
CMSC 341

Lecture 7 Lists

Based on slides from

Prof. Katherine Gibson

Today’s Topics

 Linked Lists

 vs Arrays

 Nodes

 Using Linked Lists

 “Supporting Actors” (member variables)

 Overview

 Creation

 Traversal

 Deletion

UMBC CMSC 341 Lists 2

Linked Lists

vs Arrays

3

What is a Linked List?

 Data structure

 Dynamic

 Allow easy insertion and deletion

 Uses nodes that contain

 Data

 Pointer to next node in the list

UMBC CMSC 341 Lists 4

Example Linked List

UMBC CMSC 341 Lists 5

data

link

head

data

link

data

link

data

link

NULL

In these diagrams, a doubly-
outlined box indicates a pointer.

tail

Why Use Linked Lists?

 We already have arrays!

 What are some disadvantages of an array?

 Size is fixed once created

 Inserting in the middle of an array takes time

 Deletion as well

 Sorting

 Requires a contiguous block of memory

UMBC CMSC 341 Lists 6

Arrays vs Linked Lists in Memory

UMBC CMSC 341 Lists 7

Array location
in memory

NULL

First node of
Linked List

Each cell is a
block of memory

(Dis)Advantages of Linked Lists

 Advantages:

 Change size easily and constantly

 Insertion and deletion can easily happen

anywhere in the Linked List

 Only one node needs to be contiguously stored

 Disadvantages:

 Can’t access by index value

 Requires management of memory

 Pointer to next node takes up more memory

UMBC CMSC 341 Lists 8

Nodes

9

Nodes

 A node is one element of a Linked List

 Nodes consist of two main parts:

 Data stored in the node

 Pointer to next node in list

 Often represented as structs

UMBC CMSC 341 Lists 10

data

link

Code for Node Structure

struct Node

{

String name;

int testGrade;

struct Node *link;

// constructor

// accessors

// mutators

};

UMBC CMSC 341 Lists 11

link

testGrade

name

link can point to other nodes

two options:
1. another Node
2. NULL

NULL

“Supporting Actors” of Linked Lists

(Member Variables)

12

“Supporting Actors” of a Linked List

 Five member variables used to create and

keep track of a Linked List

 All five variables are private members

 All of them are pointers to a Node

 FRONT (or HEAD) points to front of list

 REAR (or TAIL) points to end of list

 INSERT used in node creation

 CURR (or CURSOR) used to “traverse” list

 PREVIOUS used to “traverse” list

UMBC CMSC 341 Lists 13

The FRONT Node Pointer

 FRONT points to the very first node

in the Linked List

 What if the Linked List is empty?

 Points to NULL

UMBC CMSC 341 Lists 14

The REAR Node Pointer

 REAR points to the very last item

in the Linked List

 Useful when inserting nodes at the end

 What if there is only one item

in the Linked List?

 Points to the same item as FRONT

 What if the Linked List is empty?

 Points to NULL

UMBC CMSC 341 Lists 15

The INSERT Node Pointer

 INSERT is used when we are creating and

inserting a new node into the Linked List

INSERT = new Node;

 We’ll see an example of this soon

 Can be (and usually is) a local variable, not a

formal class member

UMBC CMSC 341 Lists 16

The CURR and PREV Node Pointers

 The CURR and PREV node pointers are

used to “traverse” or travel down the length

of a Linked List

 Can be (and usually is) a local variable, not a

formal class member

 Why do we need two nodes to do this?

UMBC CMSC 341 Lists 17

Linked List Overview

18

Example Linked List (Again)

UMBC CMSC 341 Lists 20

NULL

link

testGrade

name

link

testGrade

name

link

testGrade

name

link

testGrade

name

link link

FRONT REAR

link

CURR

link

PREV

NULL

NULL link

INSERT

NULL

Important Points to Remember

 Last node in the Linked List points to NULL

 Each node points to either another node in
the Linked List, or to NULL

 Only one link per node

 FRONT and REAR point to the first and last

nodes of the Linked List, respectively

UMBC CMSC 341 Lists 21

Managing Memory with Linked Lists

 Hard part of using Linked Lists is ensuring

that none of the nodes go “missing”

 Think of Linked List as a train

 (Or as a conga line of Kindergarteners)

 Must keep track of where links point to

 If you’re not careful, nodes can get lost in

memory (you have no way to find them)

UMBC CMSC 341 Lists 22

Linked List Functions

 What functions does a Linked List

class implementation require?

