
IS 733 Lesson 9

Ensemble Methods

Slides based on those from Data Mining by I. H. Witten, E. Frank, M. A. Hall and C. J. Pal and James Foulds’ Lecture Notes



Announcements

• Project mid-term progress report is due today 
on Blackboard. One of the group member can 
upload this.

• Homework 4 is posted at the course webpage 
and due 4/20/2021 on Blackboard









Learning outcomes

By the end of the lesson, you should be able to:

• Describe, and compare and contrast the main ensemble 
methods:
bagging, boosting, random forests, stacking

• Discuss why these methods may improve classification 
performance

• Explain, at an intuitive level, the bias-variance trade-off

9



Ensemble Methods

• Ensemble methods

– Use a combination of models to increase accuracy

– Combine a series of k learned models, M1, M2, …, Mk, with the aim 
of creating an improved model M*

• Popular ensemble methods

– Bagging: averaging the prediction over a collection of classifiers

– Boosting: weighted vote with a collection of classifiers

– Stacking: combining a set of heterogeneous classifiers

10



Combining multiple models

• Basic idea:
build different “experts”, let them vote

• Advantage:

• often improves predictive performance

• Disadvantage:

• usually produces output that is very hard to analyze

• but: there are approaches that aim to produce a single 
comprehensible structure

11



Bagging

• Combining predictions by voting/averaging

• Each model receives equal weight

• “Idealized” version:

• Sample several training sets of size n
(instead of just having one training set of size n)

• Build a classifier for each training set

• Combine the classifiers’ predictions

• If learning scheme is unstable,
bagging almost always improves performance

• Unstable learner: small change in training data can make big 
change in model (e.g., when learning decision trees)

12



Bias-variance decomposition

• The bias-variance decomposition is used to analyze how 
much restriction to a single training set affects performance

• Assume we have the idealized ensemble classifier discussed 
on the previous slide

• We can decompose the expected error of any individual 
ensemble member as follows:

• Bias = expected error of the ensemble classifier on new data

• Variance = component of the expected error due to the particular 
training set being used to build our classifier

• Total expected error = bias + variance

13



Noise and Model Complexity

Use the simpler one because
• Simpler to use (lower computational complexity)

– Easier to check if a point is inside/outside a rectangle

• Easier to train (lower space complexity)
– Fewer parameters

– More bias (rigid: more likely will not change its hypothesis)

– Less variance (less ability of learner to change its hypothesis)

– May fail if indeed the underlying class is not that simple

• Easier to explain (more interpretable)
– Defining intervals on the two attributes

• Generalizes better (lower variance - Occam’s razor)
– Better discriminator than wiggly shape in presence of 

mislabel/noise though with higher error

– Simpler explanations are more plausible



• Sources
– Incorrect feature values

• Imprecision in recoding the input attributes

– Incorrect class labels
• teacher noise

– Hidden or latent features
• additional attributes

• Impact
– Overfitting: Trying too hard to fit h to the noise

Noise



Underfitting vs. Overfitting

A

B

If A and B are noise, then h2

overfits.

If A and B are not noise, then 

h1 underfits.



• Bias: Likelihood a learner will not change its 
hypothesis

• Variance: Ability of learner to change its hypothesis

• Simple models have high bias, low variance

• Complex models have low bias, high variance

• Want balanced tradeoff

• Depends on hypothesis class
– Rectangles vs. arbitrary shape

• Occam’s Razor: Prefer simpler models

Bias vs. Variance



• Given a training set X, there are many models 
that are consistent with X

• Preferring one of these models over another is an 
“inductive bias”

• For example
– Preferring rectangles to arbitrary shapes
– Preferring rectangle with largest margin
– Preferring lower-degree polynomial
– Preferring polynomial minimizing squared error

• How do we choose the right inductive bias?

