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Today’s Topics

 Linked Lists

 vs Arrays

 Nodes

 Using Linked Lists

 “Supporting Actors” (member variables)

 Overview

 Creation

 Traversal

 Deletion
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Linked Lists

vs Arrays
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What is a Linked List?

 Data structure

 Dynamic

 Allow easy insertion and deletion

 Uses nodes that contain

 Data

 Pointer to next node in the list
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Example Linked List
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Why Use Linked Lists?

 We already have arrays!

 What are some disadvantages of an array?

 Size is fixed once created

 Inserting in the middle of an array takes time

 Deletion as well

 Sorting 

 Requires a contiguous block of memory
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Arrays vs Linked Lists in Memory
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(Dis)Advantages of Linked Lists

 Advantages:

 Change size easily and constantly

 Insertion and deletion can easily happen 

anywhere in the Linked List

 Only one node needs to be contiguously stored

 Disadvantages:

 Can’t access by index value

 Requires management of memory

 Pointer to next node takes up more memory
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Nodes

9



Nodes

 A node is one element of a Linked List

 Nodes consist of two main parts:

 Data stored in the node

 Pointer to next node in list

 Often represented as structs
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Code for Node Structure

struct Node

{

String name;

int testGrade;

struct Node *link;

// constructor

// accessors

// mutators

};
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link

testGrade

name

link can point to other nodes
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1. another Node
2. NULL

NULL



“Supporting Actors” of Linked Lists

(Member Variables)
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“Supporting Actors” of a Linked List

 Five member variables used to create and 

keep track of a Linked List

 All five variables are private members

 All of them are pointers to a Node

 FRONT (or HEAD) points to front of list

 REAR (or TAIL) points to end of list

 INSERT used in node creation

 CURR (or CURSOR) used to “traverse” list

 PREVIOUS used to “traverse” list
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The FRONT Node Pointer

 FRONT points to the very first node 

in the Linked List

 What if the Linked List is empty?

 Points to NULL
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The REAR Node Pointer

 REAR points to the very last item 

in the Linked List

 Useful when inserting nodes at the end

 What if there is only one item 

in the Linked List?

 Points to the same item as FRONT

 What if the Linked List is empty?

 Points to NULL
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The INSERT Node Pointer

 INSERT is used when we are creating and 

inserting a new node into the Linked List

INSERT = new Node;

 We’ll see an example of this soon

 Can be (and usually is) a local variable, not a 

formal class member
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The CURR and PREV Node Pointers

 The CURR and PREV node pointers are 

used to “traverse” or travel down the length 

of a Linked List

 Can be (and usually is) a local variable, not a 

formal class member

 Why do we need two nodes to do this?
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Linked List Overview
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Example Linked List (Again)
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Important Points to Remember

 Last node in the Linked List points to NULL

 Each node points to either another node in 
the Linked List, or to NULL

 Only one link per node

 FRONT and REAR point to the first and last 

nodes of the Linked List, respectively
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Managing Memory with Linked Lists

 Hard part of using Linked Lists is ensuring 

that none of the nodes go “missing” 

 Think of Linked List as a train

 (Or as a conga line of Kindergarteners)

 Must keep track of where links point to

 If you’re not careful, nodes can get lost in 

memory (you have no way to find them)
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Linked List Functions

 What functions does a Linked List 

class implementation require?

 Linked_List constructor

 Initialize all member variables to NULL

 insert()

 remove()

 printList()

 isEmpty()
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Linked Lists’ “Special” Cases

 Linked Lists often need to be handled 

differently under specific circumstances

 Linked List is empty

 Linked List has only one element

 Linked List has multiple elements

 Changing something with the first or last node

 Keep this in mind when you are coding
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Creation of a Linked List
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Creation of a New Linked List

 Call constructor

 What does the constructor do?

 Why are they all set to NULL?
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Linked_List test = new Linked_List();

// constructor definition

Linked_List() {

FRONT  = NULL;

REAR   = NULL;

INSERT = NULL;

CURR   = NULL;

PREV   = NULL;

}



Current State of Linked List test
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Inserting the First Node

 What do we do first?

 Allocate space for the node, using INSERT

 Initialize Node’s data

 Then what?

 What are the two cases we care about?
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void Linked_List::insert (String name, int score) {

INSERT = new Node()

// initialize data

INSERT.setName (name);

INSERT.setGrade(score);

// what do we do?



Current State of Linked List test
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Insertion: Empty Linked List Case

 If the Linked List is empty, what do we do?

 FRONT and REAR point to the new Node

 What else should we do?
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void Linked_List::insert (String name, int score) {

// previous code...

if ( isEmpty() ) {

FRONT = INSERT;

REAR  = INSERT;

}

INSERT = NULL;

}



Current State of Linked List test
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Insertion: Non-Empty Linked List Case

 Now that the Linked List is not empty, how 

does our insert() function change?

 Let’s trace these changes
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void Linked_List::insert (String name, int score) {

... // previous code for empty list

else {

// first add it to the end of the list

REAR->link = INSERT;

// then update REAR to point to the new last

REAR = INSERT;

}

// rest of code...



