
Section 1: True / False (2 points each, 30 pts total)

Circle the word TRUE or the word FALSE. If neither is circled, both are circled, or it impossible to

tell which is circled, your answer will be considered wrong.

1. TRUE or FALSE

Computer scientists always draw tree structures with the root at the top and leaves at the bottom

because they don’t get out enough to remember how trees grow in nature.

2. TRUE or FALSE

In a makefile, the default target is the last one in the file.

3. TRUE or FALSE

Local variables declared in a function are stored on the stack.

4. TRUE or FALSE

The function n log n2 is O(n2)

5. TRUE or FALSE

The function n log n2 is O(n log n)

6. TRUE or FALSE

The function n log n2 is Ω(n log n)

7. TRUE or FALSE

The function n log n2 is Ω(n2)

8. TRUE or FALSE

The function 4n2 + n2 log 2n is O(n2)

9. TRUE or FALSE

The function 4n2 + n2 log 2n is O(n3)

10. TRUE or FALSE

If an algorithm consists of a program segment that is O(n2), sequentially followed by a segment

that is O(n), the entire algorithm is O(n3)

11. TRUE or FALSE

A function can be both O(n2) and Ω(n3)

12. TRUE or FALSE

An in-order traversal of a binary search tree will process the smallest value first.

13. TRUE or FALSE

In the function declaration “foo(int arg1, int * & arg2)”, a pointer to arg2 is

being passed by reference.

14. TRUE or FALSE

Both individual functions and entire classes can be templated.

15. TRUE or FALSE

For container classes that support iterators, the function end() return an iterator that points to

the last element in the container.

2

Section 2: Short Answer (varying point values. 48 pts total)

16. (6 points) Show that the function 5n3 + 3n + 4 is O(n3)

(your answer should include a specific n0 and c, as well as an algebraic justification that the

limit holds for all n > n0; you do not need any inductive proof)

For all n ≥ 1: 3n3 ≥ 3n, and 4n3 ≥ 4
  5n3 + 3n3 + 4n3 = 12n3 ≥ 5n3 + 3n + 4
So, for c = 12 and n0 = 1, 5n3 + 3n + 4 is O(n3)

For questions 17 and 18, Give asymptotic worst-case running times for each of the following code

fragments. Characterize the running time as closely as possible (e.g., don’t say O(n3) if O(n2) also

works). Express running times as a function of n. Make sure you give a satisfactory explanation—it

is worth a significant fraction of the points.

17. (6 points)
for (x = 0; x < n; x++) {

 for (y = x; y < n; y++) {

 sum += x * y;

 }

}

Running time: O(___n2____)

Justification:
The inner loop runs 0 times, then n times, then n-1, n-2... down to 1.
So, the number of times the body of the inner loop is executed is sum(1..n),

which is O(n2). Another way to think about it is the average number of inner

turns is n/2, so total is (n/2)n, again O(n2)

18. (6 points)
sum = 0;

for (a = 0; a < n; a++) {

 sum += a;

}

prod = 1;

for (a = sum; a > 0; a--) {

 prod *= a;

}

Running time: O(___n2____)

Justification:
The first loop executes n times, and the second loop executes sum(0..n-1)=n2
times,so the complete code runs in O(n + n2), which by the rule of sums, is
is still O(n2)

CMSC 341, Fall 2018 Midterm Student Name: ________________________

3

19. (2 points) What is the maximum height of a binary search tree with n nodes?

max height = n – 1: essentially a linked list.

20. (2 points) What is the minimum height of a binary search tree with n nodes?

min height = log(n).

21. (3 points) What is the main difference between a plain binary tree and a binary search tree?

The binary search tree (BST) is a binary tree with a special additional

property: for any given node, all of the nodes in that node’s left subtree

have keys less than the node, and all of the nodes in the right subtree

have keys that are greater

Questions 22 thru 25 refer to the following binary tree:

22. (2 points) The height of this tree is: _______3_________

23. (2 points) The depth of the node labeled ‘7’ is: _______2_________

24. (2 points) The height of the node labeled ‘3’ is: _______2_________

25. (4 points) Print out the order the nodes would be visited for a postorder traversal:

_7__, _4__, _5__, _2__, _8__, _3__, _1__,

1

4 3

7 2 8

5

4

26. (3 points) Differentiate the experimental versus analytical approaches to determining

algorithmic complexity.

