IS 733 Lesson 9

Ensemble Methods

Slides based on those from Data Mining by I. H. Witten, E. Frank, M. A. Hall and C. J. Pal and James Foulds’ Lecture Notes

Announcements

* Project mid-term progress report is due today
on Blackboard. One of the group member can
upload this.

* Homework 4 is posted at the course webpage
and due 4/20/2021 on Blackboard

Ensemble methods rarely perform better
than the best of the base classifiers that are

combined into a single model.

True

False

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

To get good performance with ensemble

methods, all of the base classifiers must

individually have excellent performance

True

False

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Randomized algorithms can be useful for

building ensembles

True

False

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Learning outcomes

By the end of the lesson, you should be able to:

* Describe, and compare and contrast the main ensemble
methods:
bagging, boosting, random forests, stacking

* Discuss why these methods may improve classification
performance

e Explain, at an intuitive level, the bias-variance trade-off

Ensemble Methods

Class

Combine

voles prediction

* Ensemble methods
— Use a combination of models to increase accuracy

— Combine a series of k learned models, M, M,, ..., M, with the aim
of creating an improved model M*

* Popular ensemble methods
— Bagging: averaging the prediction over a collection of classifiers
— Boosting: weighted vote with a collection of classifiers
— Stacking: combining a set of heterogeneous classifiers

10

Combining multiple models

Basic idea:
build different “experts”, let them vote

Advantage:

* often improves predictive performance

Disadvantage:
e usually produces output that is very hard to analyze

* but: there are approaches that aim to produce a single
comprehensible structure

Bagging

Combining predictions by voting/averaging

* Each model receives equal weight

“Idealized” version:

 Sample several training sets of size n
(instead of just having one training set of size n)

* Build a classifier for each training set

 Combine the classifiers’ predictions
If learning scheme is unstable,
bagging almost always improves performance

* Unstable learner: small change in training data can make big
change in model (e.g., when learning decision trees)

Bias-variance decomposition

The bias-variance decomposition is used to analyze how
much restriction to a single training set affects performance

Assume we have the idealized ensemble classifier discussed
on the previous slide

We can decompose the expected error of any individual
ensemble member as follows:

* Bias = expected error of the ensemble classifier on new data

* \Variance = component of the expected error due to the particular
training set being used to build our classifier

* Total expected error = bias + variance

Noise and Model Complexity

Use the simpler one because

Simpler to use (lower computational complexity)

— Easier to check if a point is inside/outside a rectangle =

Easier to train (lower space complexity)

— Fewer parameters

— More bias (rigid: more likely will not change its hypothesis)
— Less variance (less ability of learner to change its hypothesis)
— May fail if indeed the underlying class is not that simple

Easier to explain (more interpretable)

— Defining intervals on the two attributes

Generalizes better (lower variance - Occam’s razor)

— Better discriminator than wiggly shape in presence of
mislabel/noise though with higher error

— Simpler explanations are more plausible

Noise

 Sources
— Incorrect feature values
* Imprecision in recoding the input attributes

— Incorrect class labels
* teacher noise

— Hidden or latent features
e additional attributes

* |mpact
— Overfitting: Trying too hard to fit h to the noise

Underfitting vs. Overfitting

If Aand B are noise, then h,

overfits.
o
o If A and B are not noise, then
h, underfits.
S

Bias vs. Variance

Bias: Likelihood a learner will not change its
hypothesis

Variance: Ability of learner to change its hypothesis
Simple models have high bias, low variance
Complex models have low bias, high variance

Want balanced tradeoff

Depends on hypothesis class
— Rectangles vs. arbitrary shape

Occam’s Razor: Prefer simpler models

Inductive Bias

Given a training set X, there are many models
that are consistent with X

Preferring one of these models over another is an
“inductive bias”

For example

— Preferring rectangles to arbitrary shapes

— Preferring rectangle with largest margin

— Preferring lower-degree polynomial

— Preferring polynomial minimizing squared error

How do we choose the right inductive bias?