 Linked_List constructor

 Initialize all member variables to NULL

 insert()

 remove()

 printList()

 isEmpty()

UMBC CMSC 341 Lists 23

Linked Lists’ “Special” Cases

 Linked Lists often need to be handled

differently under specific circumstances

 Linked List is empty

 Linked List has only one element

 Linked List has multiple elements

 Changing something with the first or last node

 Keep this in mind when you are coding

UMBC CMSC 341 Lists 24

Creation of a Linked List

25

Creation of a New Linked List

 Call constructor

 What does the constructor do?

 Why are they all set to NULL?

UMBC CMSC 341 Lists 26

Linked_List test = new Linked_List();

// constructor definition

Linked_List() {

FRONT = NULL;

REAR = NULL;

INSERT = NULL;

CURR = NULL;

PREV = NULL;

}

Current State of Linked List test

UMBC CMSC 341 Lists 27

NULL

FRONT REAR

NULL

NULL NULLCURR

PREV

INSERT

Inserting the First Node

 What do we do first?

 Allocate space for the node, using INSERT

 Initialize Node’s data

 Then what?

 What are the two cases we care about?

UMBC CMSC 341 Lists 28

void Linked_List::insert (String name, int score) {

INSERT = new Node()

// initialize data

INSERT.setName (name);

INSERT.setGrade(score);

// what do we do?

Current State of Linked List test

UMBC CMSC 341 Lists 29

NULL

FRONT REAR

NULL

NULL

NULL

link

88

Alice

CURR

PREV

INSERT

Insertion: Empty Linked List Case

 If the Linked List is empty, what do we do?

 FRONT and REAR point to the new Node

 What else should we do?

UMBC CMSC 341 Lists 30

void Linked_List::insert (String name, int score) {

// previous code...

if (isEmpty()) {

FRONT = INSERT;

REAR = INSERT;

}

INSERT = NULL;

}

Current State of Linked List test

UMBC CMSC 341 Lists 31

NULL

link

88

Alice

FRONT REAR

NULL

NULL NULL

Let’s create another new
Node that we want to insert

into our Linked List

link

91

Bob

NULL

link

CURR

link

PREV

INSERT

Insertion: Non-Empty Linked List Case

 Now that the Linked List is not empty, how

does our insert() function change?

 Let’s trace these changes

UMBC CMSC 341 Lists 32

void Linked_List::insert (String name, int score) {

... // previous code for empty list

else {

// first add it to the end of the list

REAR->link = INSERT;

// then update REAR to point to the new last

REAR = INSERT;

}

// rest of code...

Current State of Linked List test

UMBC CMSC 341 Lists 33

link

88

Alice

FRONT REAR

NULL

NULL NULL

link

91

Bob

NULL

NULL

CURR

PREV

INSERT

Current State of Linked List test

UMBC CMSC 341 Lists 34

link

88

Alice

FRONT REAR

NULL

NULL INSERT NULL

link

91

Bob

NULL

// first add it to the end

REAR->link = INSERT;

CURR

PREV

Current State of Linked List test

UMBC CMSC 341 Lists 35

link

88

Alice

FRONT REAR

NULL

NULL NULL

link

91

Bob

NULL

// first add it to the end

REAR->link = INSERT;

// then update REAR

REAR = INSERT;

CURR

PREV

INSERT

Final insert() Code

 Combine the REAR = INSERT from the if and else statements

UMBC CMSC 341 Lists 36

void Linked_List::insert (String name, int score) {

INSERT = new Node()

// initialize data

INSERT->setName (name);

INSERT->setGrade(score);

if (isEmpty()) {

FRONT = INSERT; // update for first item

} else {

REAR->link = INSERT; // add to end of list

}

REAR = INSERT; // update end of list

INSERT = NULL; // reset INSERT

}

Current State of Linked List test

UMBC CMSC 341 Lists 37

link

88

Alice

FRONT

NULL

NULL

link

91

Bob

NULL

REAR

CURR

PREV

NULLINSERT

Traversal of a Linked List

38

Traversing the Linked List

 When would we need to traverse our list?

 Printing out the contents

 Searching for a specific node

 Deleting a node

 Counting the size of the list

 (Better done with an updated member variable)

 We’ll show the code for printing the list

UMBC CMSC 341 Lists 39

Our Linked List Now

UMBC CMSC 341 Lists 40

link

88

Alice

FRONT

CURR

PREV NULL

NULL

link

91

Bob

NULL

REAR

link

94

Eve

NULL

INSERT

We added a third node to
make it more interesting.

Before Traversing the Linked List

 What do we do first?

 Check to see if the Linked List is empty

 If it is, what should we do?

