
© 2004 Goodrich, Tamassia Red-Black Trees 1

Red-Black Trees

6

3 8

4

v

z

© 2004 Goodrich, Tamassia Red-Black Trees 2

From (2,4) to Red-Black Trees
A red-black tree is a representation of a (2,4) tree by means of a
binary tree whose nodes are colored red or black

In comparison with its associated (2,4) tree, a red-black tree has

 same logarithmic time performance

 simpler implementation with a single node type

2 6 73 54

4 6

2 7

5

3

3

5OR

© 2004 Goodrich, Tamassia Red-Black Trees 3

Red-Black Trees

A red-black tree can also be defined as a binary
search tree that satisfies the following properties:
 Root Property: the root is black

 External Property: every leaf is black

 Internal Property: the children of a red node are black

 Depth Property: all the leaves have the same black depth

9

154

62 12

7

21

© 2004 Goodrich, Tamassia Red-Black Trees 4

Height of a Red-Black Tree

Theorem: A red-black tree storing n entries has
height O(log n)

Proof:

 The height of a red-black tree is at most twice the height of
its associated (2,4) tree, which is O(log n)

The search algorithm for a binary search tree is the
same as that for a binary search tree

By the above theorem, searching in a red-black tree
takes O(log n) time

© 2004 Goodrich, Tamassia Red-Black Trees 5

Insertion
To perform operation put(k, o), we execute the insertion algorithm
for binary search trees and color red the newly inserted node z
unless it is the root

 We preserve the root, external, and depth properties

 If the parent v of z is black, we also preserve the internal property and
we are done

 Else (v is red) we have a double red (i.e., a violation of the internal
property), which requires a reorganization of the tree

Example where the insertion of 4 causes a double red:

6

3 8

6

3 8

4

z

v v

z

© 2004 Goodrich, Tamassia Red-Black Trees 6

Remedying a Double Red
Consider a double red caused by adding new child z, parent v,
and let w be the sibling of v (i.e. z’s “aunt”)

4

6

7
z

vw
2

4 6 7

.. 2 ..

Case 1: w is black

 The double red is an incorrect
replacement of a 4-node

 Restructuring: we change the
4-node replacement

Case 2: w is red

 The double red corresponds
to an overflow

 Recoloring: we perform the
equivalent of a split

4

6

7
z

v

2 4 6 7

2
w

© 2004 Goodrich, Tamassia Red-Black Trees 7

Restructuring
A restructuring remedies a child-parent double red when the
parent red node has a black sibling

It is equivalent to restoring the correct replacement of a 4-node

The internal property is restored and the other properties are
preserved

4

6

7
z

vw
2

4 6 7

.. 2 ..

4

6

7

z

v

w
2

4 6 7

.. 2 ..

© 2004 Goodrich, Tamassia Red-Black Trees 8

Restructuring (cont.)

There are four restructuring configurations depending on
whether the double red nodes are left or right children

2

4

6

6

2

4

6

4

2

2

6

4

2 6

4

© 2004 Goodrich, Tamassia Red-Black Trees 9

Recoloring
A recoloring remedies a child-parent double red when the parent
red node has a red sibling

The parent v and its sibling w become black and the grandparent u
becomes red, unless it is the root

It is equivalent to performing a split on a 5-node

The double red violation may propagate to the grandparent u

4

6

7
z

v

2 4 6 7

2
w

4

6

7
z

v

6 7

2
w

… 4 …

2

© 2004 Goodrich, Tamassia Red-Black Trees 10

Analysis of Insertion
Recall that a red-black tree
has O(log n) height

Step 1 takes O(log n) time
because we visit O(log n)

nodes

Step 2 takes O(1) time

Step 3 takes O(log n) time

because we perform

 O(log n) recolorings, each
taking O(1) time, and

 at most one restructuring
taking O(1) time

Thus, an insertion in a red-
black tree takes O(log n) time

Algorithm put(k, o)

1. We search for key k to locate the
insertion node z

2. We add the new entry (k, o) at
node z and color z red

3. while doubleRed(z)

if isBlack(sibling(parent(z)))

z  restructure(z)

return

else { sibling(parent(z) is red }

z  recolor(z)

© 2004 Goodrich, Tamassia Red-Black Trees 11

Deletion
To perform operation erase(k), we first execute the deletion

algorithm for binary search trees

Let v be the internal node removed, w the external node removed
(there must be at least one), and r the sibling of w

 If either v or r was red, we color r black and we are done

 Else (v and r were both black) we color r double black, which is a

violation of the depth, property requiring a reorganization of the tree

Example where the deletion of 8 causes a double black:

6

3 8

4

v

r w

6

3

4

r

© 2004 Goodrich, Tamassia Red-Black Trees 12

Remedying a Double Black

The algorithm for remedying a double black node r with sibling
y considers three cases

Case 1: y is black and has a red child

 We perform a restructuring, equivalent to a transfer , recolor, and
we are done

Case 2: y is black and its children are both black

 We perform a recoloring, equivalent to a fusion, which may
propagate up the double black violation

Case 3: y is red

 We perform an adjustment, equivalent to choosing a different
representation of a 3-node, after which either Case 1 or Case 2
applies

Deletion in a red-black tree takes O(log n) time

© 2004 Goodrich, Tamassia Red-Black Trees 13

Deletion: Case 1
Case 1: sibling y of r is black and has a red child

 We perform a restructuring, equivalent to a transfer , and we are
done

6

3 8

r

x

y

z

z
4

3 6
x

r
8

y

6

3 8

r

x

y

z

3

2 6
x

r
8

z

y

4

2

© 2004 Goodrich, Tamassia Red-Black Trees 14

Deletion: Case 2
Case 2: sibling y is black and its children are both black

 We perform a recoloring, equivalent to a fusion, which may
propagate up the double black violation

6

3

6

3
r

6

3

6

3
rr

r

y

y

© 2004 Goodrich, Tamassia Red-Black Trees 15

Deletion: Case 3
Case 3: sibling y of r is red

 We perform an adjustment, equivalent to a restructuring , which
converts the structure to a form of Case 1 or Case 2

 Take child z of y on same side as y is of x: do trinode restructuring,
then recolor x red, y black. Sibling of r is now black: have Case 1 or 2

6

3 8

r

x

y

z

3

2 6

x

r
8

z

y

2 4 4

r

© 2004 Goodrich, Tamassia Red-Black Trees 16

Red-Black Tree Reorganization
Insertion remedy double red

Red-black tree action (2,4) tree action result

restructuring
change of 4-node
representation

double red removed

recoloring split
double red removed
or propagated up

Deletion remedy double black

Red-black tree action (2,4) tree action result

restructuring transfer double black removed

recoloring fusion
double black removed
or propagated up

adjustment
change of 3-node
representation

restructuring or
recoloring follows

