11

Hash Function

 In particular, a key value is divided by the

table length to generate an index number in

the table.

 This index number refers to a location, or

bucket, in the hash table.

From: http://pumpkinprogrammer.com/2014/06/21/c-tutorial-intro-to-hash-tables/

Uses of Hash Functions

 Convert non-integer keys (like strings) into an

integer index for easy storage

 Compress sparsely-populated indexes into a

more space-efficient format

 For fast access

 Possibly as fast as O(1)

 As long as sorting is not a concern

UMBC CMSC 341 Hashing 13

Hash Functions

 Suppose we were to come up with a “magic

function” that, given a value to search for, would

tell us exactly where in the array to look

 If it’s in that location, it’s in the array

 If it’s not in that location, it’s not in the array

 This function would have no other purpose

 If we look at the function’s inputs and outputs,

they probably won’t “make sense”

 This function is called a hash function because

it “makes hash” of its inputs

Hash tables vs. Other Data Structures

 We want to implement the dictionary operations Insert(),

Delete() and Search()/Find() efficiently.

 Arrays:

 can accomplish in O(1) time

 but are not space efficient (assumes we leave empty

space for keys not currently in dictionary)

 Binary search trees

 can accomplish in O(log n) time

 are space efficient.

 Hash Tables:

 A generalization of an array that under some reasonable

assumptions is O(1) for Insert/Delete/Search of a key

Major Concerns

 How big to make the bucket array?

 Want to minimize space needed

 Want to minimize number of collisions

 How to choose hash function?

 Want it to be efficient

 Want it to produce evenly distributed indexes

 How to handle collisions?

 Want to minimize time spent searching

UMBC CMSC 341 Hashing 16

Hash Table Properties

17

Hash Function

 The hash function maps the given keys to

integer values in the range of the table size

 These integer values are then used to index into

specific locations in the table

 A good hash function should:

 Be relatively easy/fast to compute

 Create a uniform distribution

 (Very important!)

UMBC CMSC 341 Hashing 18

Hash Functions – Trivial

 Some “obvious” hash functions:

 With SSN as a key, use the last 4 as the hash

 Convert a string key to ASCII and sum values

 Use first three letters of a string key as the hash

 These functions perform very poorly at

creating a uniform distribution

 Leads to lots of collisions

 Which is something we want to avoid

UMBC CMSC 341 Hashing 19

Hash Function–Trivial ASCII Example

 Suppose the hash function takes in a string as

its parameter, and then it adds up the ASCII

values of all of the characters in that string to get

an integer.

int hash(string key)

{

int value = 0;

for (int i = 0; i < key.length(); i++)

value += key[i];

return value % tableLength;

}

From: http://pumpkinprogrammer.com/2014/06/21/c-tutorial-intro-to-hash-tables/

 If the key is “pumpkin,” then the sum of the

ASCII values would be 772.

 After that, the hash function takes the modulus

of this number by the table length to get an

index number.

Char Dec

p 112

u 117

m 109

p 112

k 107

i 105

n 110

Hash Function – Example 1

Hash Function – Example 1

 If the table length is 13, then 772 modulo 13 is 5.

 So the item with the key “pumpkin,” would go

into bucket # 5 in the hash table.

 This isn’t a great algorithm because words tend

to use certain letters more often than others and

tend to be rather short. The algorithm will also

map anagrams (same letters, different order) to

the same index; it just illustrates one way that

we could implement the hash function

From: http://pumpkinprogrammer.com/2014/06/21/c-tutorial-intro-to-hash-tables/

Hash Function – Example 2

 A social security application keeping track of people
where the primary search key is a person’s social
security number (SSN)

 You can use an array to hold references to all the person
objects

 Use an array with range 0 - 999,999,999

 Using the SSN as a key, you have O(1) access to any person
object

 Unfortunately, the number of active keys (Social Security
Numbers) is much less than the array size (1 billion
entries)

 Over 60% of the array would be unused

 Maybe use last 4 digits?

Hash Functions

 Taking the remainder is called the Division-

remainder technique (MOD) and is an

example of a uniform hash function

 A uniform hash function is designed to

distribute the keys roughly evenly into the

available positions within the array (or hash

table).

Hash Function – Integers

 Here is a decent hash for integer keys

((a * key + b) % P) % N)

a, b: positive integers

N : number of buckets

P : large prime, P >> N

 Having a prime number somewhere in the

hash function is important

 So values aren’t easily divisible by some number

UMBC CMSC 341 Hashing 25

Polynomial Hash Codes

 X0a
k-1 + x1a

k-2 + … + xk-1

 Actually, easy to compute: just multiply partial

sum by a, then add next x

Hash Functions – Strings

 Here is a decent hash for string keys

int hashVal = 0;

for(char in string):

hashVal = (37 * hashVal + ASCII_of_char

% 16908799);

hashVal % = tableSize;

 Prime number (16908799) is very large so
hashVal doesn’t go over size for integers