experimental approach: implement the algorithm and run it, measuring time

taken;

analytical approach: examine the code and mathematically determine how many

times each step is executed, at what cost

Questions 27 thru 29 refer to the following binary search tree, with nodes in alphabetical order:

27. (3 points) First insert into the above tree a node with the value “F”

(you can draw on the diagram above)

 (See new blue node “F” above)

28. (3 points) Then insert into the tree a node with the value “H”

(again, you can add to the diagram above)

 (See new red node “H” above)

29. (4 points) Draw the resulting tree when you delete the node “S” from the original tree

(draw the complete new tree below):

M

D S

A L N V

T P

H

F

M

T

N V

M

P

V

T P

N

CMSC 341, Fall 2018 Midterm Student Name: ________________________

5

Section 3: Design and Coding (22 points total)

Note: for this section, you are being asked to write more substantial sections of code. Clarity of

code structure and efficiency of design count.

30. (6 points) Write a code snippet with a for-loop that uses an iterator to print out all of the values

stored in a STL list<int> object called listOfInts. Be sure to declare your iterator

object correctly.

list<int> listOfInts;

… // Assume there will be code here to fill listOfInts with numbers

// Now, your code here to print out all the values in listOfInts;

// You must use an iterator!!!

 list<int>::iterator it;

 for (it = listOfInts.begin(); it != listOfInts.end(); it++) {

 cout << *it << endl;

 }

6

31. (10 points) You are given the following C++ class definition for a singly-linked list node class

(Node):
 class Node {

 public:

 int data;

 Node *next;

 }

Write the code body for the function swap_with_next(), which is called with two

arguments: list, a pointer to the first Node of a singly-linked list; and data, a value to

search for in the list. When the Node with the given value is found, it should then be swapped

with the Node immediately following it. The next field of the last node in the list is NULL. To

keep the solution simple, you can assume that the list is not empty, that the value you are

searching for is in the list, and that it will not be the first element or last element in the list.

void swap_with_next(Node *list, int data) {

 // taking full advantage of assumption that list isn’t empty,

 // and that we do not need to handle swap at head

 Node *prev, *curr, *next, *nextNext;

 for (prev = list, curr = prev->next; curr->next != NULL;

 prev = curr, curr = curr->next) {

 if (curr->data == data) {

 next = curr->next;

 nextNext = next->next;

 prev->next = next;

 next->next = curr;

 curr->next = nextNext;

 return;

 }

}

CMSC 341, Fall 2018 Midterm Student Name: ________________________

7

32. (6 points) You are given the following C++ class definition for TNode (short for “tree node”),

that is used to represent nodes in a binary search tree (“BST”):
 class TNode {

 public:

 int data;

 TNode *left, *right;

 }

Every TNode contains a distinct data value. Write the code body for the recursive function

contains(), which is called with two arguments: root: a pointer to the root node of a tree

or subtree, and data: the value to search for in the tree. The function returns true if the value

was found in the tree/subtree, false otherwise. Note again that this is a proper BST. Also note

that either/both the pointers root->left and root->right can be NULL. To keep the

solution simple, you can assume that the tree initially passed in is not empty (i.e., main()

promises not to call the initial invocation of contains()with NULL). As to whether

contains() ever recursively calls itself with NULL, as many of our in-class examples did, is

up to you. Don’t forget the “return” statement at the end!

bool contains(TNode *root, int data) {

 if (root == NULL)

 return false;

 else if (data < root->data) {

 return contains(root->left, data);

 } else if (data > root->data) {

 return contains(root->right, data);

 } else {

 return true;

 }

}

8

33. Extra Credit (5 points)
34.

Give asymptotic worst-case running times, as a function of n, for the following code.

Characterize the running time as closely as possible:

int sum = 0;

for (i = 0; i < n; i++) {

 for (int j = i; j < n; j++) {

 for (int x = i; x < j; x++) {

 sum += x;

 }

 }

}

Be careful—this is trickier than it seems! That’s why it’s extra credit.

Running time: O(___n3____)

Justification:

The innermost loop runs j-i times,but since j ranges from i to n, for any

given i, it runs 0 times, then 1, then 2 .. n-i-1 times. So it runs a total

of sum(0..n-i-1). Now, define i’ = n-i, then our terms become

sum(0..i’-1)where i’ ranges from 0..n-1. sum(0..i) is O(i2), so our outer

loop makes the whole function sumi:0..n(i2), which is O(n3)