 Print out a message

 Return from the function

UMBC CMSC 341 Lists 41

void Linked_List::printList() {

if (isEmpty()) {

cout << "This list is empty!";

return;

}

// rest of the function

Planning out the Traversal

 If the Linked List is not empty, then we begin

traversing the Linked List

 How do we start?

 How do we know when to stop?

 How do we move from one node to another?

 Hint: Using CURR alone will work for this

 Take a look at the diagram again, and

think about the steps we need to take

UMBC CMSC 341 Lists 42

Exercise: Traversing a Linked List

UMBC CMSC 341 Lists 43

link

88

Alice

FRONT

CURR NULL

link

91

Bob

REAR

link

94

Eve

NULL

We don’t need INSERT or
PREV to traverse the Linked List.

Traversing the List

 To control our traversal, we’ll use a loop

 Initialization, Termination Condition, Modification

1. Set CURR to the first node in the list

2. Continue until we hit the end of the list (NULL)

3. Move from one node to another (using link)

UMBC CMSC 341 Lists 44

void Linked_List::printList() {

// prev code (checking if empty)

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

// print the information

cout << "Name is " << CURR->getName() << endl;

cout << "Grade is " << CURR->getGrade() << endl;

}

Demonstration of Traversal

UMBC CMSC 341 Lists 45

link

88

Alice

FRONT CURR NULL

link

91

Bob

REAR

link

94

Eve

NULL

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

Demonstration of Traversal

UMBC CMSC 341 Lists 46

link

88

Alice

FRONT

link

91

Bob

REAR

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

Demonstration of Traversal

UMBC CMSC 341 Lists 47

link

88

Alice

FRONT

link

91

Bob

REAR

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

// print information (Alice)

Demonstration of Traversal

UMBC CMSC 341 Lists 48

link

88

Alice

FRONT

link

91

Bob

REAR

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

Demonstration of Traversal

UMBC CMSC 341 Lists 49

link

88

Alice

FRONT

link

91

Bob

REAR

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

Demonstration of Traversal

UMBC CMSC 341 Lists 50

link

88

Alice

FRONT

link

91

Bob

REAR

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

// print information (Bob)

Demonstration of Traversal

UMBC CMSC 341 Lists 51

link

88

Alice

FRONT

link

91

Bob

REAR

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

Demonstration of Traversal

UMBC CMSC 341 Lists 52

link

88

Alice

FRONT

link

91

Bob

REAR

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

Demonstration of Traversal

UMBC CMSC 341 Lists 53

link

88

Alice

FRONT

link

91

Bob

REAR

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

// print information (Eve)

Demonstration of Traversal

UMBC CMSC 341 Lists 54

link

88

Alice

FRONT

link

91

Bob

REAR

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

Demonstration of Traversal

UMBC CMSC 341 Lists 55

link

88

Alice

FRONT

link

91

Bob

REAR

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

NULL

Demonstration of Traversal

UMBC CMSC 341 Lists 56

link

88

Alice

FRONT

link

91

Bob

REAR

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

NULL

} // exit the loop

Deletion from a Linked List

57

Special Cases

 Deletion has many special cases, including…

 Deleting the only node

 Deleting the last node

 Deleting the first node

 Deleting any “middle” node

 We will need to use CURR and PREV here

 Why? What will we use PREV for?

UMBC CMSC 341 Lists 58

Exercise: Deleting from a Linked List

UMBC CMSC 341 Lists 59

link

88

Alice

FRONT

CURR NULL

link

91

Bob

REAR

link

94

Eve

NULL

What steps would you take to
remove Bob? And then Alice?

PREV NULL

Traversing for Deletion

 We will use CURR and PREV to keep

track of where we are in the Linked List

 We will search for the target

 If found, we will delete the node

 And update the link of the node before it

 If not found, we will return False

 If we reach the end of the list (NULL)

UMBC CMSC 341 Lists 60

Looking at the Code

UMBC CMSC 341 Lists 61

boolean Linked_List::remove(String target) {

CURR = PREV = NULL;

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

if (CURR->name == target) {

// WE MADE A MATCH!

// here's where the deletion will happen

return true;

} else {

PREV = CURR;

// the for loop will move CURR to next node

}

}

return false;

}

Deletion Code

 What are the three possible locations?