Inductive Bias



Intuition: Bias-Variance Trade-off

• Inflexible models may not be able to fit the data well 
(underfitting), if the model does not match the true concept.
“High bias”
– Poor performance on training and test sets

• Overly flexible models may fit the data too well, including the 
noise, and fail to generalize to new data. “High variance”
– Good performance on training data, poor on test

• Altering the model’s flexibility trades bias and variance
• Rule of thumb: generative models (e.g. naïve Bayes) have high bias, 

discriminative models (e.g. logistic regression) have high variance



Bias-Variance Trade-off

Figure due to Scott Fortmann-Roe, http://scott.fortmann-roe.com/docs/BiasVariance.html



Bias-Variance Trade-off

Figure due to Scott Fortmann-Roe, http://scott.fortmann-roe.com/docs/BiasVariance.html



Think-Pair-Share:
Bias-Variance Trade-off

• Which hyper-parameters would you alter to modify the 
model complexity, and hence the bias-variance trade-off, of 
the following types of classifiers:

1. Decision tree learner

2. Decision rule learner

3. Support vector machine

4. Deep neural network

• Design an experimental evaluation to verify whether 
an appropriate level of bias vs variance has been 
achieved when varying the above hyper-parameters



Recap: “Idealized version” of Bagging

• Combining predictions by voting/averaging

• Each model receives equal weight

• “Idealized” version:

• Sample several training sets of size n
(instead of just having one training set of size n)

• Build a classifier for each training set

• Combine the classifiers’ predictions

23



More on bagging

• The idealized version of bagging improves performance 
because it eliminates the variance component of the error

• Problem: we only have one dataset!

• We can’t actually implement “idealized bagging” in practice

24



More on bagging

• Solution: generate new datasets of size n by sampling from the 
original dataset with replacement

• This is what bagging algorithm does

• Even though the datasets are all dependent, bagging often 
reduces variance, and, thus, error

• Can be applied to numeric prediction and classification

• Can help a lot if the data is noisy

• Usually, the more classifiers the better, with diminishing returns

25



Bagging classifiers

Let n be the number of instances in the training data
For each of t iterations:
Sample n instances from training set

(with replacement)
Apply learning algorithm to the sample
Store resulting model

For each of the t models:
Predict class of instance using model
Return class that is predicted most often

Model generation

Classification

26





Randomization and random forests

• Can randomize the learning algorithm, instead of input

• Some algorithms already have a random component: 
e.g., initial weights in a neural net

• Most algorithms can be randomized, e.g., greedy 
algorithms:
– Pick N options at random from the full set of options, then 

choose the best of those N choices

– E.g.: attribute selection in decision trees

29



Randomization and random forests

• Randomization is very generally applicable: e.g., we 
can use random subsets in a nearest-neighbor classifier
– Bagging does not work well with stable classifiers such as 

nearest neighbour classifiers

– Randomization could be used instead

• Randomization can be used to create a diverse 
ensemble of classifiers, as an alternative to bagging
– When using decision trees, this yields the famous random 

forest method for building ensemble classifiers

30



Random Forest (Breiman 2001) 

• Random Forest: 

– Each classifier in the ensemble is a decision tree classifier and is 
generated using a random selection of attributes at each node to 
determine the split

– During classification, each tree votes and the most popular class is 
returned

• Comparable in accuracy to Adaboost, but more robust to errors and outliers

• Insensitive to the number of attributes selected for consideration at each 
split, and faster than bagging or boosting

• Random forests are a reliable way to get decent performance on many 
classification problems.  I recommend that you should at least try them out

31



Random Forest (Breiman 2001) 

• Two Methods to construct Random Forest:

– Forest-RI (random input selection): Randomly select, at each node, F 
attributes as candidates for the split at the node.
• Only split on one of the candidates

– Forest-RC (random linear combinations): Creates new attributes (or 
features) that are a linear combination of the existing attributes
(reduces the correlation between individual classifiers)

32



Boosting

• Bagging can easily be parallelized because ensemble 
members are created independently

• Boosting is an alternative approach which is trained 
sequentially instead of in parallel

• Later classifiers in the ensemble are informed by 
earlier ones

• Also uses voting/averaging

• But: weights models according to performance

33



Boosting

• Boosting is Iterative: new models are influenced by performance of 
previously built ones

• Encourage new model to become an “expert” for instances misclassified by 
earlier models