Intuition: Bias-Variance Trade-off

Inflexible models may not be able to fit the data well
(underfitting), if the model does not match the true concept.
“High bias”

— Poor performance on training and test sets

Overly flexible models may fit the data too well, including the
noise, and fail to generalize to new data. “High variance”

— Good performance on training data, poor on test

Altering the model’s flexibility trades bias and variance

Rule of thumb: generative models (e.g. naive Bayes) have high bias,
discriminative models (e.q. logistic regression) have high variance

Bias-Variance Trade-off

[.ow Variance High Variance

5]
o
m
2
o)
—

[]

o — o L4

[]

5]
3
M
5
.

Figure due to Scott Fortmann-Roe, http://scott.fortmann-roe.com/docs/BiasVariance.html

Bias-Variance Trade-off

Total Error

Variance

Oplimum Model Complexily

Error

: -
Model Complexity

Figure due to Scott Fortmann-Roe, http://scott.fortmann-roe.com/docs/BiasVariance.html

Think-Pair-Share:
Bias-Variance Trade-off

* Which hyper-parameters would you alter to modify the
model complexity, and hence the bias-variance trade-off, of
the following types of classifiers:

1. Decision tree learner
2. Decision rule learner
3. Support vector machine
4. Deep neural network

* Design an experimental evaluation to verify whether
an appropriate level of bias vs variance has been
achieved when varying the above hyper-parameters

Recap: “Idealized version” of Bagging

* Combining predictions by voting/averaging

* Each model receives equal weight
* “ldealized” version:

* Sample several training sets of size n
(instead of just having one training set of size n)

* Build a classifier for each training set

 Combine the classifiers’ predictions

More on bagging

 The idealized version of bagging improves performance
because it eliminates the variance component of the error

* Problem: we only have one dataset!

 We can’t actually implement “idealized bagging” in practice

More on bagging

Solution: generate new datasets of size n by sampling from the
original dataset with replacement

This is what bagging algorithm does

Even though the datasets are all dependent, bagging often
reduces variance, and, thus, error

* Can be applied to numeric prediction and classification
* Can help alot if the data is noisy

e Usually, the more classifiers the better, with diminishing returns

25

Bagging classifiers

Model generation

Let n be the number of instances in the training data
For each of t iterations:
Sample n instances from training set
(with replacement)
Apply learning algorithm to the sample
Store resulting model

Classification

For each of the t models:
Predict class of instance using model
Return class that is predicted most often

26

In the datasets constructed by the bagging

algorithm, some instances could get ____

More attributes
Less attributes
Deleted
Reweighted

Normalized

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Randomization and random forests

Can randomize the learning algorithm, instead of input

Some algorithms already have a random component:
e.g., initial weights in a neural net

Most algorithms can be randomized, e.g., greedy
algorithms:

— Pick N options at random from the full set of options, then
choose the best of those N choices

— E.g.: attribute selection in decision trees

Randomization and random forests

Randomization is very generally applicable: e.g., we
can use random subsets in a nearest-neighbor classifier

— Bagging does not work well with stable classifiers such as
nearest neighbour classifiers

— Randomization could be used instead

Randomization can be used to create a diverse
ensemble of classifiers, as an alternative to bagging

— When using decision trees, this yields the famous random
forest method for building ensemble classifiers

Random Forest (Breiman 2001)

Random Forest:

— Each classifier in the ensemble is a decision tree classifier and is
generated using a random selection of attributes at each node to
determine the split

— During classification, each tree votes and the most popular class is
returned

Comparable in accuracy to Adaboost, but more robust to errors and outliers

Insensitive to the number of attributes selected for consideration at each
split, and faster than bagging or boosting

Random forests are a reliable way to get decent performance on many
classification problems. | recommend that you should at least try them out

31

Random Forest (Breiman 2001)

Two Methods to construct Random Forest:

— Forest-Rl (random input selection): Randomly select, at each node, F
attributes as candidates for the split at the node.

* Only split on one of the candidates

— Forest-RC (random linear combinations): Creates new attributes (or
features) that are a linear combination of the existing attributes
(reduces the correlation between individual classifiers)

32

Boosting

Bagging can easily be parallelized because ensemble
members are created independently

Boosting is an alternative approach which is trained
sequentially instead of in parallel

* Later classifiers in the ensemble are informed by
earlier ones

Also uses voting/averaging

* But: weights models according to performance

Boosting

* Boosting is Iterative: new models are influenced by performance of
previously built ones

* Encourage new model to become an “expert” for instances misclassified by
earlier models

