Splay Trees

Splay Trees are Binary Search Trees

Searching in a Splay Tree: Starts the Same as in a BST

Search proceeds down the tree to found item or an external node.

Example: Search for time with key 11.

Example Searching in a BST, continued

search for key 8, ends at an internal node.

Splay Trees do Rotations after Every Operation (Even Search)

- new operation: splay
 - splaying moves a node to the root using rotations
- right rotation
 - makes the left child x of a node y into y's parent; y becomes the right child of x
- left rotation
 - makes the right child y of a node x into x's parent; x becomes the left child of y

Splaying:

■ "x is a left-left grandchild" means x is a left child of its parent, which is itself a left child of its parent

Visualizing the Splaying Cases zig-zag X zig-zig zig **Splay Trees** © 2004 Goodrich, Tamassia, Dickerson

Splaying Example

- let x = (8, N)
 - x is the right child of its parent, which is the left child of the grandparent
 - left-rotate around p, then rightrotate around q

(14,J)

(10,A)

(10,U)

(8,N)

(7,P)

(5,G)

(6,Y)

© 2004 Goodrich, Tamassia, Dickerson

(7,T)

(5,H)

(5,I)

(1,Q)

(2,R)

(1,C)

(20,Z)

(35,R)

(36,L)

(21,0)

Splaying Example, Continued

Example Result of Splaying

- tree might not be more balanced
- e.g. splay (40,X)
 - before, the depth of the shallowest leaf
 3 and the deepest is 7
 - after, the depth of shallowest leaf is 1 and deepest is 8

Splay Tree Definition

- a splay tree is a binary search tree where a node is splayed after it is accessed (for a search or update)
 - deepest internal node accessed is splayed
 - splaying costs O(h), where h is height of the tree
 - which is still O(n) worst-case
 - O(h) rotations, each of which is O(1)

Splay Trees & Ordered Dictionaries

eration?

which nodes are splayed after each operation?

method	splay node
get(k)	if key found, use that node
	if key not found, use parent of ending external node
put(k,v)	use the new node containing the entry inserted
erase(k)	use the parent of the internal node that was actually removed from the tree (the parent of the node that the removed item was swapped with)

Amortized Analysis of Splay Trees

- Running time of each operation is proportional to time for splaying.
- Define rank(v) as the logarithm (base 2) of the number of nodes in subtree rooted at v.
- ◆ Costs: zig = \$1, zig-zig = \$2, zig-zag = \$2.
- Thus, cost for playing a node at depth d = \$d.
- Imagine that we store rank(v) cyber-dollars at each node v of the splay tree (just for the sake of analysis).

Cost per zig

- Doing a zig at x costs at most rank'(x) rank(x):
 - cost = rank'(x) + rank'(y) rank(y) rank(x)< rank'(x) rank(x).

Cost per zig-zig and zig-zag

Doing a zig-zig or zig-zag at x costs at most3(rank'(x) - rank(x)) - 2

- Cost of splaying a node x at depth d of a tree rooted at r:
 - at most 3(rank(r) rank(x)) d + 2:
 - Proof: Splaying x takes d/2 splaying substeps:

$$cost \le \sum_{i=1}^{d/2} cost_i
\le \sum_{i=1}^{d/2} (3(rank_i(x) - rank_{i-1}(x)) - 2) + 2
= 3(rank(r) - rank_0(x)) - 2(d/d) + 2
\le 3(rank(r) - rank(x)) - d + 2.$$

Performance of Splay Trees

- Recall: rank of a node is logarithm of its size.
- Thus, amortized cost of any splay operation is O(log n)
- In fact, the analysis goes through for any reasonable definition of rank(x)
- This implies that splay trees can actually adapt to perform searches on frequently-requested items much faster than O(log n) in some cases