• Intuitive justification: models should be experts that complement each other

• Many variants of boosting exist. We will focus on AdaBoost.M1

34



Boosting using AdaBoost.M1

Assign equal weight to each training instance
For t iterations:
Apply learning algorithm to weighted dataset,
store resulting model
Compute model’s error e on weighted dataset

If e = 0 or e  0.5:
Terminate model generation

For each instance in dataset:
If classified correctly by model:

Multiply instance’s weight by e/(1-e)
Normalize weight of all instances

Model generation

Classification
Assign weight = 0 to all classes
For each of the t (or less) models:
For the class this model predicts

add –log e/(1-e) to this class’s weight
Return class with highest weight

35



Comments on AdaBoost.M1

• Boosting needs weights … but

• can adapt learning algorithm ... or

• can apply boosting without weights:

• Resample data with probability determined by weights

• Disadvantage: not all instances are used

• Advantage: if error > 0.5, can resample again

• The AdaBoost.M1 boosting algorithm stems from work in 
computational learning theory

• Theoretical result:

• Training error decreases exponentially as iterations are performed

• Other theoretical results:

• Works well if base classifiers are not too complex and

• their error does not become too large too quickly as more iterations 
are performed

36





More comments on boosting

• Continue boosting after training error = 0?

• Puzzling fact: generalization error continues to decrease!

• Seems to contradict Occam’s Razor

• Possible explanation:
consider margin (confidence), not just error

• A possible definition of margin: difference between estimated 
probability for true class and nearest other class (between –1 and 1)

• Margin continues to increase with more iterations

39



More comments on boosting

• AdaBoost.M1 works well with so-called weak learners; only 
condition: error does not exceed 0.5

• Example of weak learner: decision stump

• In practice, boosting sometimes overfits if too many 
iterations are performed (in contrast to bagging)

40



Stacking

• Question: how to build a heterogeneous ensemble consisting of 
different types of models (e.g., decision tree and neural network)

• Problem: models can be vastly different in accuracy

• Idea: to combine predictions of base learners, do not just vote, 
instead, use meta learner

• In stacking, the base learners are also called level-0 models

• Meta learner is called level-1 model

• Predictions of base learners are input to meta learner

• Base learners are usually different learning schemes

41





Generating the level-1 training data

• Training data for level-1 model contains predictions of level-0 
models as attributes; class attribute remains the same

• Problem: we cannot use the level-0 models predictions on their 
training data to obtain attribute values for the level-1 data

• Assume we have a perfect rote learner as one of the level-0 learner 

• Then, the level-1 learner will learn to simply predict this level-0’s 
learners predictions, rendering the ensemble pointless

44



Generating the level-1 training data

• To solve this, we generate the level-1 training data by running a 
cross-validation for each of the level-0 algorithms

• Then, the predictions (and actual class values) obtained for the test
instances encountered during the cross-validation are collected

• This pooled data obtained from the cross-validation for each level-0 
model is used to train the level-1 model

45



More on stacking

• Stacking is hard to analyze theoretically: “black magic”

• If the base learners can output class probabilities, use those 
as input to meta learner instead of plain classifications

• Makes more information available to the level-1 learner

• Important question: which algorithm to use as the meta 
learner (aka level-1 learner)?

• In principle, any learning scheme

• In practice, prefer “relatively global, smooth” models because

• base learners do most of the work and

• this reduces the risk of overfitting

• Note that stacking can be trivially applied to numeric 
prediction too

46





Weka Demo

• Labor relations dataset

• WEKA Classifier

– trees.J48 (baseline)

– meta.Bagging

– trees.RandomForest

– meta.AdaboostM1

– meta.Stacking



Think-Pair-Share: Netflix Prize

• In the Netflix Prize Competition, the goal was to predict the ratings (1-5 
stars) that a user would give a movie, based on the other ratings

• Suppose you have developed 500 different regression algorithms for 
predicting the ratings, some of which work better than others.

Design an effective method to  combine them into a single model.  
Justify your choices.

Design an evaluation strategy to test whether the ensemble works 
better than each of the individual models