Current State of Linked List test
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Current State of Linked List test
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Current State of Linked List test
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Final insert() Code

 Combine the REAR = INSERT from the if and else statements
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void Linked_List::insert (String name, int score) {

INSERT = new Node()

// initialize data

INSERT->setName (name);

INSERT->setGrade(score);

if ( isEmpty() ) {

FRONT = INSERT;      // update for first item

} else {

REAR->link = INSERT; // add to end of list

}

REAR   = INSERT;         // update end of list

INSERT = NULL;           // reset INSERT

}



Current State of Linked List test
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Traversal of a Linked List
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Traversing the Linked List

 When would we need to traverse our list?

 Printing out the contents

 Searching for a specific node

 Deleting a node

 Counting the size of the list

 (Better done with an updated member variable)

 We’ll show the code for printing the list
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Our Linked List Now
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Before Traversing the Linked List

 What do we do first?

 Check to see if the Linked List is empty

 If it is, what should we do?

 Print out a message

 Return from the function
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void Linked_List::printList() {

if ( isEmpty() ) {

cout << "This list is empty!";

return;

}

// rest of the function



Planning out the Traversal

 If the Linked List is not empty, then we begin 

traversing the Linked List

 How do we start?

 How do we know when to stop?

 How do we move from one node to another?

 Hint: Using CURR alone will work for this

 Take a look at the diagram again, and 

think about the steps we need to take 
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Exercise: Traversing a Linked List
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Traversing the List

 To control our traversal, we’ll use a loop

 Initialization, Termination Condition, Modification

1. Set CURR to the first node in the list

2. Continue until we hit the end of the list (NULL)

3. Move from one node to another (using link)
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void Linked_List::printList() {

// prev code (checking if empty)

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

// print the information

cout << "Name is "  << CURR->getName()  << endl;

cout << "Grade is " << CURR->getGrade() << endl;

}



Demonstration of Traversal
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Demonstration of Traversal
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Demonstration of Traversal
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Demonstration of Traversal
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Demonstration of Traversal
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Demonstration of Traversal
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Demonstration of Traversal
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Demonstration of Traversal
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Demonstration of Traversal
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Demonstration of Traversal
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Demonstration of Traversal
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Demonstration of Traversal
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Deletion from a Linked List
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Special Cases

 Deletion has many special cases, including…

 Deleting the only node

 Deleting the last node

 Deleting the first node

 Deleting any “middle” node

 We will need to use CURR and PREV here

 Why?  What will we use PREV for?
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Exercise: Deleting from a Linked List
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Traversing for Deletion

 We will use CURR and PREV to keep 

track of where we are in the Linked List

 We will search for the target

 If found, we will delete the node

 And update the link of the node before it

 If not found, we will return False

 If we reach the end of the list (NULL)
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Looking at the Code
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boolean Linked_List::remove(String target) {

CURR = PREV = NULL;

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

if (CURR->name == target) {

// WE MADE A MATCH!

// here's where the deletion will happen

return true;

} else {

PREV = CURR;

// the for loop will move CURR to next node

}

}

return false;

}



Deletion Code

 What are the three possible locations?

1. First node in the list

2. Last node in the list

3. Node in the middle of the list
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if (CURR->name == target) {

// WE MADE A MATCH!

if (CURR == FRONT) {}       // first node

else if (CURR == REAR ) {}  // last node

else {}                     // middle of the list

}



Deletion Code

 Inside each conditional, you must first 

fix the links around the target node

 Then delete the target node (CURR)
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if (CURR->name == target) {

// WE MADE A MATCH!

if (CURR == FRONT) {}       // first node

else if (CURR == REAR ) {}  // last node

else {}                     // middle of the list

delete CURR;

}



Order of Deletion Operations

 IMPORTANT:

 Deleting a node is the last thing that happens

 Before deletion, you must update all of the 

other nodes that currently point to it
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Deletion Case 1:

First Node in Linked List
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Deletion Case 1: First Node
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Deletion Case 1: First Node
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Deletion Case 1: First Node
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Deletion Case 2:

Last Node in Linked List
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Deletion Case 2: Last Node
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Deletion Case 2: Last Node
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Deletion Case 2: Last Node
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Deletion Case 2: Last Node
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Deletion Case 3:

Node in Middle of Linked List
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Deletion Case 3: Middle Node
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Deletion Case 3: Middle Node

UMBC CMSC 341 Lists 76

link

88

Alice

FRONT CURR

link

91

Bob

REAR

link

94

Eve

NULL

PREV

else {   //middle node

PREV->link = CURR->link;

}

delete CURR;



Deletion Case 3: Middle Node
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Special Deletion Case:

Only Node in Linked List
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Special Deletion Case: Only Node
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Special Deletion Case: Only Node
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if (CURR == FRONT) {

FRONT = FRONT->link;

}

delete CURR;

CURR
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But that memory has been 
freed! That’s not good…

NULL
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What happens to REAR 

with this code?  What 
does it point to?



Special Deletion Case: Only Node

 If we are removing the only node from a 
Linked List, we need to set both FRONT and

REAR to point to NULL
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// new case for last node

if (CURR == FRONT && CURR == REAR) {

FRONT = FRONT->link;

REAR  = REAR->link;

// or FRONT = NULL;

//    REAR  = NULL;

}

delete CURR;



Questions about Linked Lists
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