UMBC CMSC 341 Hashing 27

Designing Hash Functions

 Hash functions can perform differently on

different types of input

 Should always test a hash function on sample

input to evaluate performance

 Probably not a good idea to design your own

hash function when you need one

 There are good hash functions available, that

were created by more experienced programmers

and have been extensively tested

UMBC CMSC 341 Hashing 28

Hash Table Size

 Important to keep in mind two things when

choosing a hash table size

 Interaction with hash function

 Either table size needs to be prime

 Or hash function needs to contain a prime

 (Preferably both)

 Load factor

 How full the table will be, and the rate of collisions

UMBC CMSC 341 Hashing 29

Load Factor

 Load factor refers to the percentage of

buckets in the array containing entries

 General rule is below 75% - 80%

 Balance between minimizing the space needed

for storage and the number of collisions

 For implementations with multiple entries per

bucket, want to consider list size as well

 If actual load factor is much higher/lower than

ideal, we might consider resizing hash table

UMBC CMSC 341 Hashing 30

Collisions

 If no two values map into the same position

in the hash table, we have what is known as

an “perfect hashing”.

Collisions

 Usually, perfect hashing is not possible (or at

least not guaranteed). Some data is bound

to hash to the same table element, in which

case, we have a collision.

 Most hash table designs assume that hash

collisions — pairs of different keys with the

same hash values — are normal

occurrences, and accommodate them in

some way.

 How do we solve this problem?

Collisions

 Collisions are when two keys map to the

same index in the hash table

 Affected by function, table size, and load factor

 Collisions are unavoidable in practice

 Collision-resolution strategy greatly affects

effectiveness and performance of hash table

 Many different strategies are available

UMBC CMSC 341 Hashing 33

Perfect Hashing

 If all of the keys that will be used are known ahead

of time, and there are no more keys than can fit the

hash table, a perfect hash function can be used to

create a perfect hash table, in which there will be no

collisions. If minimal perfect hashing is used, every

location in the hash table can be used as well.

 Perfect hashing allows for constant time lookups in

the worst case. This is in contrast to most chaining

and open addressing methods, where the time for

lookup is low on average, but may be arbitrarily

large.

Handling Collisions

35

Methods of Handling Collisions

 Chaining

 Lists (linked list, array, etc.)

 Data structures (BST)

 Only worth it if minimizing delay is super important

 Open addressing (probing)

 (Entries stored directly in the bucket array)

 Linear probing

 Quadratic probing

 Double hashing

UMBC CMSC 341 Hashing 36

Chaining

 Chaining “accepts” the collisions, and allows

storage of multiple entries in one index

 The bucket array

contains pointers to a

data structure that can

hold multiple entries

(array, list, BST, etc.)

UMBC CMSC 341 Hashing 37

Chaining Example

 Exercise:

 For a table of size 7, insert the following keys
(where the hash function is just key % 7)

 1, 4, 7, 8, 9, 10, 14, 15, 17, 20, 21, 24, 27, 29

UMBC CMSC 341 Hashing 38

1

0 1 2 3 4 5 6index

47

8

9 10

14

15

17

20

21 24

27

29

Chaining Performance

 Insert

 For linked lists is O(1)

(also amortized O(1) for vectors!)

 For BSTs is O(log n)

 Delete and Find

 Worst case for linked lists: O(n)

 All of the entries are in one index’s list

 (This means the hash function is pretty terrible)

 Average case for linked lists:

O(1) when load factor is less than 100%

UMBC CMSC 341 Hashing 39

Probing

 Other option is open addressing, or “probing”

 Each index holds only one entry

 If an index already holds an entry, the question

becomes – what index do we try next?

 Random would be great – but isn’t repeatable

 Three common choices

 Linear Probing

 Quadratic Probing

 Double Hashing

UMBC CMSC 341 Hashing 40

Linear Probing

 Have you ever been to a theatre or sports

event where the tickets were numbered?

 Has someone ever sat in your seat?

 How did you resolve this problem?

Linear Probing

 Linear probing handles collisions by finding

the next available index in the bucket array

 If it reaches the end of the bucket array,

it wraps back around to the first index

 Each table cell inspected is one “probe”

 Linear probing is normally sequential, but can

be implemented to probe with larger “jumps”

UMBC CMSC 341 Hashing 42

Linear Probing Example

 Exercise:

 For a table of size 13, insert the following keys
(where the hash function is just key % 13)

 1, 14, 3, 15, 2, 9, 22, 4, 7

 What do you notice?

UMBC CMSC 341 Hashing 43

0 1 2 3 4 5 6index 7 8 9 10 11 12

1 14 2153 9

1pushed off by:

224 7

2 3 2 1

Clustering

 Clustering is when indexes in the hash table

become filled in long unbroken stretches

 Most commonly occurs with linear probing

 Especially sequential probing

 Severely degrades performance of all the

operations of the hash table

 Drops from ideal O(1) to close to O(n)

 We can help with this problem by choosing our

divisor carefully in our hash function and by

carefully choosing our table size.