* Intuitive justification: models should be experts that complement each other

 Many variants of boosting exist. We will focus on AdaBoost.M1

Boosting using AdaBoost.M1

Model generation

Assign equal weight to each training instance
For t iterations:
Apply learning algorithm to weighted dataset,
store resulting model
Compute model’s error e on weighted dataset
If e=0o0or e =>0.5:
Terminate model generation
For each instance in dataset:
If classified correctly by model:
Multiply instance’s weight by e/ (1-e)
Normalize weight of all instances

Classification

Assign weight = 0 to all classes
For each of the t (or less) models:
For the class this model predicts
add -log e/ (1l-e) to this class’s weight
Return class with highest weight

35

Comments on AdaBoost.M1

Boosting needs weights ... but
can adapt learning algorithm ... or

can apply boosting without weights:
 Resample data with probability determined by weights
* Disadvantage: not all instances are used

 Advantage: if error > 0.5, can resample again

The AdaBoost.M1 boosting algorithm stems from work in
computational learning theory

Theoretical result:

* Training error decreases exponentially as iterations are performed

Other theoretical results:
 Works well if base classifiers are not too complex and

* their error does not become too large too quickly as more iterations
are performed

Which algorithm is more vulnerable to

overfitting?

Bagging

Boosting

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

More comments on boosting

Continue boosting after training error = 0?

Puzzling fact: generalization error continues to decrease!

e Seems to contradict Occam’s Razor

Possible explanation:
consider margin (confidence), not just error

* A possible definition of margin: difference between estimated
probability for true class and nearest other class (between —1 and 1)

* Margin continues to increase with more iterations

More comments on boosting

AdaBoost.M1 works well with so-called weak learners; only
condition: error does not exceed 0.5

 Example of weak learner: decision stump

In practice, boosting sometimes overfits if too many
iterations are performed (in contrast to bagging)

Stacking

Question: how to build a heterogeneous ensemble consisting of
different types of models (e.g., decision tree and neural network)

* Problem: models can be vastly different in accuracy

ldea: to combine predictions of base learners, do not just vote,
instead, use meta learner

* Instacking, the base learners are also called level-0 models
* Meta learner is called level-1 model

* Predictions of base learners are input to meta learner

Base learners are usually different learning schemes

Suppose we perform stacking, using the
predictions of the level 0 models on the
training data as attributes for training the

level 1 model. This might not be a good idea

due to

The bias

The variance

Overfitting

Underfitting

Instability of the procedure

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Generating the level-1 training data

Training data for level-1 model contains predictions of level-0
models as attributes; class attribute remains the same

Problem: we cannot use the level-O0 models predictions on their
training data to obtain attribute values for the level-1 data

 Assume we have a perfect rote learner as one of the level-0 learner

* Then, the level-1 learner will learn to simply predict this level-0’s
learners predictions, rendering the ensemble pointless

Generating the level-1 training data

* To solve this, we generate the level-1 training data by running a
cross-validation for each of the level-0 algorithms

* Then, the predictions (and actual class values) obtained for the test
instances encountered during the cross-validation are collected

* This pooled data obtained from the cross-validation for each level-0
model is used to train the level-1 model

More on stacking

Stacking is hard to analyze theoretically: “black magic”

If the base learners can output class probabilities, use those
as input to meta learner instead of plain classifications

* Makes more information available to the level-1 learner
Important question: which algorithm to use as the meta
learner (aka level-1 learner)?

* In principle, any learning scheme

* In practice, prefer “relatively global, smooth” models because

 Dbase learners do most of the work and
e this reduces the risk of overfitting

Note that stacking can be trivially applied to numeric
prediction too

In the algorithm, weighting is used to

give more influence to more successful

models

Bagging
Boosting

Random forests

Stacking

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Weka Demo

e Labor relations dataset

e WEKA Classifier

— trees.J48 (baseline)
— meta.Bagging

— trees.RandomForest
— meta.AdaboostM1
— meta.Stacking

Think-Pair-Share: Netflix Prize

In the Netflix Prize Competition, the goal was to predict the ratings (1-5
stars) that a user would give a movie, based on the other ratings

Suppose you have developed 500 different regression algorithms for
predicting the ratings, some of which work better than others.

Design an effective method to combine them into a single model.
Justify your choices.

Design an evaluation strategy to test whether the ensemble works
better than each of the individual models

NETFLIX