1. First node in the list

2. Last node in the list

3. Node in the middle of the list

UMBC CMSC 341 Lists 62

if (CURR->name == target) {

// WE MADE A MATCH!

if (CURR == FRONT) {} // first node

else if (CURR == REAR) {} // last node

else {} // middle of the list

}

Deletion Code

 Inside each conditional, you must first

fix the links around the target node

 Then delete the target node (CURR)

UMBC CMSC 341 Lists 63

if (CURR->name == target) {

// WE MADE A MATCH!

if (CURR == FRONT) {} // first node

else if (CURR == REAR) {} // last node

else {} // middle of the list

delete CURR;

}

Order of Deletion Operations

 IMPORTANT:

 Deleting a node is the last thing that happens

 Before deletion, you must update all of the

other nodes that currently point to it

UMBC CMSC 341 Lists 64

Deletion Case 1:

First Node in Linked List

65

Deletion Case 1: First Node

UMBC CMSC 341 Lists 66

link

88

Alice

FRONT CURR

PREV NULL

link

91

Bob

REAR

link

94

Eve

NULL

if (CURR == FRONT) {

FRONT = FRONT->link;

}

Deletion Case 1: First Node

UMBC CMSC 341 Lists 67

link

88

Alice

FRONT CURR

PREV NULL

link

91

Bob

REAR

link

94

Eve

NULL

if (CURR == FRONT) {

FRONT = FRONT->link;

}

delete CURR;

Deletion Case 1: First Node

UMBC CMSC 341 Lists 68

FRONT

PREV NULL

link

91

Bob

REAR

link

94

Eve

NULL

if (CURR == FRONT) {

FRONT = FRONT->link;

}

delete CURR;

CURR

NULL

Deletion Case 2:

Last Node in Linked List

69

Deletion Case 2: Last Node

UMBC CMSC 341 Lists 70

link

88

Alice

FRONT CURR

link

91

Bob

REAR

link

94

Eve

NULL

else if (CURR == REAR) {

PREV->link = NULL;

}

PREV

Deletion Case 2: Last Node

UMBC CMSC 341 Lists 71

link

88

Alice

FRONT CURR

link

91

Bob

REAR

link

94

Eve

NULL

else if (CURR == REAR) {

PREV->link = NULL;

REAR = PREV;

}

PREV

NULL

Deletion Case 2: Last Node

UMBC CMSC 341 Lists 72

link

88

Alice

FRONT

link

91

Bob

REAR

link

94

Eve

NULL

else if (CURR == REAR) {

PREV->link = NULL;

REAR = PREV;

}

delete CURR;

PREV

NULL

CURR

Deletion Case 2: Last Node

UMBC CMSC 341 Lists 73

link

88

Alice

FRONT

link

91

Bob

REAR

else if (CURR == REAR) {

PREV->link = NULL;

REAR = PREV;

}

delete CURR;

PREV

NULL

CURR

NULL

Deletion Case 3:

Node in Middle of Linked List

74

Deletion Case 3: Middle Node

UMBC CMSC 341 Lists 75

link

88

Alice

FRONT CURR

link

91

Bob

REAR

link

94

Eve

NULL

PREV

else { //middle node

PREV->link = CURR->link;

}

Deletion Case 3: Middle Node

UMBC CMSC 341 Lists 76

link

88

Alice

FRONT CURR

link

91

Bob

REAR

link

94

Eve

NULL

PREV

else { //middle node

PREV->link = CURR->link;

}

delete CURR;

Deletion Case 3: Middle Node

UMBC CMSC 341 Lists 77

link

88

Alice

FRONT CURR REAR

link

94

Eve

NULL

PREV

else { //middle node

PREV->link = CURR->link;

}

delete CURR;

NULL

Special Deletion Case:

Only Node in Linked List

78

Special Deletion Case: Only Node

UMBC CMSC 341 Lists 79

link

88

Alice

FRONT

PREV NULL

REAR

// code that currently handles this

if (CURR == FRONT) {

FRONT = FRONT->link;

}

delete CURR;

CURR

NULL

Special Deletion Case: Only Node

UMBC CMSC 341 Lists 80

link

88

Alice

FRONT

PREV NULL

REAR

// code that currently handles this

if (CURR == FRONT) {

FRONT = FRONT->link;

}

delete CURR;

CURR

NULL

But that memory has been
freed! That’s not good…

NULL

NULL

What happens to REAR

with this code? What
does it point to?

Special Deletion Case: Only Node

 If we are removing the only node from a
Linked List, we need to set both FRONT and

REAR to point to NULL

UMBC CMSC 341 Lists 81

// new case for last node

if (CURR == FRONT && CURR == REAR) {

FRONT = FRONT->link;

REAR = REAR->link;

// or FRONT = NULL;

// REAR = NULL;

}

delete CURR;

Questions about Linked Lists

82