UMBC CMSC 341 Hashing 44

Designing a Good Hash Function

 If the divisor is even and there are more even
than odd key values, the hash function will
produce an excess of even values. This is also
true if there are an excessive amount of odd
values.

 However, if the divisor is odd, then either kind of
excess of key values would still give a balanced
distribution of odd/even results.

 Thus, the divisor should be odd. But, this is not
enough.

Designing a Good Hash Function

 If the divisor itself is divisible by a small odd
number (like 3, 5, or 7) the results are
unbalanced again.

 Ideally, it should be a prime number

 If no such prime number works as our table
size, we should at least use an odd number with
no small factors.

Advantages

 Fast – average constant time (O(1)) for finding

information – esp apparent when the table is

large.

 If the key/value pairs are known before

programming (disallowing insertions/deletions of

new data into the table), the programmer can

reduce average lookup cost by a careful choice

of the hash function, bucket table size, and

internal data structures. (Sometimes this allows

for “perfect hashing”)

Linear Probing Performance

 Insert and Find
 Best case is O(1)

 Worst case can become O(n)—starting at hash

index, must examine every sequential slot until

we find, or hit our first empty bucket

 Delete is complicated
 We can’t just delete the entry! (Why not?)

 The empty space will confuse future probing

 Use lazy deletion
 We’ll discuss the details of deleting later

UMBC CMSC 341 Hashing 48

Quadratic Probing

 Quadratic probing is similar to linear probing

 Rather than checking in sequence, “jump”

further away with each consecutive probe

 Helps to prevent clustering problems

 Quadratic function implementation can vary

 (k + i2), . i >= 1: 1, 4, 9, 16, 25, etc.

 (k + 2i), i >= 0: 1, 2, 4, 8, 16, etc.

 (k + i + i2), i >= 1: 2, 6, 12, 20, 30, etc.

UMBC CMSC 341 Hashing 49

Quadratic Probing Example

 Exercise:

 For a table of size 7, insert the following keys:

8, 16, 15, 2, 23

 Using quadratic formula (k + i * i)

UMBC CMSC 341 Hashing 50

0 1 2 3 4 5 6index

8 16 152 23

Quadratic Probing Concerns

 With many common quadratic functions, it is

best to keep the table less than half full

 No guarantee of finding an empty cell!

 (Depends on interaction between size and probe)

 Trade off

 Faster probing and clustering is less common

 Table cannot have a load factor greater than 50%

UMBC CMSC 341 Hashing 51

Double Hashing

 Double hashing is a form of collision-handling

where a second hash function determines how

much the probe “jumps” by for each probe

 Both hash functions should give uniform

distributions, and should be independent

 Second hash function cannot evaluate to 0! Why?

 We will continually probe the same index

 Even values that map to the same initial index are

likely to have a unique probe interval

UMBC CMSC 341 Hashing 52

Double Hashing Example

 Exercise:

 For a table of size 7, insert numbers 9, 16, 23, 30

h1 = key % 7 h2 = 11 – (key % 11)

UMBC CMSC 341 Hashing 53

0 1 2 3 4 5 6index

916 2330

16 % 7 = 2

11-(16%11) = 6

(2 + 6) % 7 = 1

23 % 7 = 2

11-(23%11) = 10

(2 + 10) % 7 = 5

9 % 7 = 2

30 % 7 = 2

11-(30%11) = 3

(2 + 3) % 7 = 5

(5 + 3) % 7 = 1

(1 + 3) % 7 = 4

Hash Tables: Other Details

54

When to Use a Hash Table?

 Good for when you need fast access

 Average find/insert/delete is O(1)

 Very poor choice if sorting is a concern

 Indexing is essentially random based on value

 Used in dictionaries, maps in various languages

 Hash functions are also used in cryptography

 The primary goal with crypto is to have hash

functions that can’t be reverse-engineered

UMBC CMSC 341 Hashing 55

Deleting from a Hash Table

 With open addressing, deletion is a concern
 “Empty” indexes affect search pattern

 Lazy deletion
 Mark an element as deleted

 Treat element as empty when inserting

 Treat element as occupied when searching

 Rehash the entire table
 Time consuming, but makes sense in some cases

UMBC CMSC 341 Hashing 56

Resizing a Hash Table

 Ideally, hash tables should be resized when

the load factor becomes too high

 May also be resized if load factor is very low

 Performance of resizing a hash table?

 O(n)

 All (key, value) pairs are rehashed to new indexes

 If run-time is critical (such as in real-time

systems) we may use another option

UMBC CMSC 341 Hashing 57

Incremental Resizing

 Incremental resizing is a method of resizing

a hash table that is done incrementally

 Often used for real-time and disk-based tables

 Allocate a new hash table, but keep old one

 Find and Delete look for value in both tables

 Insert new values only into new table

 At each insertion, also move some number of

elements from the old table to the new table

 “Incrementally” rehashing the values

UMBC CMSC 341 Hashing 58

